A Population-Based Algorithm for the Bi-Objective Quadratic Multiple Knapsack Problem - Eco-Procédés Optimisation et Aide à la Décision - UR UPJV 4669
Communication Dans Un Congrès Année : 2022

A Population-Based Algorithm for the Bi-Objective Quadratic Multiple Knapsack Problem

Résumé

In this paper, the bi-objective quadratic multiple knapsack problem is tackled with a hybrid population-based method. The proposed method starts by computing two reference solutions, where a specialized powerful mono-objective algorithm is used. From both reference solutions, a starting population is built by using a series of perturbations around the solutions. Next, the so-called non-sorting genetic process is combined with a new drop/rebuild operator for generating a series of populations till converging toward an approximate Pareto front with high density. The performance of the Hybrid Population Based Algorithm for the Bi-Objective Quadratic Multiple Knsapsack problem HBPA is evaluated on a set of benchmark instances of the literature containing both medium and large-scale instances. Its provided results are compared to those achieved by the best methods available in the literature. Encouraging results have been obtained.
Fichier principal
Vignette du fichier
Oussama_ROADEF2022_Hifi.pdf (357.44 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03595221 , version 1 (03-03-2022)

Identifiants

  • HAL Id : hal-03595221 , version 1

Citer

Méziane Aïder, Oussama Gacem, Mhand Hifi. A Population-Based Algorithm for the Bi-Objective Quadratic Multiple Knapsack Problem. 23ème congrès annuel de la Société Française de Recherche Opérationnelle et d'Aide à la Décision, INSA Lyon, Feb 2022, Villeurbanne - Lyon, France. ⟨hal-03595221⟩
98 Consultations
45 Téléchargements

Partager

More