
HAL Id: hal-03436211
https://u-picardie.hal.science/hal-03436211v1

Submitted on 19 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Computer-Aided Screening of Autism Spectrum
Disorder: Eye-Tracking Study Using Data Visualization

and Deep Learning
Federica Cilia, Romuald Carette, Mahmoud Elbattah, Gilles Dequen,

Jean-Luc Guérin, Jérôme Bosche, Luc Vandromme, Barbara Le Driant

To cite this version:
Federica Cilia, Romuald Carette, Mahmoud Elbattah, Gilles Dequen, Jean-Luc Guérin, et al..
Computer-Aided Screening of Autism Spectrum Disorder: Eye-Tracking Study Using Data Visual-
ization and Deep Learning. JMIR Human Factors, 2021, 8 (4), pp.e27706. �10.2196/27706�. �hal-
03436211�

https://u-picardie.hal.science/hal-03436211v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Original Paper

Computer-Aided Screening of Autism Spectrum Disorder:
Eye-Tracking Study Using Data Visualization and Deep Learning

Federica Cilia1*, PhD; Romuald Carette2*, PhD; Mahmoud Elbattah2*, PhD; Gilles Dequen2*, PhD; Jean-Luc Guérin2*,

PhD; Jérôme Bosche2*, PhD; Luc Vandromme3*, PhD; Barbara Le Driant1*, PhD
1UR-UPJV 7273, Centre de Recherche en Psychologie - Cognition, Psychisme, Organisations, Université de Picardie Jules Verne, Amiens, France
2UR-UPJV 4290, Modélisation, Information & Systèmes, Université de Picardie Jules Verne, Amiens, France
3UR-UPJV 7516, Chirurgie et Extrémité Céphalique Caractérisation Morphologique et Fonctionnelle, Université de Picardie Jules Verne, Amiens,
France
*all authors contributed equally

Corresponding Author:
Federica Cilia, PhD
UR-UPJV 7273
Centre de Recherche en Psychologie - Cognition, Psychisme, Organisations
Université de Picardie Jules Verne
10 rue des Français Libres
Amiens, 80000
France
Phone: 33 322 827 397
Email: federica.cilia@u-picardie.fr

Abstract

Background: The early diagnosis of autism spectrum disorder (ASD) is highly desirable but remains a challenging task, which
requires a set of cognitive tests and hours of clinical examinations. In addition, variations of such symptoms exist, which can
make the identification of ASD even more difficult. Although diagnosis tests are largely developed by experts, they are still
subject to human bias. In this respect, computer-assisted technologies can play a key role in supporting the screening process.

Objective: This paper follows on the path of using eye tracking as an integrated part of screening assessment in ASD based on
the characteristic elements of the eye gaze. This study adds to the mounting efforts in using eye tracking technology to support
the process of ASD screening

Methods: The proposed approach basically aims to integrate eye tracking with visualization and machine learning. A group of
59 school-aged participants took part in the study. The participants were invited to watch a set of age-appropriate photographs
and videos related to social cognition. Initially, eye-tracking scanpaths were transformed into a visual representation as a set of
images. Subsequently, a convolutional neural network was trained to perform the image classification task.

Results: The experimental results demonstrated that the visual representation could simplify the diagnostic task and also attained
high accuracy. Specifically, the convolutional neural network model could achieve a promising classification accuracy. This
largely suggests that visualizations could successfully encode the information of gaze motion and its underlying dynamics. Further,
we explored possible correlations between the autism severity and the dynamics of eye movement based on the maximal information
coefficient. The findings primarily show that the combination of eye tracking, visualization, and machine learning have strong
potential in developing an objective tool to assist in the screening of ASD.

Conclusions: Broadly speaking, the approach we propose could be transferable to screening for other disorders, particularly
neurodevelopmental disorders.

(JMIR Hum Factors 2021;8(4):e27706) doi: 10.2196/27706
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Introduction

ASD Characteristics
Autism spectrum disorder (ASD) has been described as a
pervasive developmental disorder characterized by a set of
impairments including social communication problems,
difficulties with reciprocal social interactions, and unusual
patterns of repetitive behaviors or interests [1]. During
naturalistic interaction, making and maintaining eye contact is
not always easy or spontaneous for ASD-diagnosed individuals.
Such troubling deficits can unfortunately place a considerable
strain on their lives and their families. Nevertheless, these
disturbances are not better explained by intellectual disability
or global developmental delay [1].

Early diagnosis may lead to early intervention, which generally
proves beneficial for both the child and the family. The diagnosis
process usually involves a set of tests that can require hours of
clinical examinations or is based on an interview with the
parents. Furthermore, the variation of symptoms with regard to
deficits in social communication and social interaction as well
as the social communication impairments and restricted,
repetitive patterns of behavior make the identification of ASD
more complicated to decide. In this respect, computer-aided
technologies have been embraced to provide helpful guidance
through the course of examination and assessment. Examples
include magnetic resonance imaging, electroencephalography
[2], and eye tracking, which will be considered in this study.
Eye-tracking technology has received particular attention in the
ASD context since abnormalities of eye gaze have been
consistently recognized as the hallmark of autism in general
[3,4]. A considerable number of other psychology studies in
eye tracking have been based on the particularities of eye
movements in response to verbal or visual cues as signs of ASD
[5-7]. In particular, these studies have highlighted social-related
difficulties in children with ASD, especially when face stimuli
are used (eg, in a face-to-butterfly categorical visual search task
[8] and unsuitable extraction of visual information via eye
fixations for emotion recognition [9]).

This study provides a meeting point for eye tracking and
machine learning (ML) for supporting the diagnosis of ASD.
It is part of an interdisciplinary collaboration between research
units of psychology and artificial intelligence at the University
of Picardy Jules Verne in France. Our approach is distinctively
based on the premise that visual representations of eye-tracking
recordings can effectively serve as features for discriminating
individuals diagnosed with ASD. At its core, the key idea is to
compactly render eye movements into an image-based format
while maintaining the dynamic characteristics of eye motion
(eg, velocity) using color gradients. In this manner,
diagnostic-related tasks can be approached as a problem of
image classification or analysis. The applicability of the
proposed approach will be demonstrated based on the
classification accuracy. Further, we will support our results with
a statistical analysis that will explore possible correlations
between the Childhood Autism Rating Scale (CARS) [10] and
the dynamics of eye movement among participants diagnosed
with ASD.

Eye Tracking for ASD Screening
Eye tracking has been used in numerous research studies. It can
be described as the process of capturing, tracking, and measuring
eye movements or the absolute point of gaze (POG), which
refers to the point where the eye gaze is focused in the visual
scene [11]. The significance of such technology is that it allows
for an objective and quantitative method of recording the
viewer's POG. The interpretation of eye movement can be
effectively used in interactive applications or for diagnostic
purposes.

Eye trackers aim to capture 3 basic categories of eye
movements: (1) fixation, (2) saccade, and (3) blink. A fixation
is the brief moment that occurs while pausing the gaze on an
object so that the brain can perform the perception process. The
average duration of fixation typically ranges from 150 ms to
300 ms [12]. However, the fixation duration is dependent on
the context. The duration of our fixations differs when we are
reading on paper (230 ms) or on a screen (553 ms) [13], or when
we are watching a naturalistic scene on a computer (330 ms)
[14]. Further, accurate perception requires constant scanning
of the object with rapid eye movements, which are called
saccades. Saccades include quick, ballistic jumps that take about
30-120 ms each [15]. On the other hand, a blink is often a sign
that the system has lost track of the eye gaze. Eye-tracking
scanpaths have been commonly used as a practical means for
depicting gaze behavior in a visual manner. A scanpath
represents a sequence of consecutive fixations and saccades as
a trace through time and space and may overlap with itself [16].

Abundant studies have sought to take advantage of eye-tracking
applications for studying and analyzing eyes movements. For
instance, a team of psychologists and neuroscientists recently
showed that children with ASD have faster eye movements than
do children with typical development, but these results depend
on the visual task the children are asked to perform. If they are
faster while remaining precise in prosaccade tasks with a gap
paradigm, the same children are less accurate but faster than
are children with typical development in another gap paradigm
during short visual search. This means that children with ASD
favor speed over accuracy and that they have shorter saccadic
latencies [8]. Moreover, Vabalas and Freeth [17] demonstrated
that in face-to-face interactions, eye movements were different
among individuals depending on where they fell on the autism
spectrum. Specifically, persons with high autistic traits were
observed to experience shorter and less frequent saccades.
Conversely, Liberati et al [18] showed greater saccade amplitude
and higher frequency in children with ASD than did control
children. However, in Liberati et al’s study, the Tobii Eye
Tracker used had a sampling rate of 60 Hz, and they extracted
the raw data to create clusters using k-means clustering, whereas
Vabalas and Freeth used SMI eye-tracking glasses with a rate
of 24 Hz. Thus, the question does not appear to be settled and
seems to depend largely on the equipment and data used (eg,
autistic traits according to a questionnaire vs autistic persons).
In another study, eye-tracking was used to identify children
diagnosed with ASD based on the duration of fixations and the
number of saccades [19]. The results showed that participants
with ASD spent significantly more time fixating on dynamic
geometric images compared to other diagnostic groups.
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Likewise, a longitudinal study examined the fixation patterns
of infants from 2 to 6 months of age [20]. It was found that
infants diagnosed with ASD exhibited a mean decline in
fixations, which was not observed for those who did not develop
ASD afterwards. Moreover, another cohort study suggested the
strong potential of eye tracking as an objective tool for
quantifying the risk of autism and estimating the severity of its
symptoms [21]. A high diagnostic accuracy was demonstrated
in this regard as well.

ML for ASD Screening
ML is subfield of computer science involved in providing
computers the ability to learn without being explicitly
programmed [22]. In contrast to traditional programming, ML
attempts to extrapolate algorithms from data exclusively. Thus,
the power of ML is that it allows for extracting insights, making
predictions, or taking actions with minimal human intervention
(if any). The development of ML can be broadly organized into
supervised or unsupervised models. On the one hand, supervised
ML deals with labeled examples, where the desired output is
known precisely. The learning algorithm receives a set of inputs
along with corresponding labels, and the algorithm can learn
by comparing predicted labels to the actual ones. The model
can be iteratively optimized to minimize error. On the other
hand, unsupervised ML uses training data that do not include
any output information (ie, labels). Unsupervised models (eg,
clustering and association rules) can provide descriptive
knowledge to help understand the inherent structure or properties
of the data.

The coupling of eye tracking with ML is currently leveraging
further capabilities for advancing ASD diagnosis and its
applications. The literature includes several contributions in
this context. For instance, Pusiol et al [23] worked on the
analysis of the eye focus on the face during conversations. Their
analysis was specifically applied to children with developmental
disorders or those with fragile X syndrome. They tested a set
of classification models, including recurrent neural networks,
support vector machine, Naive Bayes, and the hidden Markov
model. With recurrent neural networks, they were able to reach
a high prediction accuracy of 86% and 91% for the classification
of female and male fragile X syndrome, respectively. Another
recent study applied ML on eye-tracking output to predict ASD
[24]. The ML model included features related to the saccade
eye movement (eg, amplitude, duration, and acceleration). The
experiments were aimed at detecting ASD among a set of 17
children aged 8 to 10 years. Despite the use of a limited data
set and a relatively simple model, the findings demonstrated
the promising potential of ML for this application.

Other recent studies have focused on predicting the visual
attention of children with ASD. For instance, Wei et al [25]
proposed a saliency prediction model based on a convolutional
neural network (CNN), but they concluded that it is necessary
to first train the model on an eye-tracking data set of typical
development to enable more effective saliency prediction. Jiang
et al [26] proposed a method with 86% accuracy that classifies
eye fixations based on a comprehensive set of features and that
integrates task performance, gaze information, and facial
features extracted using a deep neural network. Their work

focused on a population of children with ASD between the ages
of 8 and 17 years whose intellectual level was highly disparate
(IQ score range 58-137).

Compared to the literature, the main distinction of this paper is
that it is purely reliant on the visual representation of
eye-tracking scanpaths. The study aims to produce scanpath
visualizations that can represent the spatial patterns of gaze
behavior and its dynamics. In this way, the vision-based
approach allows for approaching the diagnosis problem as a
typical task of image classification and is a continuation of our
earlier work [24,27]. Our initial work applied a different set of
features based on the events of fixations and saccades. We have
transformed the eye-tracking data into a visual representation
[27,28]. This study builds on our earlier efforts in an attempt
to develop more sophisticated ML models using deep learning.

Methods

Recruitment
A group of 59 children took part in this study. It was highly
desirable to have participants at an early stage of development,
as the principal goal was supporting the early detection and
diagnosis of ASD. Specifically, all participants were school-aged
children of a mean age of about 8 years. This somewhat
advanced age was indispensable here because in our region
there were not enough diagnosed children younger than 6 years,
and the time it takes to consult a doctor to make a diagnosis can
be as long as 2 years. For the group of typically developing
children (non-ASD), parental reports of any possible concerns
were carefully considered.

The ASD diagnosis was confirmed by health professionals using
standardized tools (Autism Diagnostic Interview-Revised
[ADI-R], and Autism Diagnostic Observation Schedule–Generic
[ADOS-G]). However, we did not get permission to read the
children’s medical files. ADI-R and ADOS-G scores were not
analyzed in this study. The participants were broadly organized
into 2 groups: (1) diagnosed with ASD or (2) non-ASD. Children
diagnosed with ASD were examined in multidisciplinary ASD
specialty clinics. The intensity of autism was estimated by
psychologists using the French version of the CARS [29], while
communication level was assessed with the French version of
the Early Social Communication Scale (Echelle d’évaluation
de la Communication Sociale Précoce [ECSP]) [30]. Table 1
summarizes the statistics of the participants.

All the children’s parents or legal guardians were informed of
the objectives of the study, the nature of the tasks that would
be administered, and the fact that they could withdraw their
agreement at any time. Their informed consent was received in
writing in accordance with the Declaration of Helsinki of June
1964 (amended at the 64th General Assembly of the World
Health Organization in October 2013). Moreover, all children
gave their agreement to participate, and if they wished, parents
could be present with their children in the experimental room.
This study did not require authorization from an ethics
committee based on the recommendations for psychological
research in France and in agreement with the national and
institutional guidelines.
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Table 1. Summary of participant statistics.

Non-ASD (n=30)ASDa (n=29)Child group

1919Males, n

8 (2, 8)7, 7 (2, 6)Chronological age (years, months), mean (SD)

23, 15 (6, 7)24, 10 (6, 8)Developmental age on the ESCSb (months, days), mean (SD)

139, 18 (49, 5)141, 1 (50, 3)Total ECSP score, mean (SD)

15 (0)32, 9 (6, 4)CARSc score (minimum score=15; autism cutoff > 30), mean (SD)

aASD: autism spectrum disorder.
bECSP: Echelle d’évaluation de la Communication Sociale Précoce.
cCARS: Childhood Autism Rating Scale.

Apparatus and Stimuli
The SMI RED250 remote eye tracker (250 Hz, SensoMotoric
Instruments) was the main instrument used to perform the
eye-tracking function. The device belongs to the category of
screen-based eye trackers. It can be conveniently placed at the
bottom of the screen of a desktop PC or laptop. In our case, a
17-inch monitor with a 1280 x 1024 resolution was used.

Further stimuli were presented from the SMI Experiment
Center software. Stimuli represented multiple distinct types
used in the eye gaze literature. Examples included static and
dynamic naturalistic scenes with and without receptive language,
joint attention stimuli, static face or objects, and cartoon stimuli.
The average duration of eye-tracking experiments was about
10 minutes. Participants were mainly examined for the quality
of eye contact with the presenter and the level of focus on other
elements. A 5-point calibration scheme was used. The
calibration routine was followed by a set of verification
procedures.

Procedure
The participants were invited to watch a set of photographs and
videos, which included scenarios tailored specifically to
stimulate the eye movement across the screen area. Participants
could be seated on their own or on their parents’ lap at an
approximately 60-cm distance from the display screen. The
experiments were conducted in a quiet room at the university
premises. Physical white barriers were also used to reduce visual
distraction.

The scenarios varied in content and length in order to allow for
analysis of the ocular activity of participants from different
perspectives. In general, videos were designed to include visual
elements that are especially attractive to children (eg, colorful
balloons and cartoons). Specifically, the stimuli presented are
part of various psychological studies. One of these studies
involves the presentation of 3 videos including a situation of
joint attention initiation (duration of 58 seconds per video) and
18 photos from the same situation (5 seconds per photo). The
scene presented in the video and corresponding photos started
with an attention grabber (ie, a hand-waving cartoon). The
woman in the video then said, “Hello, how are you?” to the
child and looked, verbalized, pointed, and/or verbalized at a
joint attention target present or absent to the children’s visual

field. All conversations were performed in French as the native
language of participants.

The assessment of gaze following included 12 videos (4 seconds
each in duration) of an actor with a neutral face first engaging
in direct gaze and then shifting to 1 out of 3 objects. In 6 videos,
the actor shifted his eyes and head to the target, and in 6 other
videos, he only moved his eyes to the target. The same actors
were engaged in another research protocol where their photo
was shown for 5 seconds on half the screen next to an object.
Other stimuli presented scenes with emotional valence extracted
from cartoons in which the faces of the characters expressed an
emotion that was either contingent or not contingent on the
previous scene (total duration 5 minutes). Moreover, in all tests,
the interstimulus interval lasted 2 seconds, during which a
central crosshair was presented. The differences between the
stimuli used included dynamic or static, human (male and
female) or cartoon, and human or object. The counterbalancing
of stimuli for participants and the number of participants
included allowed the artificial intelligence and psychology teams
to collaborate on the basis of this predefined research protocol.
The results of these tests have been partly exploited, presented,
and published [31-33].

Data Transformation: Visualization of Eye-Tracking
Scanpaths
The premise of this study is based on the learning of visual
patterns included in eye-tracking scanpaths. Specifically,
scanpaths are used as a means to compactly describe the gaze
movements into a visual representation that can simplify the
learning process. Further, the scanpaths were also used to
visually encode the dynamics of eye motion using color
gradients. To achieve this, we used the coordinates in
eye-tracking records, which represented the participant's POG
during the experiment runtime. Based on the change in POG
over time, we were able to calculate the velocity of gaze
movement. Subsequently, the scanpath and computed dynamics
were transformed into images. For each participant, a set of
images was constructed in 3 steps: (1) A line was drawn for
each transition from (xt, yt) to (xt+1, yt+1), where t represents a
point of time during the experiment. (2) The change in color
across lines was used to visualize the movement dynamics.
Through use of a grayscale spectrum, the color values were
tuned based on the magnitude of velocity (ie, speed) with respect
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to time. (3) The images constructed were vertically mirrored
since the origin was located at the bottom of the screen.

Images were constrained to contain approximately the same
level of information. Specifically, a threshold was applied to
limit the number of points to be drawn. The threshold was aimed
to be high enough to sufficiently describe the pattern of gaze
behavior. However, too-high values could increase the
possibility of producing cluttered visualizations. Therefore,
several tests were conducted to choose an appropriate value for
the threshold. With a limit ranging from 100 to 150, images
seemed to include fewer lines, which turned out to poorly
discriminate the 2 classes of participants. Eventually, we decided
to set the threshold to 200, which could largely strike an
adequate balance and captured the key features of motion. The
limit is was not a velocity threshold but a limitation to the
amount of consecutive points drawn on any given scanpath
image. We limited the dynamic values to a bound equal to a
quarter of the diagonal of the screen because any higher

movement would not be normal given the scenarios used for
the capture.

The visualizations were produced using Python (Python
Software Foundation) and a popular Matplotlib library [34].
The visualizations resulted in an image data set from the 59
participants who had viable data on an average of 15.19 different
stimuli, allowing us to generate a total of 547 images (328 for
non-ASD participants and 219 for those diagnosed with ASD),
which corresponded to an average of 9.27 images per child
(10.93 for non-ASD participants and 7.55 for those diagnosed
with ASD). The default image dimensions were set as 640 x
480. The scanpath images were directly drawn from the raw
data produced by the eye-tracking device. A more
comprehensive presentation of the data set construction was
elaborated upon in an earlier publication [27]. The data set was
made freely available to be used by other studies investigating
the potentials of eye tracking within the ASD context. Figure
1 presents 2 visualizations corresponding to participants with
and without ASD.

Figure 1. Visualization of eye-tracking scanpaths. The image on the left is from a participant diagnosed with autism spectrum disorder, while the one
on the right is from a participant without the disorder.

Data Preprocessing and Augmentation
Eye trackers can provide the POG coordinates on the screen.
The coordinates were genuinely significant to implement our
approach in terms of visualizing the gaze scanpath and
computing its dynamics (eg, velocity). The eye-tracking records
describe the category of movement and the POG for both eyes
over time. To simplify the learning process, a set of image
processing techniques was applied as follows. First, the black
background was cropped from images as much as possible. The
cropping was implemented using the OpenCV library. Second,
all images were consistently scaled down to 256 x 256
dimensions. Resizing the images helped to reduce the problem
of dimensionality by decreasing the number of features under
consideration. The impact of resizing was also examined in the
initial ML experiments.

Further, we applied image augmentation to produce variations
of the scanpath images. Augmentation was recognized to
generally improve the prediction accuracy in image classification
applications [35,36]. The data set was augmented with an
additional 2735 samples, where 5 synthetic samples were

generated for each image. The data augmentation process was
implemented using the Keras library [37], which includes an
easy-to-use application programming interface for that purpose.

Classification Model
The ML work described here falls into the category of
supervised learning. The basic goal was to develop a binary
classifier that could predict the class of participant (ie, ASD or
non-ASD) based on the scanpath images. The classification
model was implemented using an artificial neural network
approach. Specifically, we designed a deep CNN.

CNNs typically include 3 categories of layers including
convolutional layers, pooling layers, and fully connected layers
[38]. The learning process goes through a series of convolutions
and pooling, which break down the input image into a set of
features maps. Convolutional layers initially attempt to extract
features from the image through applying a convolutional kernel
all over the image. Subsequently, pooling layers work on
reducing the dimensions of feature maps extracted. Eventually,
the output of this process usually feeds into a fully connected
layer structure to produce the final prediction. In our case, the
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CNN model was composed of 4 convolutional layers, 4 pooling
layers, and 2 fully connected layers. In addition, dropout layers
were used, which help reduce the possibility of overfitting [39].

Results

Classification Accuracy
The classification accuracy was analyzed based on the receiver
operating characteristic (ROC) curve. The ROC curve plotted
the relationship between the true-positive rate and the
false-positive rate across a full range of possible thresholds.
Figure 2 plots the ROC curve of the CNN model. The figure

also shows the approximate value of the area under the curve
along with its standard deviation based on the 3-fold
cross-validation. As it appears, the model could provide a
notable prediction accuracy (≈90%), recall (ie, sensitivity;
≈83%), and precision (≈80%).

The model was implemented using the Keras library [37] with
Python. The model was trained based on 3 rounds of
cross-validation over 3 epochs. Training the model took ≈3
minutes using a single Tesla K80 GPU. Figure 3 demonstrates
the model loss in training and validation over 3 epochs with
20% of the data set used for validation.

Figure 2. Receiver operating characteristic curve of the convolutional neural network model. AUC: area under the curve.

Figure 3. Model loss in the training and validation sets. acc: accuracy; val-acc: validation accuracy.

To further examine the model performance, the training and
test sets were split based on the participants. The data set was
split into training and test sets based on a 3-fold cross-validation
using 3 stepwise procedures. First, the group of 59 participants
were randomly split into 2 independent sets (ie, training and
test), then the images were matched and loaded into the training
and test sets based on the IDs of participants, and finally, these

2 steps were repeated for each round of the cross-validation
process.

The features were extracted using the convolutional layers in
the CNN model. The learning process goes through a series of
convolutions and pooling, which break down the input image
into a set of features maps. Convolutional layers initially attempt
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to extract features from the image through applying a
convolutional kernel all over the image. Subsequently, pooling
layers work on reducing the dimensions of feature maps
extracted. Eventually, the output of this process usually feeds

into a fully connected layer structure to produce the final
prediction. Expectedly, the model performance declined as
shown in Figure 4. The accuracy (≈71%) could still be viewed
as promising given the relatively small data set.

Figure 4. Receiver operating characteristic curve of all the data divided according to participants. AUC: area under the curve.

Correlation Analysis
This section serves as an integral part that supports the
experimental results gained by our approach. Through statistical
analysis, we attempted to explore possible correlations between
the CARS score and the dynamics of eye movement in the
eye-tracking scanpaths. Initially, the average velocity magnitude
was calculated per image. In this way, the CARS scores of
participants could be considered multiple times with respect to
velocity. This could help mitigate the effect of outliers in
eye-tracking experiments.

The patterns largely revealed the nonlinearity of the relationship
between CARS scores and velocity. Therefore, standard
correlation tests (eg, Pearson's r) would not be useful in such a

case. Instead, we made use of the maximal information
coefficient (MIC) [40]. The MIC score can describe the
correlation between variable pairs regardless of a linear or
nonlinear relationship. The score provided by MIC can be

roughly considered as the coefficient of determination (R2). The
MIC method has been embraced in a large number of studies
to find correlations in complex data sets related to, for example,
biology and genomics [41,42]. We used the Minerva R package
[43], which greatly facilitated the computation of MIC. The
MIC values (presented in Figure 5) suggested strong correlation
between CARS and velocity (MIC= 0.79). The high correlation
score result could partly validate the accuracy demonstrated by
the classification model, whereas the velocity was visually
encoded within the scanpath images.

Figure 5. Average velocity depending on CARS value. Avg: average; CARS: Childhood Autism Rating Scale.
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Demo Application
A demo application was developed to serve as a practical
illustration of our approach. The application links the 3
components of eye-tracking, visualization, and ML together to
support the diagnosis process of ASD.

The application goes through 3 steps as follows. First, the user
is asked to upload the eye-tracking data. The data records should
describe the coordinates of the viewer’s gaze into the screen
along with the associated time. Second, the application produces
a visualization of the eye-tracking scanpath. Eventually, the
application calls the prediction web service, which returns the
prediction from the trained classification model. Azure ML is
employed to host the classification model and the Python
implementation used to produce visualizations. The application
can be accessed online by asking the authors for the URL link.

Discussion

Principal Results
This study demonstrated the strong potential of eye tracking as
an objective tool for assisting ASD diagnosis. Indeed, abnormal
eye gaze has been a hallmark characteristic of ASD [6,7]. Over
several years, eye-tracking technology has been widely used to
study attention impairment among individuals diagnosed with
ASD [8,9,19,20]. In this paper, we introduced an additional
dimension to the representation of eye-tracking scanpaths, and
we demonstrated its effectiveness for training a classification
model. In similar fashion to Frazier et al [21], we used static
and dynamic stimuli including social and nonsocial images.
However, adding nonsocial targets may be particularly important
for increasing the relationship between nonsocial attention and
ASD symptoms.

The empirical results provided a set of implications to be
considered. First, the ML experiments confirmed the core idea
behind our approach, which hinges on the visual representation
of scanpaths. The classification accuracy indicated that scanpath
visualizations were able to successfully pack the information
of gaze motion and its underlying dynamics. This evidently
translates into the validity of employing such visual patterns in
order to diagnose individuals with ASD.

Equally important, the study brought further interesting insights
into the features of autistic gaze. We provided a statistical
analysis that revealed possible a correlation between the level
of autism (ie, CARS) and the dynamic characteristics of eye
motion (eg, velocity). The analysis can lend support to the
findings of Vabalas and Freeth [17], which suggested that
individuals with high autistic traits tend to have shorter and less
frequent saccades compared to others with low autistic traits.

However, the lack of a benchmark data set in the ASD literature
makes it difficult to strictly compare our results to other ML
approaches. A future larger project (with a cohort of children
with ASD and typical children at different ages) should be
considered and should analyze the socio-cognitive and cognitive
profiles of children with ASD using eye tracking. The extensive
literature on these different processes may be considered in
connection with the study of gaze distinctiveness in children
with ASD.

Limitations
Even though the results presented in this study are promising,
the following set of limitations should be highlighted. The
primary limitation was the relatively small number of
participants. In a future study, a data augmentation method for
an ASD data set may be considered [44]. The interpretation of
our results is limited by the fact that we did not have access to
all the standardized test scores (ie, ADI and ASOS) used to
clinically diagnose our study population. Also, the inclusion of
ADI and ADOS scores could have provided further
interpretation of the results. Another relevant issue of concern
is the duration of video scenarios, which were relatively short.
Perhaps longer scenarios might have allowed for a richer
representation of the gaze behavior. Indeed, if the algorithm
currently used and the age group of children in the model are
limited for the moment, future work on a larger cohort will
allow us to improve the study. In fact, despite limitations, we
still believe this study can serve as the kernel for further
interesting applications of the proposed approach.

Conclusions
To conclude, the combination of eye tracking, visualization,
and ML may hold considerable potential for the development
of an objective tool to assist the diagnosis of ASD. These results
can be used and new data analyzed to create a screening tool
for health professionals Further, features related to the dynamics
of eye movement can also be considered as candidate features
for developing predictive models, and recently published deep
neural network methodologies can be adapted to our model
[45]. Eye-tracking measures which require limited technical
expertise can be quickly managed during diagnostic interviews.
Moreover, parents seem to have high acceptance of eye tracking
as part of the clinical evaluation because the visual results are
easier to understand than is the ADI cutoff, for example. In fact,
for some parents, a lack of an objective measure can lead to
delayed or diminished acceptance of the clinical diagnosis.
However, some limitations may still delay the clinical adoption
of eye tracking as an objective measure (eg, hardware and
software costs), yet these issues can be reduced by consolidating
the synergy between clinical structures and academic research.
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