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1. Introduction 1 

Several studies have highlighted the link between viral infection and the development 2 

of autoimmunity [1-4]. Autoimmune diseases (AID) are characterized by the breakdown of 3 

immune tolerance and the activation of self-reactive lymphocytes. Many AID are 4 

multifactorial, involving both genetic and environmental factors, such as viral infections. 5 

Viruses represent the major environmental factor that triggers the development of 6 

autoimmunity in genetically susceptible individuals. There are multiple mechanisms by which 7 

viruses can induce an autoimmune reaction, including molecular mimicry, epitope spreading, 8 

bystander activation, the presentation of cryptic antigens, B-cell polyclonal activation, and 9 

viral superantigens [2, 4-7]. Many viruses have been suspected to trigger or exacerbate AID. 10 

The best examples of viruses inducing the development of AID are coxsackie virus, 11 

cytomegalovirus, Epstein Barr virus, and hepatitis B virus [2, 3]. We focus here on findings 12 

showing that coronavirus appears to also be associated with autoimmunity. 13 

 14 

2. Animal model systems 15 

 Coronaviruses cause diseases in a variety of species of animals, including humans. 16 

The pathogenesis and organ tropism of murine hepatitis coronaviruses (MHV) depends on the 17 

viral strain [8]. Neurotropic MHV strains (JHM and A59) have been the most frequently 18 

studied [8]. They induce encephalomyelitis, with demyelination, and serve as one of the few 19 

animal models for multiple sclerosis (MS)-like diseases. The role of coronaviruses in the 20 

development of autoimmunity has come from experimental studies in animal models. Murine 21 

coronavirus infection can induce autoreactive T-cells, B-cell polyclonal activation, and 22 

autoantibody production.  23 

Experimental autoimmune encephalomyelitis 24 

Watanabe et al. first reported that infection in Lewis rats with the murine coronavirus 25 

JHM can induce an autoimmune response. Lymphocytes from Lewis rats infected with 26 

murine coronavirus are sensitized to myelin basic protein and adoptive transfer of these 27 

lymphocytes leads to experimental allergic encephalomyelitis (EAE)-like lesions in recipient 28 

Lewis rats [9]. Mice infected with MHV 2.2-V-1 develop an immune-mediated demyelinating 29 

encephalomyelitis and Pewe et al. showed that the CD8 T cell-mediated demyelination is 30 

dependent on Interferon gamma (INF-γ) in MHV-infected mice [10]. Furthermore, MHV-4-31 
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infection can also induce an autoimmune T-cell response in mice [11]. Infection with murine 32 

coronavirus can also induce the production of autoantibodies.  33 

Experimental coronavirus retinopathy (ECOR) 34 

Experimental coronavirus retinopathy (ECOR) was created in the 1990s [12]. The 35 

pathogenesis of this experimental retinal disease is based on three components, a viral 36 

component, genetic background, and an immunological component [12]. This degenerative 37 

retinal disease is characterized by an early phase, with retinal vasculitis and perivasculitis, and 38 

a late phase, with degenerative retinal disease [12]. The pathogenesis of MHV-induced retinal 39 

degeneration in BALB/c mice has been shown to be related to autoimmunity, with the 40 

presence of antiretinal autoantibodies and anti-retinal pigment epithelial-cell autoantibodies 41 

[13]. Two autoantigens, α fodrin and villin 2, have been identified in ECOR [14]. 42 

Furthermore, the CD4 T cells from MHV-infected BALB/c mice are specifically activated by 43 

α fodrin [14]. MHV strain 59 (MHV-59) is a coronavirus that triggers various pathologies in 44 

susceptible mice, such as hepatitis, thymus involution, polyclonal B lymphocyte activation, 45 

and, after intra-cerebral inoculation, transient demyelination [5, 15].  46 

Anti-erythrocyte autoimmunity 47 

Mice infected with MHV-59 and immunized with rat-blood erythrocytes develop high 48 

levels of anti-erythrocyte autoantibodies. In contrast, the authors observed only moderate 49 

autoantibody production by noninfected mice solely immunized with rat-blood erythrocytes, 50 

suggesting that the autoimmune response may be enhanced by MHV-59 infection [5].  51 

Mathieu et al. identified two liver proteins, fumarylacetoacetate hydrolase (FAH) and 52 

alcohol dehydrogenase (ADH), recognized by autoantibodies in the sera of MHV-A59-53 

infected mice [16]. The same authors then explored the cross-reaction between FAH and 54 

MHV proteins. The autoantibodies recognized cryptic and native FAH epitopes in MHV-55 

infected mice. Two homologous peptides of both FAH and the nucleocapsid were recognized 56 

by most antibodies [17].  57 

 58 

3. Common human coronaviruses and multiple sclerosis 59 

 Seven types of coronavirus are known to infect humans (Table 1). The most common 60 

human coronaviruses circulating worldwide are OC43, HKU1, NL63, and 229E [18]. 61 
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Multiple sclerosis is an immune-mediated demyelinating disease in which infectious 62 

pathogens could play a role in the pathogenesis of the disease. The possible involvement of 63 

human coronaviruses as an environmental trigger of multiple sclerosis (MS) is supported by 64 

several studies. Antibodies to coronaviruses OC43 and 229E were found in the cerebrospinal 65 

fluid of MS patients more frequently and in higher titers than that of matched controls [19]. 66 

Moreover, intrathecal antibody synthesis to OC43 and 229E coronaviruses has been found in 67 

41% and 26% of MS patients, respectively [19]. Human coronavirus HCV-229E can replicate 68 

in cultures of various human neuronal and glial cell lines [20]. Human coronavirus 229E viral 69 

RNA has been detected in the brain tissue of MS patients [21]. Molecular mimicry has been 70 

proposed as a putative mechanism in the pathogenesis of MS. T-cell lines isolated from MS 71 

patients show cross-reactivity between myelin basic protein and viral antigens from the 72 

human respiratory coronavirus 229E [22]. 73 

 74 

4. SARS-CoV and autoimmunity 75 

 In winter 2002-2003, severe acute respiratory syndrome (SARS) emerged in China 76 

and subsequently spread throughout the world. SARS is caused by a novel species of 77 

coronavirus that has been named SARS-CoV. SARS-CoV infection is characterized by a 78 

severe and potentially fatal lung disease. The pathogenic mechanisms of SARS include direct 79 

viral cytopathic effects, the dysregulation of cytokines/chemokines, the innate immune 80 

response, and the immunogenetics of the host [23, 24]. Several studies have suggested that 81 

autoimmunity may also be involved in the pathogenesis of SARS. During the acute phase of 82 

the disease, IgM and IgG autoantibodies against cytoplasmic antigens of pneumocytes were 83 

detected in the sera of 36 Chinese SARS patients [23]. In another cohort of 22 SARS patients, 84 

autoantibodies against human epithelial cells (the A549 human pulmonary epithelial cell-line) 85 

and human endothelial cells (human umbilical endothelial cells (HUVEC) and primary human 86 

pulmonary endothelial cells (HPEC)) developed approximately one month after the onset of 87 

the disease [25]. Sera from SARS patients with high-levels of autoantibodies induced 88 

complement-dependent cytotoxicity against A549 cells and HPEC [25]. Lin et al. also showed 89 

that antibodies present in the sera of SARS patients reacted with A549 epithelial cells (type-2 90 

pneumocytes) [26]. These autoantibodies were primilary of IgG isotype and were detectable 91 

20 days after the onset of fever, the IgG present in the sera of SARS patients had a cytotoxic 92 

effect on A549 cells [26]. Indeed, there are cross-reactive epitopes on domain 2 of the SARS-93 
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CoV spike protein (S2) with human lung epithelial cell proteins. Anti-SARS-CoV spike 94 

antibodies enhance the adherence of human peripheral blood mononuclear cells to A549 cells 95 

[26]. Thus, the autoimmune responses in SARS-CoV infection may contribute to the 96 

pathogenesis of the disease.  97 

Other groups identified sequence homology between four pathogenic regions of the 98 

SARS-CoV spike protein and various human proteins [27]. A proteomic approach showed 99 

annexin A2 to be an autoantigen in A459 cell-membrane extracts recognized by the sera of 100 

SARS patients and annexin A2 on lung epithelial cells was recognized by antibodies against 101 

SARS-CoV S2 [28]. Furthermore, anti-annexin A2 antibodies recognized purified S2 protein 102 

by ELISA. The authors also observed the upregulation of epithelial cell-surface expression of 103 

annexin A2 by Il-6 and INF-γ released during the cytokine storm in SARS infection [28]. The 104 

human long interspersed nuclear element 1 (LINE1) endonuclease domain was identified as a 105 

putative target of SARS-associated autoantibodies and these antibodies were found in 40.9% 106 

of patients with SARS [29]. 107 

 108 

5. Can SARS CoV-2 trigger autoimmunity ? 109 

  In December 2019, the first cases of patients with severe atypical pneumonia of 110 

unknown origin were reported in Wuhan, Hubei province, China. Most of these patients were 111 

epidemiologically linked to a seafood market in Wuhan. Pneumonia was caused by a novel 112 

coronavirus, severe acute respiratory syndrome coronavirus 2, SARS-CoV-2 (previously 113 

known as 2019 novel coronavirus, 2019-nCoV, by the World Health Organization (WHO)). 114 

This newly emerged pathogen was isolated and sequenced in China [30, 31]. The disease 115 

caused by SARS-CoV-2 infection was later designated Coronavirus disease 2019 (COVID-116 

19) by the WHO. SARS-CoV-2 infection has rapidly spread throughout the world. On March 117 

11, 2020, the WHO declared the COVID-19 coronavirus outbreak a pandemic.  118 

 SARS-CoV-2 is the seventh type of coronavirus to be identified that infects humans. It 119 

belongs to the β coronavirus genus and has been classified under the orthocoronavirinae 120 

subfamily. Clinical presentation of COVID-19 mimics that of SARS-CoV infection. SARS-121 

CoV-2 shows phylogenetic similarity to SARS-CoV, with the two genomes sharing 79.6% 122 

sequence identity [31]. SARS-CoV-2 interacts directly with angiotensin-converting enzyme 2 123 

(ACE2) to enter host cells, particularly alveolar epithelial cells. The cellular entry of SARS-124 
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CoV-2 is initiated through an interaction between the transmembrane spike (S) glycoprotein 125 

and the ACE2 receptor on human cells [32]. Furthermore, it has been shown that ACE2 was 126 

the same cell entry receptor for SARS-CoV [31] and that there is structural and sequence 127 

identity between the SARS-CoV-2 and SARS-CoV S glycoproteins [32]. COVID-19 is 128 

typically characterized by fever and respiratory illness, leading to acute respiratory distress 129 

syndrome, with admission to the intensive care unit (ICU) for 5% of patients [33]. However, 130 

several observations have shown that COVID-19 also shows a wide clinical spectrum, which 131 

includes cardiac injury in 20% of cases [34], venous thromboembolism in 25% of cases [35], 132 

disseminated intravascular coagulation, neurological manifestations, or skin involvement. A 133 

cytokine storm can be associated with severe forms of the disease [36, 37]. A two-phase 134 

immune response is induced by SARS-CoV-2 infection [38]. First, a specific adaptative 135 

immune response leads to viral clearance in most cases. However, immune dysregulation can 136 

occur in a subgroup of patients and lead to inflammation-induced lung damage and systemic 137 

complications. SARS-CoV-2 infection may therefore be associated with not only an auto-138 

inflammatory response but also the development of an autoimmune process. Given the 139 

striking similarity between SARS-CoV infection and COVID-19, it is possible that COVID-140 

19 may trigger an autoimmune process through molecular mimicry or the exposure of 141 

autoantigens caused by cytokine-induced organ injury.  142 

 Several reports have highlighted the link between COVID-19 and the development of 143 

autoimmunity. Patients with severe SARS-CoV-2 infection show a high risk of thrombosis 144 

[39]. The presence of antiphospholipid antibodies (APL) (anticardiolipin IgA and anti-β2 145 

glycoprotein I IgA and IgG antibodies) has been reported in three patients with COVID-19 146 

and multiple cerebral infarctions [40]. APL are common during infection. Such APL can be 147 

pathogenic but they also transiently arise in the context of viral infection. Harzallah et al. 148 

reported the presence of lupus anticoagulant (LA) in almost half of 56 patients with COVID-149 

19 [41]. However, in a letter to the editor, Connell at al. suggested that the LA results may be 150 

false positives, given the high C-reactive protein levels in patients with COVID-19 [42]. 151 

Endothelial cell infection and diffuse endothelial inflammation were observed in a series of 152 

patients with COVID-19 and endothelial-cell injury was associated with apoptosis [43]. 153 

Therefore, it is possible that epitopes of host proteins became abnormally expressed on the 154 

plasma membrane surface of apoptotic endothelial cells, leading to the generation of 155 

autoantibodies, such as APL.  156 
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Several cases of Guillain-Barré syndrome in patients with COVID-19 have been 157 

reported [44-48]. GBS is an acute polyradiculoneuropathy associated with an aberrant 158 

autoimmune response and is generally preceded by a viral or bacterial infection. Although the 159 

pathogenic mechanisms need to be established, we cannot rule out molecular mimicry 160 

between viral epitopes and nerve antigens in the peripheral nerves, as has been suggested as 161 

one of the possible mechanisms for Zika virus-associated GBS [49]. However, no production 162 

of antibodies against specific gangliosides has been reported in patients with COVID-19 and 163 

GBS. Miller Fisher syndrome (MFS), a variant of GBS, is characterized by a triad of ataxia, 164 

areflexia and ophtalmoplegia. Several publications reported cases of MFS associated with 165 

COVID-19 infection. Only one patient was positive for anti-ganglioside GD1b IgG antibodies 166 

[50]. 167 

 Other autoimmune disorders associated with COVID-19 include Immune 168 

Thrombocytopenic purpura (ITP) and autoimmune hemolytic anemia (AIHA). COVID-19 has 169 

been identified as a causal factor of ITP in a 65-year-old woman with HTA and autoimmune 170 

hypothyroidism [51]. Other authors described the first case series of 3 patients with ITP 171 

associated with COVID-19 [52]. Lazarian et al. reported seven cases of warm and cold AIHA 172 

associated with COVID-19 [53]. However, an indolent B cell malignancy was present in four 173 

of them. Furthermore, another case of AIHA during COVID-19 was reported in a 46-year old 174 

female with a medical history of congenital thrombocytopenia [54]. Several other 175 

hematologic disorders have been associated with COVID-19 such as cold agglutinin 176 

syndrome, Evans syndrome or autoimmune thrombotic thrombocytopenic purpura [55-57]. 177 

The structural similarity between an erythrocyte membrane protein named ANK-1 and the 178 

viral protein spike led Angileri et al. to postulate that molecular mimicry could contribute to 179 

the pathogenesis of COVID-19-associated AIHA [58]. 180 

 In a single-center, retrospective study from an ICU of China’hospital (province of 181 

Hubei), the authors described clinical and autoimmune characteristics in 21 severe or critical 182 

cases of patients infected with SARS-CoV-2. They detected the presence of anti-52 kD 183 

SSA/Ro antibodies, anti-60 kD SSA/Ro antibodies, and antinuclear antibodies in 20%, 25%, 184 

and 50% of patients, respectively [59]. More recently, a study from the ICU of Evangelismos 185 

Hospital, Athens (Greece), showed the presence of several autoantibodies related to systemic 186 

autoimmune rheumatic diseases in almost 70% of severely ill patients with COVID-19 [60]. 187 

The major autoimmune findings for both SARS-CoV and SARS-CoV-2 are reported in Table 188 

2.  189 
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As already described for SARS, the spike surface glycoprotein could play a role in 190 

COVID-19-associated immunopathology. Kanduc and Shoenfeld suggested that because the 191 

peptide sharing between spike glycoprotein from SARS-CoV-2 and human surfactant-related 192 

proteins, the immune response following SARS-CoV-2 infection might contribute to the 193 

SARS-CoV-2-associated lung diseases [61]. However, SARS-CoV-2 includes numerous other 194 

proteins that could represent an antigen source for the development of autoimmunity. Lyons-195 

Weiler performed a bioinformatics analysis of the homology between highly immunogenic 196 

SARS-CoV-2 epitopes and human proteins. Among the SARS-CoV-2 proteins, those with the 197 

largest number of immunogenic peptides were the S protein and the non-structural protein 198 

NS3 [62]. Vojdani and Kharrazian reported a potential cross-reactivity between SARS-CoV-2 199 

proteins (spike and nuclear proteins) and human tissue antigens [63]. Lucchese and Flöel 200 

reported that the SARS-CoV-2 proteome share three sequences of six aminoacids (GSQASS, 201 

LNEVAK, SAAEAS) with three human proteins (DAB1, AIFM, SURF1) related to the 202 

respiratory pacemaker in the brainstem. The authors postulated that molecular mimetism 203 

between neuronal and viral proteins might contribute to autoimmune mediated respiratory 204 

failure [64]. Angileri et al. also suggested that some features of COVID-19 such as anosmia, 205 

leukopenia and multi-organ damage could be the consequence of similarities between SARS-206 

CoV-2 proteins (ORF7b, ORF1ab, nucleocapsid phosphoprotein) and the following human 207 

proteins: OR7D4, PARP9 and SLC12A6, respectively [65].  More recently, Megremis et al. 208 

identified three immunogenic linear epitopes with high sequence identity to SARS-CoV-2 209 

protein in patients with autoimmune dermatomyositis [66]. On the basis of these reports, 210 

autoimmunity may be, at least partially, involved in the pathogenesis of COVID-19 in 211 

genetically predisposed individuals. Further studies will be needed to better characterize the 212 

possible link between COVID-19 and the development of autoimmunity, particularly in 213 

patients with severe interstitial pneumonia.  214 

6. Conclusion 215 

 Coronaviruses represent a large group of virus affecting many species of animals and 216 

humans, causing acute and chronic diseases. From animal models to human diseases such as 217 

SARS and COVID-19, several studies have highlighted the possible role for autoimmunity 218 

through molecular mimicry in coronavirus pathogenesis. The wide spectrum of autoimmune-219 

like manifestations in SARS-CoV-2-infected patients suggests that COVID-19 represents the 220 

better example of coronavirus-induced autoimmunity. However, it would be useful to better 221 
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characterize the role of autoimmunity in pathogenesis COVID-19, particularly in patients with 222 

severe forms of disease. 223 

 224 

 225 
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Table 1 

Human coronavirus types 

Common human coronaviruses 

229E (alpha coronavirus) 

NL63 (alpha coronavirus) 

OC43 (beta coronavirus) 

HKU1 (beta coronavirus) 

Other human coronaviruses 

MERS-CoV (the beta coronavirus reponsible for Middle East Respiratory Syndrome, MERS) 

SARS-CoV  (the beta coronavirus reponsible for severe acute respiratory syndrome, SARS) 

SARS-CoV-2 (the novel beta coronavirus that causes Coronavirus disease 2019, COVID-19) 

 

Table 2 

 

Major autoantibodies reported in SARS-CoV and SARS-CoV-2-infected patients 

 

SARS-CoV SARS-CoV-2 

  

Anti-lung epithelial cell 

Anti-endothelial cell 

Anti-annexin A2 

Anti-endonuclease of the human LINE1 

 

Antiphospholipid antibodies 

     - anti-cardiolipin antibodies 

     - anti-β2 glycoprotein I antibodies 

     - lupus anticoagulant 

Anti-nuclear antibodies 

p-ANCA and c-ANCA 

Anti-CCP antibodies 

Anti-ganglioside GD1b antibodies 

 
CCP, cyclic citrullinated peptide ; ANCA, anti-neutrophil cytoplasmic antibody 




