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Abstract

Increasing evidence indicates that chlorpyrifos (CPF), an organophosphorus insecticide, is

involved in metabolic disorders. We assess the hypothesis whether supplementation with

prebiotics from gestation to adulthood, through a modulation of microbiota composition and

fermentative activity, alleviates CPF induced metabolic disorders of 60 days old offspring. 5

groups of Wistar rats, from gestation until weaning, received two doses of CPF pesticide:

1 mg/kg/day (CPF1) or 3.5 mg/kg/day (CPF3.5) with free access to inulin (10g/L in drinking

water). Then male pups received the same treatment as dams. Metabolic profile, leptin sensi-

tivity, insulin receptor (IR) expression in liver, gut microbiota composition and short chain fatty

acid composition (SCFAs) in the colon, were analyzed at postnatal day 60 in the offspring

(PND 60). CPF3.5 increased offspring’s birth body weight (BW) but decreased BW at PND60.

Inulin supplementation restored the BW at PND 60 to control levels. Hyperinsulinemia and

decrease in insulin receptor β in liver were seen in CPF1 exposed rats. In contrast, hyperglyce-

mia and decrease in insulin level were found in CPF3.5 rats. Inulin restored the levels of some

metabolic parameters in CPF groups to ranges comparable with the controls. The total bacte-

rial population, short chain fatty acid (SCFA) production and butyrate levels were enhanced in

CPF groups receiving inulin. Our data indicate that developmental exposure to CPF interferes

with metabolism with dose related effects evident at adulthood. By modulating microbiota pop-

ulation and fermentative activity, inulin corrected adult metabolic disorders of rats exposed to

CPF during development. Prebiotics supply may be thus considered as a novel nutritional strat-

egy to counteract insulin resistance and diabetes induced by a continuous pesticide exposure.
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Introduction

During the last decade, the incidence of obesity and diabetes has dramatically increased all over
the world. According to theWorld Health Organization (WHO), the world prevalence of dia-
betes estimated to be at 2.8% in 2000 will reach 4.4% in 2030 [1]. Western diet and lack of phys-
ical exercise are currently related to this burden of metabolic diseases. Recently,
epidemiological and animal studies pointed out the involvement of chemical exposure during
pregnancy and lactation in the increasing incidence of this metabolic syndrome [2–5].

Although it is increasingly restricted to the US and Europe, the highly-lipophilic organo-
phosphorus (OP) compound Chlorpyrifos (CPF) is one of the most frequently used non-per-
sistent insecticidesworldwide and is commonly found in fruits and vegetables [6]. Numerous
studies at high level exposure have endorsed the neurotoxic effects of CPF in both human and
animal models [7]. CPF exerts its systemic toxicity by irreversibly inhibiting acetylcholinester-
ase [8]. At low-levels this compound targets cell signaling cascades that govern neuronal and
hormonal signals, which are linked to homeostatic balance and cellular differentiation.

Recent epidemiological studies and investigations in experimental animal models support
the effect of early exposure of CPF in the ontogeny of diabetes [6,9,10]. Neonatal exposure to
CPF displays hyperinsulinemia and hyperlipidemia in adulthood rat, two major risk factors for
type 2 diabetes mellitus (T2D) and atherosclerosis. These findings extend Barker’s hypothesis
[11] showing that in the absence of intrauterine growth restriction, CPF during early develop-
ment can result in permanent changes in the physiology and metabolism resulting in increased
metabolic risks in adulthood.

Gut microbiota exerts a significant role in the pathogenesis of the metabolic syndrome as
confirmed by studies conducted both in human and animal models [12–14]. In fact, gut micro-
biota plays a great variety of functional roles impacting human physiology. It modulates host
nutrition by the production of vitamins and fermentation of food components indigestible by
the host, protects against pathogens [15] and drugmetabolism and influences intestinal epithe-
lial homeostasis [16]. An impairment of the fine balance between gut microbes and host’s
interactions induces the intestinal translocation of bacterial fragments and the development of
“metabolic endotoxemia”, leading to systemic inflammation and insulin resistance [17]. Clini-
cal and animal studies on obesity and T2D showed a shift in the pattern of the gut microbiota,
in particular a decrease in the ratio of Firmicutes/Bacteroidetes for obesity [14] and a lower pro-
portion of Clostridiales for T2D [18]. Compelling evidence suggests that oral supplementation
with selectively fermented oligosaccharides (known as prebiotics) improves these metabolic
disorders via several mechanisms [19–21]. Moreover, prebiotics are likely associated with the
increase in Bifidobacteria and Lactobacilli and the production of short chain fatty acids
(SCFAs), which are involved in the modulation of the host metabolism [22]. For example, feed-
ing genetically or diet-induced obesemice with prebiotics significantly increased the abun-
dance of Akkermansia muciniphila, which was correlated with an improved metabolic status
[21,23]. Other studies have shown that prebiotics reinforce the gut barrier, increase satiety by
promoting gut hormones, improve glucose tolerance, counteract hepatic steatosis (lipogenesis)
and insulin resistance [24].

We recently showed that neonatal exposure to CPF disturbed the microbiota composition
specifically the proportion of Lactobacilli in the colon at PND 60 [25]. In the current study, we
wanted to test whether early prebiotic supplementation counteracts the metabolic disorders
induced by early exposure to CPF. Rats were exposed from pregnancy to weaning, to two doses
of CPF (1mg/Kg/day, CPF1) and (3.5 mg/Kg/day, CPF3.5), either alone or in association with
inulin. Inulin was administered along with drinkingwater at a dose of 10g/L.We intended to
induce CPF exposure from gestation to weaning to mimic the effect of CPF exposure in a real
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human neonate during its development. We evaluated the effect of the different treatments in
rats on lipid and glucosemetabolism, insulin and leptin, gut microbiota composition and
SCFA production at 60 days of age. The supplementation with inulin is relevant in this study
because it may help to identify new properties of prebiotics in both the mother and the child
exposed to pesticides, and to develop new strategies against metabolic programming in later
life.

Materials and Methods

Chemicals

Chlorpyrifos (O, O-diethyl, O-(3,5,6-trichloro-2-pyridyl) phosphorothioate), purity 99.8% ±
0.1%, was supplied by LGC Standards (Molsheim, France). It was dissolved in rapeseed oil
(MP Biomedicals, Illkirch, France), which served as a vehicle and administrated daily by gavage
at a dose of 1 mg/kg of BW/day (CPF1) or 3.5 mg/kg of BW/day (CPF3.5). A commercially
available product of chicory inulin, with a drymatter of 96%, containing 90% inulin with an
average polymerization degree of 10% and a free sugar content of 10% was added to drinking
water and the average inulin consumption was 3.73 mg ± 0.04 mg/g of BW/day.

Animals and treatment

Dams. All procedures were carried out according to the Animal Care and Use Committee
at Jules Verne University of Picardy (n°291112–19, Amiens, France) which approved this
study. All efforts were made to minimize animal’s suffering.Wistar rats, thirty-two females
and five males (Janvier, Le Genest St Isle, France) were housed in breeding cages under con-
stant conditions of ambient temperature (23°C), hygrometry (26%), with a 12h light/dark cycle
and free access to food and water. After 1 week of acclimation period, females were mated with
males (2 females per male). Time-pregnant, primiparous Wistar rats were determined by the
presence of spermatozoa in vaginal smear. Pregnant females were individually housed and ran-
domly assigned (1:1) to five treatment groups (n = 5 to 6) and a control group (n = 5). In each
treatment group, the dams, from the first gestation day (GD) until lactation day (LD) 21, were
exposed to a daily gavage of vehicle or CPF associated with or without inulin. The different
treatment groups were as follows: CPF groups were CPF0, CPF1 and CPF3.5 and inulin groups
were inu0 and inu1. CPF amounts were adjusted daily according to any changes in the body
weight and administered at approximately the same time each morning. Each pregnant
female’s food and drink intake were recorded every three days from GD 0 to LD 21.
Pups. At postnatal day 1 (PND 1), all pups were counted, sexed and weighed. Each litter

was homogenized and adjusted to 8 pups. At PND 21, only male pups were weaned and
received the same treatment as dams. Birth weight, food and drink intake were recorded every
2 days from PND 1 to PND 60. At PND 60, animals were euthanized by intraperintoneal
administration of lethal dose of sodiumpentobarbital (Ceva Santé Animale (Libourne, France)
and a sample of blood, brain, liver, fecal content and colon were collected. Tissues were imme-
diately frozen and stored at -80°C. Blood samples were centrifuged at 4000g for 10min and
plasma was collected, aliquoted and stored at -80°C.

Metabolic assay

Plasma leptin and insulin levels were measured by specific commercial RIA kit (EMD, Milli-
pore, France). Standard spectrophotometricmethods based on an automation program by
Amiens University Hospital were used for measurement of the following serum parameters:
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Cholesterol, High Density Lipoprotein (HDL), Low Density Lipoprotein (LDL), triglycerides
(TG), glycaemia, alanine transaminase (ALT) and aspartate transaminase (AST).

Protein extraction from liver

Proteins were extracted from 20 mg of liver tissue according to methods described in our previ-
ous studies [26,27]. Briefly, tissues were lysed in 1X Ripa Buffer containing a cocktail of prote-
ase inhibitors (Thermo Scientific, France). Lysis was performed using a Tissue Lyser device
(Qiagen, France). Samples were incubated for 15–20 min at 4°C and centrifuged (14000g; 15
min; 4°C). The supernatant was removed and stored at -80°C. Protein concentrations were
measured using a Pierce BCA Protein Assay kit according to the manufacturer’s instructions.

Gel electrophoresis and Western Blot analysis

For gel electrophoresis, the protein samples were resuspended and heated for 5 min at 95°C
and loaded on a 4–12% SDS-PAGE (Criterion XT Bis-Tris Gel, Biorad, France). Proteins were
transferred onto a nitrocellulosemembrane (Biorad, Fance) after electrophoresis. Membranes
were blocked with TBS-T/5%milk and incubated overnight at 4°C with the primary antibody
anti insulin receptor β (IRβ) (rabbit monoclonal, #3020, Cell Signaling, diluted 1/1000). The
blot was then incubated with peroxidase conjugated secondary antibody (Abcam, diluted 1/
5000). The protein signal was detected using the ECL kit (Amersham Biosciences). Proteins
were analyzed using anti- Signals on autoradiographic films were quantified by scanning densi-
tometry using ImagQuant 350 (GE Healthcare, France).

DNA Extraction and 16S RNA qPCR analysis

Total bacterial count and specific bacterial profile were evaluated by quantitative PCR analyses
targeting bacterial group-specific 16S rRNA genes using the Rotor-Gene system (Qiagen,
France). Total DNA was extracted from 20 to 25 mg of colon content using the Qiagen
QIAamp Fast DNA stool kit according to the manufacturer’s instructions (Qiagen, France).
PCR inhibitions were tested with TaqMan1 Exogenous Internal Positive Control and the Taq-
Man1 universal master Mix (Life Technologies S.A, France). No PCR inhibition was detected
using 10−3 dilutions for the feces samples. DNA from each sample was amplified using selected
primers and probe sets given in Table 1 [28,29]. For bacterial SYBR-green amplification stud-
ies, a melting curvewas added to show the amplification specificity and the following PCR pro-
file was used: 1 cycle at 95°C for 12 min, followed by 40 cycles of 95°C for 15 s, 60°C for 30 s,
72°C for 30 s. Cycle amplification data were quantified according to standard curves.Data
were expressed as log10 (copy number)/g of feces.

Short Chain Fatty Acid (SCFA) analysis

The concentration of acetate, propionate and butyrate in the fecal material were determined
after water extraction of acidified samples using gas-liquid chromatography (Thermo Scien-
tific, Focus GC-AutoInjector AI 3000) as described in our previous study [30].

Statistical analysis

Statistical analyses were performedwith StatView software (version 5.0, Abacus Concepts Inc.,
Berkeley, CA, USA). The non-parametric tests KruskalWallis was used to analyze the effects of
CPF ([CPF0, CPF1, CPF3.5] inu0, [CPF0, CPF1, CPF3.5] inu1) followed by MannWhitney
test, when significance reached p<0.05. Effects of inulin was analyzed by Mann Whitney test
([inu0,inu1]CPF0, [inu0,inu1]CPF1, [inu0,inu1]CPF3.5). All results were presented as
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means ± standard error of the mean (SEM). Significancewas set at the value of p<0.05 and the
indicative results were presented if relevant. Due to birth body weight variation among the dif-
ferent groups, body weight change from birth to PND60 was adjusted accordingly to birth
body weight (BW PND1): ((PND60-BW PND1)/BW PND1).

Results

Dam’s body weight, food and drink intake (GD 0 and LD 21)

Dam’s body weight, food intake and drink intake were measured every 3 days. Neither CPF
nor inulin significantly affectedmaternal weight gain, food intake and drink intake (S1 Table).
No signs of cholinergic toxicity such as tremor, salivation or diarrhea were observed in animals
during the whole experiment.

Offspring’s body weight and growth, food and drink intake

Offspring’s body weight, growth and food intake were recorder every two days from PND1 to
PND60. The global growth curve of different groups did not appear to be affected by treat-
ments except CPF3.5 animals. Indeed, a “drop” of the curve for these exposed rats to the high-
est dose of CPF was observed at PND53 (Fig 1A). The mean BW of control offspring group at
birth and PND 60 were 6.77 ± 0.12 g and 355.9 ± 8.2 g, respectively. Inulin alone did not affect
offspring BW and BW gain but animal’s weight at PND 60 decreasedwith inulin supplementa-
tion (p<0.05) (Fig 1D). Gestational exposure to CPF significantly increased BW at birth
(p<0.001) (Fig 1B). BW gain and BW at PND 60 were decreased in both CPF-exposed groups
(p<0.05) (Fig 1C and 1D). This reduction in weight gain was not associated with changes in
either food or water intake (S2 Table). The supplementation of inulin in CPF-exposed groups
induced a decrease of BW at birth as compared with CPF animals. However, no effects of inulin

Table 1. Primers and probes used in this study.

Traget Primers and Probes Sequences (5’-3’)

TaqMan System All bacteriaa F-Bact 1369 CGGTGAATACGTTCCCGG

R-Prok 1492 TACGGCTACCTTGTTACGACTT

P-TM1389F 6FAMCTTGTACACACCGCCCGTC

Bifidobacteriuma F-Bifid 09c CGGGTGAGTAATGCGTGACC

R-Bifid 06 TGATAGGACGCGACCCCA

P-Bifid 6 FAM CTCCTGGAAACGGGTG

Clostridium leptum groupa F-Clept09 CCTTCCGTGCCGSAGTTA

R-Clept 08 GAATTAAACCACATACTCCACTGCTT

P-Clep 01 6 FAM-CACAATAAGTAATCCACC

Clostridium coccoides groupa F-Ccoc07 GACGCCGCGTGAAGGA

R-Ccoc14 AGCCCCAGCCTTTCACATC

P- Erec482 VIC-CGGTACCTGACTAAGAAG

SyberGreen System Bacteroidetesb BactF CCTWCGATGGATAGGGGTT

BactR TCCCCAGGTGGAATACTTAACG

Lactobacillus/Leuconostoc/Pediococcusa F-lacto05 AGCAGTAGGGAATCTTCC

R-lacto04 CGCCACTGGTGTTCYTCCATATA

Firmicutesb FirmF ACCCGCGTCTGATTAGCTAGTT

FirmR CCTCTCAGGCCGGCTACTG

a [28]
b [29]

doi:10.1371/journal.pone.0164614.t001
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on BW gain and BW at PND 60 were observed in CPF-exposed animals (Fig 1C and 1D). Thus
CPF exposuremodified the body weight growth pattern of the offspring’s from birth to wean-
ing. In both CPF exposed rats, inulin supply induced a decrease of birth body weight and
restored the BW at PND 60 to control levels.

Metabolic parameters

The effect of the different treatments on metabolic parameters was compared between the dif-
ferent groups. Inulin alone did not affect metabolic parameters while leptin level at PND 60
decreasedwhen inulin was supplied in the drinkingwater (p<0.05) (Fig 2). CPF exposure dur-
ing pregnancy and lactation induced different effects on the metabolic parameters depending
on the dose used: CPF3.5 group showed a significant higher increase in glycaemia at PND 60
(p<0.05) compared to the control (Fig 3A). A slight increase in plasma insulin level (p = 0.08)
at PND 60 was observed in CPF1-exposed offspring’s while a slight decrease in insulin secre-
tion was observed in animals exposed to the higher dose (p = 0.08). When supplemented with
inulin, the levels of insulin in both CPF1 and CPF3.5 groups were close to the values observed
in control animals (p<0.05) (Fig 3B).

The lipid status (i.e., the total cholesterol, LDL and HDL) was not affected by inulin or CPF
exposure alone except for the level of TG which was lower in CPF3.5-exposed rats as compared
to control animals (p<0.05). The TG level was recovered when animals were co-exposedwith

Fig 1. Offspring’s body weight and growth. (A) Global growth of animals from PND1 to PND 60; (B) Body Weight at PND 1

[CPF0inu0 n = 38/CPF1inu0 n = 31/CPF3.5 n = 35/CPF0inu1 n = 29/CPF1inu1 n = 25/CPF3.5inu1 n = 34]; (C) BW gain PND 60; (D)

BW at PND 60 of male pups. The results are expressed as mean ± SEM and individual values and analyzed by Mann Withney test.

Control groups (CPF0, circles), CPF-exposed groups (CPF1: 1 mg/kg/day, squares; CPF3.5: CPF3.5 mg/kg/day, triangles) or inulin

groups (black symbol). Signification *p<0.05; **p<0.01,***p<0.001, i = 0.058.

doi:10.1371/journal.pone.0164614.g001
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inulin and CPF3.5 in comparison to CPF3.5 animals alone (p<0.01) (Fig 4). Fig 5A shows an
increase in ALT enzyme for the CPF3.5-exposedgroups (p<0.05) and a slight increase
(p = 0.07) in ALT in CPF1 exposed animals compared to the control. The difference in ALT
level did not persist when animals received both CPF3.5 and inulin. Meanwhile, no changes in
AST level were observedwith the different treatments (Fig 5B). Thus CPF modified the meta-
bolic status of the offspring’s and inulin restored the levels of somemetabolic parameters in
CPF groups to ranges comparable with the controls.

Insulin protein expression

Western blot analysis evidenced a significant (p<0.05) decrease of IRβ protein expression in
the liver of CPF1 as compared to controls. When supplemented with inulin, IRβwas signifi-
cantly (p<0.01) recovered only in CPF1-exposed group (Fig 6A and 6B).

Gut microbiota

Total bacterial count and specific bacterial profile were evaluated by quantitative PCR analyses
targeting bacterial group-specific 16S rRNA. Perinatal exposure to inulin alone significantly
increased the global bacterial population (p<0.05) (Fig 7A) and total SCFA production
(p<0.01) with a significant increase in the proportion of butyric acid (p<0.05) (Table 2). A sig-
nificant decrease in the population of Firmicutes (Fig 7B) was observed in CPF-exposed ani-
mals (p<0.05) for CPF1 and a slight decrease (p = 0.08) for CPF3.5 respectively. Perinatal
exposure to CPF alone significantly decreasedC. coccoides group (p<0.05) and tended to
reduce C. leptum count too (Fig 8A and 8B). In the CPF3.5+inu group, C. coccoides group was

Fig 2. Leptin level of male pups at PND 60. Data are expressed as mean ± SEM [CPF0inu0 n = 10/CPF1inu0

n = 7/CPF3.5 n = 9/CPF0inu1 n = 6/CPF1inu1 n = 6/CPF3.5inu1 n = 8]. Control groups (CPF0, circles), CPF-

exposed groups (CPF1: 1 mg/kg/day, squares; CPF3.5: CPF3.5 mg/kg/day, triangles) or inulin groups (black

symbol). Signification *p<0.05; **p<0.01,***p<0.001.

doi:10.1371/journal.pone.0164614.g002
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significantly (p<0.01) higher than CPF3.5-exposed rats (Fig 8A). The Firmicutes/Bacteroidetes
ratio decreased only in the CPF1 group in comparison to the control (p<0.05) (Fig 7D). In
the CPF1+inu group, the total count of Firmicutes population and C. leptum group were still
significantly lower when compared to the control group (p<0.05) (Figs 7B and 8B). For the
production of SCFAs, supplementation of CPF1 animals with inulin increased the total SCFAs
production (p<0.05) as well as the proportion of butyric acid (p = 0.058) compared to CPF1
animals without inulin. However, in CPF3.5 group, inulin supplementation only increased the
proportion of butyric acid (p = 0.058) when compared to CPF3.5 without inulin. Of note, a
high decrease of total SCFAs was observed in CPF3.5 animals supplemented with inulin as
compared to the group receiving only inulin (305 ± 16 μmol/g vs. 393 ± 27,1 μmol/g respec-
tively, p<0.01). Thus, CPF decreased Firmicutes population. Inulin supplementation enhanced
the total bacterial population, SCFA production and butyrate levels in CPF groups.

Discussion

This study demonstrates that CPF exposure during a critical window of development induced
permanent defects in normal newbornmale rats in terms of their phenotype and their meta-
bolic regulation during adulthood. The exposure to CPF during gestation led to an increase in
BW when the offspring were born. However, a long term exposure extending from gestation to
adulthood induced a decrease in BW gain and BW in the offspring at day 60. Perturbations in
the perinatal environment can impair metabolic programming that can consequently increase
susceptibility to T2D in adulthood. Several studies addressing the role of developmental expo-
sure to pesticides with diabetes have rapidly expanded over the past years suggesting that they
contribute to metabolic programming [9,31]. In our study we demonstrate that a continuous
exposure to a “safe” dose of CPF beginning in the womb until adult life impairs adult metabo-
lism of the offspring’s leading to insulin and lipid dysregulation. Based on these findings, one
can assume that the exposure to CPF during gestation, lactation and even during other sensi-
tive periods of development, as pre-puberty, impairs developmental programming. Although

Fig 3. Fasting Glycaemia and Insulin profile. (A) Fasting Glycaemia [CPF0inu0 n = 11/CPF1inu0 n = 9/CPF3.5 n = 10/CPF0inu1 n = 10/CPF1inu1 n = 10/

CPF3.5inu1 n = 10]; (B) Fasting Insulin are expressed as mean ± SEM [CPF0inu0 n = 9/CPF1inu0 n = 7/CPF3.5 n = 8/CPF0inu1 n = 8/CPF1inu1 n = 9/

CPF3.5inu1 n = 11]. Control groups (CPF0, circles), CPF-exposed groups (CPF1: 1 mg/kg/day, squares; CPF3.5: CPF3.5 mg/kg/day, triangles) or inulin

groups (black symbol). Signification *p<0.05; **p<0.01,***p<0.001, i = 0.08.

doi:10.1371/journal.pone.0164614.g003
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our design does not able determining precisely which of the different targets sensitive windows
were involved in the “programmed” metabolic defects, it complements the Barker hypothesis
which makes a link between low birth weight and diabetes [32], extending the same outcomes
into the situation to developmental exposure to pesticides, even in the absence of growth

Fig 4. Plasma lipids status. (A) LDL; (B) HDL; (C) cholesterol; (D) triglycerides are expressed as mean ± SEM [CPF0inu0

n = 11/CPF1inu0 n = 9/CPF3.5 n = 10/CPF0inu1 n = 10/CPF1inu1 n = 10/CPF3.5inu1 n = 10]. Control groups (CPF0, circles),

CPF-exposed groups (CPF1: 1 mg/kg/day, squares; CPF3.5: CPF3.5 mg/kg/day, triangles) or inulin groups (black symbol).

Signification *p<0.05; **p<0.01,***p<0.001.

doi:10.1371/journal.pone.0164614.g004

Fig 5. Plasma liver enzymes profile. (A) ALT; (B) AST are expressed as mean ± SEM [CPF0inu0 n = 11/CPF1inu0 n = 9/

CPF3.5 n = 10/CPF0inu1 n = 10/CPF1inu1 n = 10/CPF3.5inu1 n = 10]. Control groups (CPF0, circles), CPF-exposed groups

(CPF1: 1 mg/kg/day, squares; CPF3.5: CPF3.5 mg/kg/day, triangles) or inulin groups (black symbol). Signification *p<0.05;

**p<0.01,***p<0.001, i = 0.07.

doi:10.1371/journal.pone.0164614.g005
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retardation. The specific pattern of birth weight increase and BW loss after pre- and postnatal
exposure to CPF differs from studies published by others on exposure to CPF [33] or Parathion
[34], which is another organophosphorous in neonates. This discrepancy can be explained by
the different doses used, the time window, the type (acute or chronic) of exposure and the
mode of administration (oral, subcutaneous) in different studies.

The major drastic effects of CPF exposure on glucose and lipid metabolism seen in the 60
days old offspring rats were observed in those subjected to the higher dose of 3.5 mg/kg/day
CPF. Indeed, an increase in glycaemia concomitant with a drastic reduction of insulin level was
observed.This result may reflect an alteration of the pancreas integrity and functionality and
as a consequence, the inability of the pancreas to control glycaemia in CPF-exposed rats. More-
over, the alteration of glucosemetabolism observed for the higher dose of CPF resulted in a
significant increase in serum alanine aminotransferase reflecting hepatic injuries. Indeed,Man-
sour et al., showed that CPF caused oxidative damage leading to impaired liver cell membrane
permeability and thus the release of hepatic enzymes [35]. Furthermore, in association with the
decrease in insulin secretion, a subsequent decrease in triglycerideswas seen in CPF3.5-ex-
posed rats. As insulin is an important regulatory factor of lipid metabolism [36], one can
assume that an alteration in insulin secretion perhaps modified the triglyceride content. Other
mechanisms can also contribute to the disturbance of triglyceride synthesis, notably the ones
targeting adipose tissue and/or liver signaling that are essential for homeostasis regulation
[37,38]. We recently reported that CPF exposure increased para-cellular permeability in the

Fig 6. Determination of IRβ in liver of rats at PND 60 by Western blot. Data are expressed as mean ± SEM

[CPF0inu0 n = 5/CPF1inu0 n = 5/CPF3.5 n = 5/CPF0inu1 n = 5/CPF1inu1 n = 4/CPF3.5inu1 n = 4]. Control groups

(CPF0, circles), CPF-exposed groups (CPF1: 1 mg/kg/day, squares; CPF3.5: CPF3.5 mg/kg/day, triangles) or

inulin groups (black symbol). (n = 8 to 10). Signification *p<0.05; **p<0.01,***p<0.001.

doi:10.1371/journal.pone.0164614.g006
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small intestine [39] and delayed intestinal epithelial maturation [25], which may suggest a
modification of intestinal absorption of triglycerides in the blood stream.

In agreement with the studies by Slotkin [9,10], CPF1-exposed rats presented a hyperinsuli-
nemia. This result showed that an apparently “safe” exposure was probably maintained in the
CPF1-group by the compensatory hypersecretion of insulin. This situation is close to what was
observed in a pre-diabetic state. We also reported that the liver of CPF1 animals contain
reduced amounts of IRSβ, which support our hypothesis and reflect a compensatory response
to chronically elevated insulin level and alteration of insulin sensitivity [40].These findings
highlighted a mechanistic link between insulin signaling in the liver and the subsequent emer-
gence of hyperinsulinemia and hyperlipidemia.

The original approach used in this study was based on the use of inulin, acting as a prebiotic
to counteract the side effects of CPF on metabolism. Prebiotics are known to improve the host's
health by inducing favorable changes in intestinal microbiota [41]. Inulin selectively stimulates
beneficial Bifidobacteria and Lactobacilli in vitro [42,43] and also in human subjects and
rodents [44–46].

Intestinal SCFA concentration, especially butyrate, the preferred energy source of colono-
cytes, increases when inulin is consumed [45,46]. In agreement with this, inulin supplementa-
tion resulted in an increase in the general population of bacteria and the total SCFA
production. An increase in SCFA, observed in supplemented groups, may explain the reduc-
tion of insulin level noticed in CPF1-exposed rats because of the role of SCFAs in the activation
of G-protein–coupled free fatty acid receptor (GPR43) in the adipose tissue [47]. Moreover,
the observed increase in butyrate in rats consuming inulin is probably due to a cross-feeding
phenomenon such that the butyrate-producing bacteria belonging to C. coccoides (cluster
XIVa) and C. leptum group (cluster IV) such as Roseburia intestinalis or Faecalibacterium

Fig 7. General bacterial profile. (A) All Bacteria; (B) Firmicutes; (C) Bacteroidetes; (D) Firmicutes/Bacteroidetes ratio; are expressed as log(number of

copy/g of feces) mean ± SEM [CPF0inu0 n = 8/CPF1inu0 n = 8/CPF3.5 n = 7/CPF0inu1 n = 8/CPF1inu1 n = 8/CPF3.5inu1 n = 8]. Control groups (CPF0,

circles), CPF-exposed groups (CPF1: 1 mg/kg/day, squares; CPF3.5: CPF3.5 mg/kg/day, triangles) or inulin groups (black symbol). Signification *p<0.05;

**p<0.01,***p<0.001, i = 0.09.

doi:10.1371/journal.pone.0164614.g007
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prausnitzii or others clostridial clusters such as I, III, XI, XV, XVI [48] which use acetate pro-
duced by Bifidobacteria [49]. To our knowledge, we are the first to describe a decrease in Firmi-
cutes, C. coccoides and C. leptum group in particular, after a perinatal CPF exposure in rats.
This microbiota pattern resembles what we observed in the Human diabetic subjects with a
decrease of Firmicutes and particularly butyrate-producing Clostridiales [50,51], Bacteroides
vulgates, and Bifidobacteria [52]. It is well known that aberrant intestinal microbiota can
induce a translocation of bacterial fragments and the development of “metabolic endotoxe-
mia”, leading to systemic inflammation and insulin resistance [17]. Access to inulin may coun-
teract endotoxemia in CPF-exposed rats as it alleviates the decrease in the phylum Firmicutes
and clostridial clusters XIVa (C. coccoides) and IV (C. leptum).

In addition to the beneficial effect of inulin in CPF-exposed rats on microbiota and SCFA
production, our results showed that it modified the metabolic status of the CPF-exposed rats
according to the dose used. In CPF3.5 group, free access to inulin induced an increase in insu-
lin, triglycerides and alanine transferase in the serum to a level close to those of control groups,
showing that inulin restored some features of the disturbedmetabolic profile in CPF3.5-ex-
posed animals. Conversely, in CPF1-exposed rats, inulin decreased insulin secretion, initially
high in CPF1-exposed rats, to a level comparable to those of control animals. Moreover, pre-
biotics increased the expression of IRβ in CPF1-exposed rats suggesting an enhancement of
insulin sensitivity and a decrease of insulin resistance in these animals. Thus, altogether, our
results show that our study is the first to demonstrate that bringing a continuous source of pre-
biotic to the mother and the infant, allowed young rats to alleviate the side effect of long-term
exposure to CPF on their metabolism during their adult lives.

Conclusions

In summary, the current results indicate that CPF exposure during pre- and postnatal period
may be a limiting factor, at least in rodents, for the onset of a normal regulation of metabolism
in the offspring during their adult life. It is suggested that organophosphate insecticides can
increase the risk of diabetes mellitus. We propose that prebiotics, which have the ability to alter
the microbiota in a positive manner, is a safe and cost-effective nutritional strategy to

Table 2. Bacteria fermentation activity in offspring at PND 60.

CPF0 CPF1 CPF3.5

inu0 inu1 inu0 inu1 inu0 inu1

SCFA (μmol/g) 289.5±15.3 393.0±27.1**a 263.1±14.3 314.0±14.4*b*d 282.1±18.4 305.0±16.0**e

Acetic acid (%) 75.3±0.55 73.4±1.01 75.0±0.55 74.23±1.28 75.2±0.46 73.7±0.75

Propionic acid (%) 16.4±0.74 15.9±0.70 17.3±0.63 17.0±0.94 15.3±0.55 15.0±0.71

Butyric acid (%) 8.25±0.44 10.73±0.56*a 7.80±0.29 8.67±0.70 ib*d 9.56±0.30 11.28±0.67ic

Data are expressed as mean ± SEM. Groups: CPF0inu0 n = 14, CPF0inu1 n = 12, CPF1inu0 n = 15, CPF1inu1 n = 11, CPF3.5inu0 n = 13, CPF3.5inu1

n = 14.
a CPF0inu0 vs. CPF0inu1
b CPF1inu0 vs. CPF1inu1
c CPF3.5inu0 vs. CPF3.5inu1
d CPF0inu1 vs. CPF1inu1
e CPF0inu1 vs. CPF3.5inu1

Signification

*p<0.05

** p<0.01; i = 0.058

doi:10.1371/journal.pone.0164614.t002
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counteract CPF insulin resistance and diabetes in later life. Human clinical trials should be
undertaken to confirm these effects. However, additional basic research is necessary to better
understand the crosstalk betweenmicrobiota and the host in order to elucidate the exact mech-
anism by which, microbiota alleviates the metabolic defects induced by CPF in adults. Experi-
ments are in progress to determine whether the gut/brain axis is also involved in such
regulation.

Supporting Information

S1 Table. Dam’s bodyweight, food and drinking intake during gestation and lactation peri-
ods.Data are expressed as mean ± SEM and analyzed by Mann Withney test. Groups:
CPF0inu0, CPF0inu1, CPF1inu0, CPF1inu1, CPF3.5inu0, CPF3.5inu1.
(DOCX)

Fig 8. Bacterial genus profile. (A) C. coccoides group; (B) C. leptum group; (C) Lactobacilli; (D) Bifidobacteria are expressed as log(number of copy/g of

feces) mean ± SEM [CPF0inu0 n = 6-8/CPF1inu0 n = 7-8/CPF3.5 n = 7/CPF0inu1 n = 7-8/CPF1inu1 n = 7-8/CPF3.5inu1 n = 5–8]. Control groups (CPF0,

circles), CPF-exposed groups (CPF1: 1 mg/kg/day, squares; CPF3.5: CPF3.5 mg/kg/day, triangles) or inulin groups (black symbol). Signification

*p<0.05; **p<0.01,***p<0.001.
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