Long-time asymptotic of the Lifshitz-Slyozov equation with nucleation - Laboratoire Amiénois de Mathématique Fondamentale et Appliquée - UMR CNRS 7352
Article Dans Une Revue Kinetic and Related Models Année : 2024

Long-time asymptotic of the Lifshitz-Slyozov equation with nucleation

Résumé

We consider the Lifshitz-Slyozov model with inflow boundary conditions of nucleation type. We show that for a collection of representative rate functions the size distributions approach degenerate states concentrated at zero size for sufficiently large times. The proof relies on monotonicity properties of some quantities associated to an entropy functional. Moreover, we give numerical evidence on the fact that the convergence rate to the goal state is algebraic in time. Besides their mathematical interest, these results can be relevant for the interpretation of experimental data.
Fichier principal
Vignette du fichier
ls-final_black.pdf (5.42 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04098262 , version 1 (17-05-2023)
hal-04098262 , version 2 (17-11-2023)

Identifiants

Citer

Juan Calvo, Erwan Hingant, Romain Yvinec. Long-time asymptotic of the Lifshitz-Slyozov equation with nucleation. Kinetic and Related Models , 2024, 17 (5), pp.755-773. ⟨10.3934/krm.2023041⟩. ⟨hal-04098262v2⟩
211 Consultations
95 Téléchargements

Altmetric

Partager

More