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Abstract: Individuals at all stages of chronic kidney disease (CKD) have a higher risk of developing
cognitive disorders and dementia. Stroke is also highly prevalent in this population and is associated
with a higher risk of neurological deterioration, in-hospital mortality, and poor functional outcomes.
Evidence from in vitro studies and in vivo animal experiments suggests that accumulation of uremic
toxins may contribute to the pathogenesis of stroke and amplify vascular damage, leading to cognitive
disorders and dementia. This review summarizes current evidence on the mechanisms by which
uremic toxins may favour the occurrence of cerebrovascular diseases and neurological complications
in CKD.

Keywords: stroke; dementia; cognitive disorders; uremic toxins

Key Contribution: This review summarizes our current knowledge about the involvement of
uremic toxins in cerebrovascular and cognitive disorders in patients with chronic kidney disease.
We specifically focused on the effects of uremic toxins, such as indoxyl sulfate, and oxidative stress
on cerebrovascular and cognitive disorders.

1. Introduction

Chronic kidney disease (CKD) is associated with alterations of vascular functions, blood
chemistry, and red blood cell production [1]. These dysfunctions impair blood perfusion, and this can
subsequently affect brain functions. Indeed, cerebrovascular diseases are common in CKD patients,
who display an increased rate of cognitive disorders and dementia [2,3] and a greater burden of
abnormal brain white matter disease [4]. Cognitive impairments in CKD can be partly related to
vascular dementia, as dialysis patients with cognitive disorders also present numerous cortical ischemic
lesions [5–7]. Indeed, the risk of transient ischemic attack and stroke increases with progressive kidney
function decline [8–12] and stroke in these patients is associated with more severe neurological
deterioration, poorer functional recovery [13,14], and increased mortality [15,16].

In addition to traditional cardiovascular risk factors, such as hypertension, diabetes, inflammation,
and dyslipidemia, non-traditional risk factors related to kidney injury may predispose CKD patients
to cerebrovascular diseases. These non-traditional risk factors include the CKD-associated disorders
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of bone and mineral metabolism (CKD-MBD), inflammation, and oxidative stress. Oxidative stress
is a key inducer of peripheral vascular dysfunction, characterized by impaired endothelial function,
increased atherosclerosis, and vascular calcification. These vascular dysfunctions, which alter the
general hemodynamics, increase the risk of cerebrovascular events, such as stroke. In addition, reactive
oxygen species (ROS) exert damaging effects on the cerebral vasculature during stroke by increasing
vasodilation, altering vascular reactivity, and destroying the blood-brain barrier (BBB) [17,18].
Oxidative entities also contribute to post-stroke DNA damage and cell death during ischemic
stroke [19]. In patients with neurodegenerative diseases, ROS production exacerbates the expression
of inflammatory mediators [20]. This neuroinflammation, together with the increased oxidative stress,
contributes to the pathogenesis of neuronal degeneration [21] and can cause cell membrane damage
as a result of lipid peroxidation, changes in protein structure and function due to protein oxidation,
and structural DNA damage, hallmarks of several neurodegenerative diseases [22,23].

Protein-bound uremic toxins (UTs) such as indoxyl sulfate (IS) or paracresyl sulfate (PCS) are
strong inducers of oxidative stress (for review see [24]). IS, PCS and guanidino compounds are
highly expressed in uremic brains [25,26]. In addition, cerebrospinal fluid and brain levels of certain
guanidine compounds, such as creatinine and methylguanidine, are substantially elevated in uremic
patients [26]. Interestingly, these high toxin concentrations (up to 10-fold higher in CKD patients
than in controls) were found in brain regions that play a determinant role in cognition, such as the
thalamus, mammillary bodies, and cerebral cortex [26]. In this context, it is tempting to speculate that
UTs-induced oxidative stress in these brain regions may directly impact the local microcirculation as
well as brain-resident cells, therefore contributing to cognitive disorders and poor stroke recovery
in CKD patients. This review summarizes our current knowledge on the mechanisms by which
UTs-induced oxidative stress may promote both large vessels and microvascular dysfunction and how
their subsequent effect on infiltrated macrophages, microglia, astrocytes, and neurons promotes brain
damage. An overview of these mechanisms is provided in Figure 1.
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2. Impact of Uremic Toxins on Large Vessels Functionality

2.1. Regulation of Blood Pressure

2.1.1. IS, Uric Acid, and Methylguanidine

Hypertension is the main risk factor for stroke [27]. Patients with CKD often present hypertension,
but the cause of this hypertension, apart from sodium and fluid retention, has not been fully
elucidated. The rostral ventrolateral medulla (RVLM), which contains presympathetic neurons,
is known to be a pivotal region that regulates blood pressure [28]. According to a recent study,
superfusion of bulbospinal RVLM neurons with uric acid, IS, and methylguanidine increased
their activity, as evidenced by depolarization and an increased number of action potentials [29].
In this study, UT-induced activities of the RVLM neurons were suppressed by the addition of an
antioxidant drug, suggesting that UT-induced oxidative stress plays a key role in bulbospinal RVLM
neuron activation. The authors concluded that ROS production by UTs may cause hypertension by
activating RVLM neurons [29]. Since antihypertensive drugs may decrease age-related cognitive
decline and dementia [30,31], and given the positive correlation observed between hemodynamic
impairment and cognitive impairment in the early stages of dementia [32,33], targeting UT-induced
activation of RVLM neurons could be a promising approach to reduce hypertension and subsequent
neurological complications.

2.1.2. Lanthionine

Uremic patients undergoing hemodialysis display high concentrations of the sulfur amino acid
derivative lanthionine, which has been recently proposed as a UT [34]. Lanthionine, a natural
nonproteogenic amino acid, is an analog of cysteine [35], which is considered as a stable product of
hydrogen sulphide (H2S) metabolism and an indirect biomarker of its production [36,37]. Cystathionine
β-synthase (CBS) and cystathionine γ-lyase (CSE), two key enzymes in H2S production, utilize
as substrates cysteine and homocysteine, whose levels are both increased in uremic patients [36].
Interestingly, lanthionine is involved in CBS inhibition [38], which impairs H2S production in
cell cultures [34].

In recent years, H2S, which is considered as the third gaseous mediator with nitric oxide (NO) and
carbon monoxide (CO), has become recognized as an important endogenous vasodilator [39–41]. In the
first report on this subject, H2S relaxed rat aortic tissues in vitro [42]. In this study, exposure to H2S
enhanced NO-induced smooth muscle relaxation in the thoracic aorta, suggesting that the endogenous
H2S may regulate smooth muscle tone in synergy with NO. In a subsequent study, an intravenous
bolus injection of H2S was shown to transiently decrease rats’ blood pressure [43]. In this study, a small
portion of the H2S-induced vasorelaxation was attenuated by either removal of the endothelium
or the application of L-NAME (an inhibitor of NO synthase) in the presence of the endothelium,
suggesting that a part of the vasodilator actions of H2S results from NO production. Confirming these
data, mice displaying decreased H2S production due to genetic deletion of CSE showed significant
hypertension and diminished endothelial vasorelaxation [44]. In this context, it is conceivable that the
hypertension observed in CKD may be linked, at least in part, to lanthionine-induced CBS inhibition
and subsequently impaired H2S production. Further studies will be needed to clarify this concern.

2.2. Vascular Dysfunction

Evidence from in vitro and clinical studies suggests that the actions of UTs on the vascular system
may predispose to neurological disorders. For instance, UT-induced oxidative stress accelerates the
progression of atherosclerosis [45,46] and endothelial dysfunction [47–51], both of which are associated
with an increased risk of dementia and stroke [52,53]. In addition, inorganic phosphate (Pi), IS, TNF-α,
IL-6, and advanced glycation end-products have been reported to promote the development of vascular
calcification [54,55], at least in part through increased oxidative stress. This phenomenon rigidifies
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arteries and contributes to the onset of hypertension, the main risk factor for stroke. Of interest,
the presence of intracranial artery calcification has been reported to be associated with mortality and
vascular events after hospital discharge in patients with ischemic stroke [56]. Increased intracranial
artery calcification in response to UTs in CKD could, therefore, be responsible for the poor stroke
outcomes observed in CKD patients.

2.3. Hemostasis

Thrombosis and hemostasis impact both the occurrence and outcomes of cerebrovascular
disease [57]. Of interest, patients with end-stage renal disease (ESRD) exhibit features of a
hypercoagulable state [58]. Normal endothelium exerts anticoagulant and antithrombotic effects
and, therefore, plays a pivotal role in hemostasis [59]. Indeed, platelet adhesion and aggregation are
inhibited by glycosaminoglycan, NO, prostacyclin, endothelin-1, and ectonucleotidases present in
endothelial cells. Interestingly, UTs such as IS have been reported to be associated with enhanced
hemostatic disorders and may, therefore, represent interesting therapeutic targets in the prevention of
cerebrovascular disease.

2.3.1. Indoxyl Sulfate

In 2011, Kaminski and colleagues reported the existence of a correlation between hemostatic
factors such as tissue factor, von Willebrand factor, thrombomodulin, soluble urokinase-type
plasminogen activator receptor, soluble intercellular adhesion molecule-1, and soluble vascular cell
adhesion protein and the fraction of IS in CKD patients not undergoing hemodialysis [60]. In this
study, levels of IS were independently associated with markers of impaired endothelial function
(thrombomodulin, adhesion molecules), oxidative stress (superoxide-dismutase), and monocyte
activation (neopterin). Interestingly, parameters that correlated with the levels of IS (von Willebrand
factor, soluble urokinase-type plasminogen activator receptor, soluble intercellular adhesion
molecule-1) were positively associated with the prevalence of cardiovascular disease in CKD patients.
The authors concluded that IS may be one of the key links existing between impaired renal function
and the prevalence of cardiovascular events, especially hemostatic disorders, through altered monocyte
activation, intensified inflammatory processes, and augmented oxidative stress.

2.3.2. Homocysteine

Similarly, hyperhomocysteinemia, which is common in CKD patients [61], has a direct
prothrombotic effect on the vascular system and may therefore lead to both large- and small-vessel
disease [62]. Homocysteine is a thiol-containing amino acid derived from the metabolism of dietary
methionine. Moderately elevated plasma homocysteine levels are an important independent risk
factor for arterial and venous thrombosis [63,64]. Numerous mechanisms have been postulated by
which hyperhomocysteinemia may induce thrombosis. Indeed, early studies performed in rabbits
showed that hyperhomocysteinemia is associated with abnormalities in the key coagulation protein
fibrinogen [65,66]. This acquired dysfibrinogenemia is characterized by formation of clots composed of
abnormally thin, tightly packed fibers with an increased resistance to fibrinolysis. These data suggested
that hyperhomocysteinemia might directly promote thrombosis by interfering with the normal process
by which intravascular clots are removed [67]. Most hypotheses also involve injury to the vascular
endothelium [68,69] or some alteration in endothelial function, such as decreased expression of the
anticoagulant regulatory protein thrombomodulin [70], anticoagulant heparans [71], or binding sites
for tissue plasminogen activator [72,73]. In addition, data from in vitro studies reported that the
induction of tissue factor expression by cultured umbilical vein endothelial cells [74] and circulating
monocytes might be a plausible mechanism by which homocysteine may induce thrombosis [75].
Deficiency of folic acid is a treatable cause of hyperhomocysteinemia. Interestingly, the decrease
in homocysteine observed after folic acid treatment in human is accompanied by a decrease in the
procoagulatory potential, characterized by decreased fibrinogen (with a procoagulation potential)
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and increased plasminogen (with an anti-coagulatory potential) [76]. Confirming the potential role of
homocysteine-induced thrombosis on the onset of cerebrovascular disease, the China Stroke Primary
Prevention Trial recently showed the benefits of folic acid, as a mean to reduce homocysteinemia and
to prevent stroke in Chinese adults with hypertension [77].

2.3.3. Other UTs

Guanidino compounds, that are known to be associated with cognitive disorders as discussed
below, have been shown to induce elevation of serum homocysteine [78]. In the same manner,
CBS inhibition by lanthionine might be responsible for the degree of hyperhomocysteinemia observed
in uremia. This suggests that these UTs may also impair brain function indirectly through dysregulated
hemostasis. Therefore, targeting lanthionine and guanidino compounds may represent a promising
strategy to reduce the hyperhomocysteinema and subsequent dysregulated hemostasis observed in
CKD. The hypercoagulability observed in ESRD patients could also be linked to the kynurenine (KYN)
pathway since KYN metabolites were reported to be significantly associated with elevated prothrombin
factors 1 + 2 in dialysis patients [58].

2.4. Atrial Fibrillation

CKD is associated with a higher incidence of atrial fibrillation [79], which increases the risk of
thromboembolic stroke, heart failure, and mortality [80]. However, the arrhythmogenic mechanisms
linked to CKD are not fully elucidated.

Indoxyl Sulfate

In ex vivo experiments, exposure to IS increased rabbits pulmonary vein and left atrium
arrhythmogenesis and reduced sinoatrial nodes pacemaker activity through oxidative stress [81].
In addition, data obtained from in vitro experiments reported that exposure to IS significantly increased
neonatal rat cardiac fibroblast collagen synthesis and myocyte hypertrophy [82]. In this study, IS also
stimulated TNF-α, IL-6, and IL-1β mRNA expression in THP-1 cells, which demonstrated, for the first
time, that IS has pro-fibrotic, pro-hypertrophic, and pro-inflammatory effects and might, therefore,
play an important role in adverse cardiac remodeling. These effects of IS on cardiac remodeling
and cardiac electrophysiology, together with its previously discussed thrombogenic properties,
may contribute to the higher prevalence rate of atrial fibrillations and subsequent stroke occurrence in
CKD patients. Further studies will be needed to clarify this concern.

3. Impact of Uremic Toxins on Brain Microcirculation

3.1. Endothelial Cells

Over recent years, the major impact of small vessel disease (SVD) on cognitive impairment has
been clearly recognized. SVD is a systemic disease, probably related to diffuse endothelial dysfunction,
which affects the perforating arterioles, capillaries, and venules in the brain. Cerebral SVD causes
focal lacunar infarction and more diffuse ischemia, referred to as leukoaraiosis [83]. Although often
asymptomatic, it is responsible for almost half of all cases of dementia and for a significant proportion
of stroke cases [84].

3.1.1. Uremic Toxins and Vasoreactivity

Phosphate and Indoxyl Sulfate

As discussed below, UTs are strong inducers of large vessel endothelial dysfunction. In addition,
patients with renal disease are also prone to peripheral microvascular dysfunction [85]. Therefore,
in 2011, our group evaluated the impact of uremia on the function of the cerebral microcirculation in
a mouse model [86]. In this study, we demonstrated that the endothelium-dependent relaxation of
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cerebral microvessels was impaired during CKD while the endothelium-independent relaxation was
not. In addition, we observed that plasma concentration of asymmetric dimethyl arginine (ADMA),
an UT and endogenous inhibitor of eNOS, was elevated in CKD mice as compared to SHAM-operated
mice, which suggested that these alterations were related, at least in part, to a decrease in NO
production. In line with this hypothesis, we subsequently reported that the in vitro exposure to IS
or high-Pi induced cerebral endothelial cells dysfunction by decreasing NO levels due to enhanced
oxidative stress [87]. Interestingly, infusion of ADMA in 10 healthy volunteers was reported to decrease
cerebral perfusion and arterial compliance [88]. Altogether, these data suggest that UTs may induce
endothelial dysfunction not only in large vessels, but also in cerebral microvessels via increased ROS
production, a phenomenon that may directly promote SVD and, subsequently, stroke and cognition.
In line with these data, spatial working memory was reported to be impaired in mice subjected to eight
weeks of CKD, which is known to exhibit increased circulating levels of UTs and increased oxidative
DNA damage [89]. However, there is no direct evidence of a potential link between UT-induced ROS
production, SVD, and subsequent cognitive impairment or stroke at the present time.

Homocysteine

Elevated homocysteine levels are observed in 85% of dialysis patients, but only in 10% of the
general population [61]. In a prospective cohort study, plasma homocysteine was reported to be an
independent risk factor for dementia [90]. In addition, elevated plasma homocysteine concentrations
are associated with an increased risk for Alzheimer’s disease [91]. Furthermore, recent cross-sectional
data provide evidence that a higher level of total homocysteine is associated with white matter
hyper-intensity volume, suggesting that total homocysteine is a risk factor for white matter damage [92].
Interestingly, data obtained from in vitro [69,93] and in vivo studies [94,95] suggest that the effect of
homocysteine on the number and progression of white matter lesions might be mediated through
direct endothelial damage [6]. Indeed, in vitro exposure of endothelial cells to homocysteine had
been reported to reduce cell adherence and to decrease the bioavailability of endothelium-derived
NO [69,93]. In line with these data endothelium-dependent vasodilation, measured with high-resolution
ultrasonography, was reported to be significantly impaired in hyperhomocysteinemic subjects compared
with control subjects both in middle-aged [95] and elderly people [94], suggesting that the bioavailability
of NO is decreased in hyperhomocysteinemic humans. Therefore, in 2004, Hassan and colleagues
intended to determine whether elevated homocysteine levels is a risk factor for SVD and whether this
association was mediated by endothelial dysfunction as assessed by circulating endothelial markers [83].
In their study, performed on 172 Caucasian patients with SVD and 172 community controls of similar
age and sex, mean homocysteine levels were higher in SVD patients than in control subjects and
homocysteine was a stronger risk factor in those with ischemic leukoaraiosis in comparison with
isolated lacunar infarction. In addition, homocysteine levels were associated with the markers of
endothelial dysfunction intercellular adhesion molecule 1 (ICAM-1) and thrombomodulin. Inclusion
of these markers as covariates reduced the association with homocysteine, but improved the overall
logistic regression model for prediction of SVD. These findings are consistent with the hypothesis that
endothelial dysfunction is an important mechanism through which homocysteine mediates its effects in
SVD, particularly in ischemic leukoaraiosis. Together, these data suggest that homocysteine-lowering
therapy may be promising to reduce SVD in patients with CKD.

3.1.2. Uremic Toxins and Endothelial Cell Integrity

Phosphate, Indoxyl Sulfate, Oxalic Acid, and Homocysteine

UTs have been reported to directly alter the integrity of both large- and small-vessels endothelial
cells. For instance, Pi increases the expression of adhesion molecules, such as vascular cell adhesion
molecule 1 (VCAM-1) and ICAM-1 [96], two inflammation markers involved in leukocyte adhesion
and rolling on endothelial cells. Phosphate may, therefore, predispose to local cerebral inflammation
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via increased VCAM-1 and ICAM-1 expression in cerebral endothelial cells, thereby contributing to
neuroinflammatory diseases in CKD patients. Similarly, administration of IS to normal rats [97] or
nephrectomized mice [98] induces leukocyte adhesion to the vascular wall. IS has also been reported
to promote senescence of large-vessel endothelial cells via activation of p53 and ROS production [99].
Interestingly, IS also generates disruption of contact between pulmonary artery endothelial cells via
phosphorylation of myosin light chain kinase (MLCK) and myosin light chains (MLC) and activation
of ERK1/ERK2 [100]. Exposure to uremic levels of oxalic acid for a few days inhibits replication
and migration of large-vessel endothelial cells in a concentration- and time-dependent manner [101].
Interestingly, in vitro studies have shown that homocysteine damages endothelial cells by increasing
H2O2 production [102], affecting antioxidant defence systems [103] and triggering apoptosis via
mitochondrial oxidant production [104]. Low concentrations of homocysteine were also reported
to decrease endothelial cells proliferation [105]. According to several investigators, the toxic effects
of homocysteine may be caused, at least in part, by the oxidant species H2O2, which is generated
when homocysteine auto-oxidizes to the disulphide homocysteine or when it forms mixed disulphides
with other thiols [69]. Altogether, these data suggest that, by exerting a similar action on both
large vessels and microvessels, UTs such as IS, Pi, oxalic acid and homocysteine may predispose to
cerebral inflammation by increasing BBB disruption, leukocyte adhesion, rolling and extravasation in
brain tissue.

Lanthionine

In mice that underwent transient medial cerebral artery occlusion, administration of H2S donors
decreased the infarction volume and improved neurological deficits [106]. In this model, the beneficial
effects of H2S donors were related to a reduction of BBB permeability, brain edema and preserved
expression of tight junction proteins in the ischemic brain. The authors demonstrated that H2S
donors protected BBB integrity following experimental stroke possibly by acting through NF-κB
inhibition to suppress neuroinflammation induction of MMP9 and NOX4-derived free radicals [106].
Therefore, the possibility that lanthionine-induced impaired H2S production may be involved in the
poor post-stroke functional outcomes observed in CKD patients through disruption of BBB integrity
cannot be ruled out.

3.1.3. Uremic Toxins and Angiogenesis

Angiogenesis is considered as a natural defence mechanism helping to restore oxygen and nutrient
supply to the ischemic brain tissue [107]. Therefore, greater microvessels density in the ischemic border
correlates with longer survival in stroke patients [108]. As discussed previously, the pathological
mechanism of vascular cognitive impairment involves ischemic lesions in the hippocampus. Vascular
endothelial growth factor (VEGF) is known to promote angiogenesis and enhances blood flow to
ischemic regions. Indeed, induction of VEGF expression in rats with vascular cognitive impairment
was reported to increase the number of blood vessels in the hippocampal region and to improve
cognitive function and neuronal cell loss [109]. Vascular endothelial growth factor was also reported
to promote angiogenesis and functional recovery in rats with stroke [110].

Lanthionine

Hydrogen sulphide was reported to stimulate the proliferation and migration of endothelial
cells cultured in vitro [111,112]. In these cells, H2S also significantly increased tube-like structure
formation in in vitro matrigel assays. Interestingly, H2S has been shown to induce angiogenesis
indirectly through the release of VEGF from hypoxic smooth muscle cells [113]. In line with this
observation, exposure of endothelial cells to VEGF increased the production of H2S and endogenously
produced H2S was shown to participate in the angiogenic signalling of VEGF [111]. As a consequence,
intraperitoneal administration of the H2S donor NaHS in mice increased neovascularization [112].
Therefore, the possibility that lanthionine-induced impaired H2S production may be involved in the
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poor functional post-stroke recovery and cognitive disorders observed in CKD through impaired
angiogenesis cannot be ruled out. Further studies will be needed to clarify this concern.

3.2. Monocytes/Macrophages

Inflammation is enhanced in CKD patients [114–116] and inflammation markers are associated
with increased morbidity and mortality in ESRD [117,118]. In dialysis patients, C-reactive protein (CRP)
is predictive of stroke and death [119]. Several UTs, such as IS and PCS, exert pro-inflammatory effects
and their serum concentrations are correlated with inflammatory markers in CKD patients [116]. Some
of these inflammatory markers, such as TNF-α, IL-6, and IL-1β, are currently considered to be UTs [120].
This enhanced state of inflammation appears to play a major role in the neurological complications
associated with CKD [24]. A recent review described the various mediators of post-ischemic
inflammation [121]. Some of these mediators, such as IL-1α, IL-1β, and TNF-α, are involved in
initiation of neuroinflammation, whereas others, including IL-1, 6, 10, 17, 20, and once again TNF-α,
contribute to the amplification of neuroinflammation. In contrast, factors such as TGF-β, IL-10, 17,
and 23 contribute to the resolution of neuroinflammation [121]. Data from in vitro studies and animal
models suggest that the inflammation induced by UTs, such as IS, symmetric dimethylarginine (SDMA),
guanidino compounds, or quinolinic acid (QUIN) may contribute to the increased risk of stroke and
cognitive impairment observed in CKD patients.

3.2.1. Indoxyl Sulfate

As discussed above, the increased expression of ICAM-1, VCAM-1 and concomitant alteration
of endothelial cell interactions observed in response to UTs raise the hypothesis that UTs may
promote infiltration of inflammatory monocytes in brain tissue. For example, IS administration
in mice has been reported to enhance TNF-α-induced recruitment of leukocytes to the vascular
wall [122]. Confirming this observation, data from in vitro studies indicated that IS dose-dependently
increased THP-1 monocyte adhesion to IL-1β-activated human endothelial cells under physiological
flow conditions [123]. Leukocyte adhesion to the inflamed endothelium involves the β2-integrin family
of receptors (which share a common β2 subunit), such as LFA-1 (CD11a/CD18), Mac-1 (CD11b/CD18),
p150,95/CR4 (CD11c/CD18), and CD11d/CD18 [124,125]. Mac-1 is a receptor for ICAM-1 and
extracellular matrices, abundantly present in injured tissue. Mac-1 expression and ROS production
have been reported to be significantly higher in peripheral blood monocytes of subtotal nephrectomised
CKD mice than in sham-operated mice [123]. In this model, treatment with AST-120, an oral adsorbent
used in the clinic to reduce plasma IS levels, significantly decreased both Mac-1 expression and
ROS production, raising the possibility that IS-induced Mac-1 expression may promote leukocyte
recruitment to the vascular wall, thereby promoting inflammation.

Depending on the tissue microenvironment, macrophages can be driven to a classically activated
pro-inflammatory phenotype (M1) by stimuli such as interferon-γ (IFN-γ), or an alternatively
activated anti-inflammatory phenotype (M2) by factors including IL-4 and IL-13. A recent study
reported that uremia increased M1 and impaired M2 polarization of macrophages by inhibition
of the adenosine monophosphate (AMP)-activated protein kinase (AMPK) [126]. These data
suggest that the UTs that accumulate in brain tissue during CKD might impact the polarization
of infiltrated monocytes/macrophages. In line with this observation, IS has been reported to
directly induce monocyte-mediated inflammation and ROS production in THP-1 monocytes via the
NADPH oxidase and MAPK pathways [123] and display direct pro-inflammatory effects in vitro via
activation of the NF-kB and MAPK pathways in macrophages differentiated from THP-1 cells [127].
In addition, in a recent study performed on in vitro THP-1 cell cultures, IS was reported to promote
CD163 expression and transition to macrophages with the hallmarks of classical M1 (IL-6, CCL2,
COX2) and alternative M2 (IL-10, PPARγ, TGF-β, TIMP-1) phenotypes via AhR/Nrf2 activation.
The authors concluded that IS may skew monocyte differentiation toward low-inflammatory, profibrotic
macrophages and may therefore contribute to persistence of chronic inflammation [128]. Post-stroke
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intracerebral monocyte recruitment following BBB disruption largely contributes to increased cerebral
inflammation and subsequent aggravation of ischemic lesions. It is, therefore, conceivable that IS may
amplify post-stroke brain inflammation by promoting monocyte recruitment and macrophage-induced
inflammation after BBB disruption and this hypothesis should be tested in future studies.

3.2.2. Dimethylarginines

High serum levels of dimethylarginines (DMA) (both symmetric and asymmetric) are associated
with greater stroke severity and deleterious stroke outcomes [129–131]. Of interest, SDMA has been
reported to play a role in the inflammatory state observed in CKD by activating NF-κB, thereby
increasing the expression of pro-inflammatory cytokines, such as IL-6 and TNF-α. Consequently,
SDMA levels are associated with inflammatory markers, such as CRP in CKD patients [132]. Induction
of inflammation and leukocyte activation by SDMA contributes to cardiovascular complications in
uremic patients. Interestingly, SDMA levels have recently been reported to be associated with mediators
of inflammation after acute stroke [133], suggesting a possible association between these compounds,
inflammation, and stroke. Further work is needed to elucidate the impact of SDMA-induced
inflammation on ischemic stroke lesions and subsequent recovery.

3.2.3. Guanidino Compounds

Guanidino compounds appear to exert dual effects on inflammation, as methylguanidine and
guanidinoacetic acid increase TNF-α production in monocytes, while guanidinosuccinic acid exerts an
inhibitory effect on TNF-α production in monocytes [134]. Whether these dual effects play a role in
modulating neuroinflammatory diseases in CKD needs to be clarified.

3.2.4. Quinolinic Acid

During inflammation, the KYN pathway can be activated by cytokines, particularly IFN-γ,
leading to the production of the protein-bound uremic excitotoxin QUIN by monocyte lineage
cells [135,136]. Cerebral intravascular infusion of QUIN has been reported to enhance permeability
of rat brain microvessels to plasma albumin [137]. The extracellular tissue concentration of albumin
was consequently increased in the hippocampus proper and striatum, an effect associated with
more severe neuronal loss. A vicious circle may therefore exist, in which cerebral inflammation
amplifies cerebral inflammation via increased monocyte-induced QUIN secretion and subsequent
microvessel permeability. In line with these data, QUIN neurotoxicity has been shown to be
involved in the pathogenesis of several age-related neurodegenerative processes associated with
neuroinflammation, including Alzheimer’s disease [138,139]. Indeed, decreased 3-hydroxykynurenine
and QUIN concentrations have been observed in models of Huntington’s disease [140] and
depression [141]. Schizophrenia and autism have been associated with increased kynurenic acid [142],
and increased 3-hydroxykynurenine and decreased KYN and kynurenic acid concentrations have been
observed in Parkinson’s disease [143]. In this context, QUIN might represent an important target to
cure neuroinflammatory diseases in CKD. Further studies are needed to clarify this issue.

3.2.5. Homocysteine

Exposure of cultured primary human monocytes to homocysteine has been reported to increase
protein secretion and mRNA expression, as well as activity of monocyte chemoattractant protein-1
(MCP-1) and IL-8, an effect mediated by ROS through NAD(P)H oxidase [144]. MCP-1 is considered
as the strongest monocyte chemoattractant and IL-8 is known to be an important chemotactic factor
for neutrophils. Therefore, the hyperhomocysteinemia observed in CKD patients may have a key role
in leucocyte trafficking at the BBB.
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3.2.6. Lanthionine

Hydrogen sulphide is an important inhibitor of acute inflammation, acting at the
leukocyte-endothelium interface. Indeed, the administration of the H2S donor NaHS in rats suppressed
nonsteroidal anti-inflammatory drug-induced granulocyte infiltration, expression of endothelial and
leukocyte adhesion molecules, and expression of TNF-α [145]. Administration of H2S donors to rats
also inhibited aspirin-induced leukocyte adherence and infiltration as well as carrageenan-induced paw
edema [146]. In addition, H2S has been reported to induce neutrophil apoptosis, thereby contributing
to resolution of inflammatory reactions [147]. In this context, targeting lanthionine, which impairs the
production of H2S, appears as a promising strategy to reduce both the endothelial dysfunction and the
inflammatory processes related to cerebrovascular diseases.

3.2.7. Other UTs

Other UTs may also be involved in stroke severity in CKD patients by increasing pro-inflammatory
pathways. This is the case for uric acid that activates pro-inflammatory pathways, especially MAPK
signalling in vascular smooth muscle cells [148], phenylacetic acid that promotes inflammation,
increasing the risk of cardiovascular disease in the presence of uremia [149], and KYN that are
associated with inflammation in CKD patients and which may play a role in cardiovascular disease,
including stroke [150]. High circulating levels of β-2-microglobulin (B2M) have also recently been
reported to be associated with an increased risk of ischemic stroke in women [151]. Since B2M levels
correlate with CRP, TNF-α, IL-6, and cardiovascular risk factors in hemodialysis patients [152], this UT
could possibly increase the risk of stroke by acting on inflammation.

4. Impact of Uremic Toxins on Brain Resident Cells

Renal impairment is associated with the accumulation of UTs within the cerebrospinal fluid and
the brain tissue [25,26]. The accumulation of UTs within brain structures is thought to be linked to the
expression of their transporter at the BBB and the blood-cerebrospinal fluid barrier (BCSFB) [153–158].
Indeed, recent studies show that IS undergoes efflux transport at the BBB via OAT3 [153,159]. In the
same manner, guanidino compounds were reported to undergo efflux transport at the BCSFB via
OCT3 [153,157,160]. Evidence obtained from in vivo and in vitro studies suggest that, once infiltrated
within brain structures, these UTs may have deleterious impact on brain resident cells such as microglia,
astrocytes, and neurons.

4.1. Microglia

Circulating macrophages that infiltrate into the inflamed central nervous system exert their
effects in combination with resident microglia, the major immune cells present in the brain. Like
macrophages, microglia, are highly plastic and can assume different functional phenotypes within brain
lesions that critically influence the damage and the tissue repair that occurs following injury [161,162].
It has been clearly established that local microglia and newly-recruited macrophages assume a M2
phenotype at early stages of ischemic stroke, but are gradually transformed into the M1 phenotype in
peri-infarct regions [163]. M1-polarized microglia/macrophages exacerbate neuronal death and are
deleterious to tissue recovery following injury, while M2-polarized microglia/macrophages protect
neurons against ischemia and enhance post-injury tissue repair [161,163–165]. Since UTs, such as IS,
promote macrophage polarization toward the M1 phenotype, they may also concomitantly promote
the polarization of resident microglia toward a pro-inflammatory phenotype. Further studies are
needed to clarify this possibility.

Kynurenine Pathway

Kynurenine pathway metabolic balance has recently been reported to influence microglia
activity [166]. The KYN pathway consists of two functionally distinct branches that generate both
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neuroactive and oxidatively reactive metabolites. In the brain, the rate-limiting enzyme for one of
these branches, kynurenine 3-monooxygenase (KMO), is predominantly expressed in microglia and
has emerged as a pivotal point of metabolic regulation [167]. In vitro exposure of murine microglia to
lipopolysaccharide (LPS) promoted a dose-dependent increase in mRNA expression of IL-1β, IL-6,
TNF-α, and inducible NO synthase (iNOS), together with the rate-limiting enzymes of the oxidative
KYN pathway, indoleamine-2,3-dioxygenase (IDO)-1, and KMO [166]. Kynurenine and QUIN levels
were increased in the medium 24 hours post-LPS. Inhibition of KMO by Ro 61-8048 following LPS
challenge attenuated extracellular nitrite accumulation and LPS-induced expression of KMO and
TNF-α. Similarly, primary microglia isolated from KMO-/- mice exhibited a significantly reduced
pro-inflammatory response to LPS compared to WT controls. Altogether, these data suggested that
targeting KMO may dampen neuroinflammation, which may impact the subsequent neurological
disorders observed in CKD.

4.2. Astrocytes

In healthy neural tissue, astrocytes play critical roles in energy provision, regulation of blood flow,
homeostasis of extracellular fluid, ions and transmitters, regulation of synapse function, and synaptic
remodeling. Of interest, astrocytes respond to all forms of central nervous system insults, such as
trauma, ischemia, or neurodegenerative diseases, by a process commonly referred to as reactive
astrogliosis. Reactive astrogliosis involves changes in astrocyte molecular expression and morphology
and, in severe cases, scar formation [168]. Reactive astrogliosis can exert both beneficial and detrimental
effects in a context-dependent manner determined by specific molecular signalling cascades.

Astrocyte degeneration has been described in several pathological conditions, such as depressive
disorders or dementia [169]. Reactive astrogliosis and dystrophy accompany these diseases and
may directly contribute to the early alterations in synaptic transmission and cognitive processes
that occur prior to neurodegeneration. In addition, astroglial cell loss described at later stages of
several neurodegenerative diseases is also likely to indirectly alter neuronal function and survival by
compromising glial physiological support and modulating neuronal activity, and may consequently
accelerate the course of the disease [169,170].

4.2.1. Methylguanidines

Dementia is a neurological disease observed more commonly in uremic patients than in the
general population and several types of dementia are associated with astroglial apoptosis. In a rat
glioma cell line (C6) cultured in vitro, pre-incubation with methylguanidine significantly increased
H2O2-induced cell death [171]. In this study, the fluorescent dye FURA 2-AM test showed significant
elevation of [Ca2+]i in C6 cells co-treated with methylguanidine and H2O2. This effect was associated
with a significant increase in H2O2-induced Bax expression and activation of caspase-3 and PARP in C6
cells. The authors concluded that methylguanidine could contribute to neurodegeneration associated
with uremia by enhancing the pro-apoptotic effect of H2O2 and via alteration of mitochondrial calcium
homeostasis in glial cells. Further studies are needed to evaluate whether the effect of methylguanidine
on oxidative stress-induced astrocyte apoptosis is involved in CKD-related dementia. Recent evidence
suggests that oxidative stress also compromises neurological recovery after stroke by causing glial cell
death [19]. In future studies, it would be interesting to evaluate whether the oxidative stress-induced
astrocyte apoptosis that occurs in response to methylguanidine alters post-stroke recovery in CKD.

4.2.2. Indoxyl Sulfate

The inflammatory reaction that occurs after stroke is known to progressively induce
astrogliosis [172,173]. These reactive astrocytes then release growth-inhibitory molecules that
chemically prevent axonal extensions and secrete ROS, pro-inflammatory cytokines and matrix
metalloproteinases that accentuate ischemic stroke damage. In a recent study, IS was reported to
promote iNOS and cyclooxygenase-2 (COX-2) expression, together with TNF-α and IL-6 release and
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nitrotyrosine formation in primary mouse astrocytes and mixed glial cells [174]. The same group
reported also that IS decreased the expression of superoxide dismutase (SOD), an enzyme known for its
antioxidant properties, in the C6 glioma cell line cultured in vitro, an effect associated with increased
ROS production [174]. Altogether, these data suggest that IS-induced oxidative stress and subsequent
astrogliosis generate a neurotoxic environment. Further studies will be needed to investigate the
impact of IS-induced glial cell activation and subsequent inflammation on the stroke damage and
neurodegeneration observed in CKD [174].

4.2.3. Quinolinic Acid

Quinolinic acid has been reported to increase IL-1β production in human astrocytes and
concomitantly induce a marked increase in glial fibrillary acid protein levels and a reduction of
vimentin levels, features consistent with astrogliosis [135]. Quinolinic acid also induces astrocytes to
produce large quantities of MCP-1 (CCL2), RANTES (CCL5), and IL-8 (CXCL8) and upregulate the
expression of chemokine receptors CXCR4, CCR5, and CCR3 [175]. Most of these effects are comparable
to those induced by the classical mediators of inflammation, such as TNF-α, IL-1β, and IFN-γ [175].
These results suggest that this UT might be critical in the amplification of brain inflammation in CKD.

4.3. Neurons

Cognitive dysfunction is associated with a neuronal apoptosis response. Similarly, ischemic stroke
triggers complex cellular events that progressively lead to both apoptotic and necrotic neuronal cell
death. Oxidative stress is involved in nearly all neurological disorders [176] and several studies have
suggested that accumulation of ROS results in neuronal damage and triggers apoptosis [177]. Uremic
toxin-induced oxidative stress has been reported to promote cell death and cell senescence in various
cell types [55,178–181]. UTs may, therefore, also promote cognitive dysfunction or impair post-stroke
recovery via a direct neurotoxic action induced by increased oxidative stress. In line with this hypothesis,
increased neuronal damage has been observed in mice following IS injection, a phenomenon associated
with increased COX-2 expression and nitrotyrosine formation in brain tissue [174].

4.3.1. Guanidino Compounds

Similarly, guanidino compounds have been reported to exert a direct neurotoxic effect [26]
by blocking GABA-A and activating glutamate N-methyl-d-aspartate (NMDA) receptors, thereby
increasing post-synaptic calcium levels and calcium-triggered events [182,183].

4.3.2. Homocysteine

Apart from its previously discussed role on coagulation and endothelial dysfunction,
hyperhomocysteinemia could also impair neuronal pathways and display direct neurotoxic effects.
Indeed, in cultures of cortical neurons, homocysteine caused direct neurotoxicity by activating the
NMDA subtype of glutamate receptor [184]. Excessive stimulation of these receptors is known to
mediate brain damage in focal ischemia [185,186]. Thus, homocysteine may not only be associated
with the vascular injury leading to stroke, but may also participate in the ensuing neurotoxic
response in the brain. As discussed previously, a prospective cohort study reported that plasma
homocysteine was an independent risk factor for dementia [90]. In this study, higher plasma
homocysteine levels were associated with smaller brain volume and the presence of silent brain
infarcts, even in healthy, middle-aged adults. Clinical studies have also shown that elevated plasma
homocysteine concentrations are associated with an increased risk of Alzheimer's disease [91]. Whether
the cognitive disorders observed in response to hyperhomocysteinema appear as a consequence of
NDMA receptors activation needs to be elucidated. Further studies are needed to evaluate the impact
of hyperhomocysteinemia in the neurological damage associated with CKD.
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4.3.3. β-2-Microglobulin

β-2-microglobulin accumulation in blood with aging has been reported to promote age-related
cognitive dysfunction and impaired neurogenesis [187], a key phenomenon allowing brain parenchyma
regeneration [188]. Neurogenesis is primordial to promote stroke recovery [189,190] and neurogenesis
deficiency is considered to be a major cause of cognitive impairment [191]. Therefore, the possibility
that B2M-induced inhibition of neurogenesis may account for CKD-induced poor stroke recovery
cannot be ruled out and should be investigated.

4.3.4. Lanthionine

Cystathionine γ-lyase appears to be the predominant enzymatic source of H2S in the vasculature
and heart [39], whereas in the central nervous system CBS predominates [39,41,192]. Since CBS
is expressed and produces H2S in the brain and because the endogenous concentration of H2S
in the brain is relatively high, it has been suggested that H2S may play a role in synaptic
transmission [41]. Interestingly, physiological concentrations of H2S selectively enhance NMDA
receptor-mediated responses and facilitate the induction of hippocampal long-term potentiation,
suggesting that H2S functions as a neuromodulator involved in associative learning [193]. In addition,
a growing body of evidence has shown that H2S mediates signals between neuronal cells and
astrocytes by increasing Ca2+-influx in order to maintain calcium homeostasis and regulate synaptic
activity [193,194]. Previous studies have indicated that H2S is involved in the pathophysiological
process of ischemia-reperfusion injury and shock, and exerts protective effects on neurons. Indeed, H2S
was reported to prevent oxygen-glucose deprivation/reoxygenation-induced apoptosis via improving
mitochondrial dysfunction and suppressing an ROS-mediated caspase-3 pathway in mouse cortical
neurons [195]. In other studies, H2S was reported to offer neuroprotection against traumatic brain
injury in rats [196] and mice [197,198] through decreased oxidative stress and reduced apoptosis.
Exogenous H2S administration in rats also protected against global cerebral ischemia/reperfusion
injury via its anti-oxidative, anti-inflammatory and anti-apoptotic effects in rats [199]. These data
suggest that lanthionine-induced impaired H2S production may play a central role in the onset
and worsening of CKD-related cerebrovascular diseases. Further studies will be needed to clarify
this concern.

5. Conclusions

In CKD patients, the accumulation of UTs is responsible for peripheral vascular dysfunction
(endothelial dysfunction, atherosclerosis, vascular calcification, hypertension due to overactivation of
RVLM neurons), which alters the general hemodynamic and favours the occurrence of cerebrovascular
diseases. In addition, evidence from in vitro studies and in vivo animal experiments suggests that
UTs may display direct deleterious effect in the brain microenvironment (Figure 2). Among the
main mechanisms involved in these local effects, the endothelial dysfunction induced by molecules,
such as Pi and IS may lead to BBB disruption and leukocyte adhesion, resulting in increased leukocyte
infiltration into the damaged brain. Subsequent exposure of both macrophages and astrocytes to UTs
amplifies the release of inflammatory cytokines and oxidative stress in the brain microenvironment.
These deleterious mechanisms, together with the direct neurotoxic properties of certain UTs, promote
neuronal death. Altogether, these mechanisms may account for the accelerated cognitive decline and
poor stroke outcomes observed in CKD patients. However, to the best of our knowledge, evidence on
the existence of a causal link between increased neurological disorders and UT-induced brain damage
is still lacking. It should be noted that no animal models are currently available to study stroke and
cognitive impairment in CKD. Such models need to be developed in order to advance research in this
field. This review highlights the fact that IS is currently the most extensively studied UT in the context
of cerebral disorders. In particular, IS is the only UT that has been reported to promote endothelial
cell dysfunction, oxidative stress and inflammation and to induce glial cell activation and neuronal
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death. IS has also been reported to induce senescence of both vascular [99] and tubular cells [200]
in the CKD setting. Cerebral cell senescence could, therefore, occur as a result of IS accumulation
in the brain. In addition, uremic toxins such as IS are known to participate in the pathogenesis of
stroke by amplifying atherosclerosis [46,201] and hypertension [29]. In vitro evidence suggests that
reduction of IS by AST-120 attenuates monocyte inflammation [123], oxidative stress and endothelial
dysfunction [202,203] related to CKD. Targeting IS, therefore, appears to be a promising strategy to
protect CKD patients from brain damage. Interestingly, in a retrospective analysis, 3 to 5 years of
treatment with AST-120 decreased the prevalence of stroke events in pre-dialysis CKD patients [204].
However, interventional studies designed to evaluate the impact of AST-120 on stroke outcomes in
animals or patients with CKD are lacking and, therefore, need to be conducted. In the future, it would
also be interesting to evaluate the impact of AST-120 administration in CKD animals presenting various
neurological disorders, such as stroke or cognitive impairment. As discussed throughout this review,
oxidative stress plays a central role in IS-induced endothelial cell dysfunction, inflammation, astrocyte
activation, and neuronal death and is also a key mediator in the effects of other UTs. Studies on the
impact of inhibition of pro-oxidative enzymes, such as NADPH oxidase [205], or myeloperoxidase [18],
or increased antioxidant enzyme expression [206] in uremic animals or CKD patients should, therefore,
also be envisaged.

Figure 2. Impact of uremic toxins on neurological damage: a mechanistic view based on a review of
the recent literature. B2M: β-2-microglobulin, BBB: blood-brain barrier, DMA: dimethylarginines, ECs:
endothelial cells, GFAP: glial fibrillary acidic protein, GP: guanidino compounds, iNOS: inducible
nitric oxide synthase, IS: indoxyl sulfate, MLCK: myosin light chain kinase, MLC: myosin light
chain, NO: nitric oxide, Pi: inorganic phosphate, QUIN: quinolinic acid, ROS: reactive oxygen
species, SOD: superoxide dismutase. ICAM: intercellular adhesion molecule, VCAM: vascular cell
adhesion molecule, GABA-A: γ-aminobutyric acid receptor A, NMDA: n-methyl-d-aspartic acid, MCP1:
Monocyte chemoattractant protein 1, MAC-1: macrophage-1 antigen, TNF-α: tumour necrosis factor,
CXCR4: C-X-C chemokine receptor type 4, CXCR5: C-X-C chemokine receptor type 5, CCR3: C-C
chemokine receptor type 3, RANTES: Regulated on Activation, Normal T Expressed and Secreted
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