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Abstract: In the battle against cancer cells, therapeutic modalities are drastically limited by intrinsic
or acquired drug resistance. Resistance to therapy is not only common, but expected: if systemic
agents used for cancer treatment are usually active at the beginning of therapy (i.e., 90% of primary
breast cancers and 50% of metastases), about 30% of patients with early-stage breast cancer will have
recurrent disease. Altered expression of ion channels is now considered as one of the hallmarks of
cancer, and several ion channels have been linked to cancer cell resistance. While ion channels have
been associated with cell death, apoptosis and even chemoresistance since the late 80s, the molecular
mechanisms linking ion channel expression and/or function with chemotherapy have mostly
emerged in the last ten years. In this review, we will highlight the relationships between ion channels
and resistance to chemotherapy, with a special emphasis on the underlying molecular mechanisms.

Keywords: ion channels; cancer; chemoresistance

1. Introduction

Cancers cells have the ability to develop resistance to traditional therapies. Drug resistance
may be intrinsic (i.e., present before chemotherapy exposure), but tumor cells can also acquire drug
resistance. Indeed, although systemic agents used for cancer treatment (cytotoxic, hormonal, and
immunotherapeutic agents) are usually active at the beginning of therapy (90% of primary breast
cancers and 50% of metastases for instance), about 30% of patients with early-stage breast cancer
will have recurrent disease. Resistance to therapy is not only common, but expected [1]. Tumor
cells from recurrent tumors exhibit increased resistance to chemotherapeutic drugs [2], and exposure
to chemotherapeutic drugs can promote development of drug resistance in tumor cells, leading to
subsequent failure of the chemotherapeutic treatment [3], thus drastically limiting effective therapeutic
modalities. Residual tumor cells are detected post-treatment in most cancer patients, and these cells are
thought to remain in a quiescent state for years before resuming growth, resulting in tumor recurrence.
Deciphering molecular mechanisms of this acquired cellular resistance is therefore mandatory for
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predicting tumor resistance and to allow discovery of new treatments. Several mechanisms underlying
cell resistance have been identified so far. Among those, membrane transporters and ion channels
have been shown to play key roles in chemosensitivity. These include [4]:

- Decreased activity of the uptake transporters, or alternatively enhanced efflux for water-soluble
drugs (such as cisplatin)

- Increased drug efflux mediated by energy-dependent transporters. For hydrophobic drugs
(such as vinblastine, doxorubicin, and paclitaxel), entry occurs largely by diffusion across the
membrane, although this process can also be critically enhanced by transport proteins

- Indirect mechanisms by which transporters and channels affect chemosensitivity by modulating
apoptosis pathways or the efficiency of drug diffusion along electrochemical gradients into cells

This review will more specifically focus on ion channels. Altered expression of ion channels is now
considered as one of the hallmarks of cancer [5], and several ion channels have been linked to cancer
cell resistance. While some ion channels have been associated with chemoresistance since the 80s [6],
extensive description of molecular mechanisms involved in chemoresistance is more recent (early
2000s [7], with the vast majority of scientific articles being published after 2010). In this review, we will
highlight the relationships between channels (calcium, potassium, magnesium and chloride channels)
and resistance to chemotherapy, with special emphasis on the underlying molecular mechanisms.

2. Calcium Channels

2.1. Plasma Membrane Ca2+ Channels

Calcium (Ca2+) is a well-known ubiquitous second messenger regulating a wide variety of
physiological functions [8,9], including cell death [10]. Disruption of Ca2+ homeostasis was reported in
many pathological conditions, including cancer [11,12]. There is a ~10,000-fold concentration gradient
for Ca2+ across the plasma membrane, and three major classes of membrane-associated proteins
directly involved in Ca2+ regulation: channels, pumps (ATP-ases), and exchangers. These proteins
have different cellular and tissue distribution and their regulation occurs through multiple signalling
pathways ([13] for review). Extracellular Ca2+ can enter cells by several classes of channels, including:

- Voltage-operated channels, activated by membrane depolarization
- Second messenger-operated channels, activated by small messenger molecules such as inositol

phosphates, cyclic nucleotides, and lipid-derived messengers (diacyl-glycerol, arachidonic acid
and its metabolites)

- Receptor-operated channels, activated by direct binding of a neurotransmitter or hormone agonist
- Store-operated channels (SOC), activated by depletion of intracellular Ca2+ stores [14]

SOC Entry (SOCE) is one of the main calcium entries in non-excitable cells, and typically allows
calcium influx through the plasma membrane, subsequently to endoplasmic reticulum depletion.
This ubiquitous SOCE pathway is not only necessary to refill internal calcium stores, but also to
activate downstream signalling cascades [15,16]. Apoptosis is also potentially triggered when a large
and sustained rise in cytosolic calcium occurs through SOCE (mediated by store-operated channels
SOCs [17–19]). Actors of this mechanism include depletion sensors (STIM reticular proteins, the STIM1
and STIM2 isoforms), as well as plasma membrane channels. Among these, Orai channels represent
highly selective calcium channels (with 3 distinct Orai isoforms described to date, Orai1, Orai2 and
Orai3), while TRP (Transient Receptor Potential) channels are non-selective calcium channels.

Ca2+ entries can also occur without any stimulation, suggesting that some Ca2+ channels are
constitutively active in resting conditions. Interestingly, these basal Ca2+ influxes are linked to
malignant transformation, but the underlying molecular mechanisms are far from being understood
([20], for review).
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In addition, under certain conditions, Ca2+ can enter cells via the Na+/Ca2+ exchanger (NCX)
operating in reverse mode. Cytosolic calcium concentration can also rise following endoplasmic
reticulum depletion (see Section 2.2. Intracellular Calcium Stores below).

Chemoresistance has been first associated with Ca2+ channel activity in the 80s. Blockade of Ca2+

channels was associated with the enhancement of anticancer drug cytotoxicity ([21], for review). It was
notably demonstrated that combination of verapamil (a calcium channel blocker) with antineoplastic
agents was able to potentiate the efficacy of chemotherapeutic agents in drug-sensitive malignancies,
and was also able to confer chemosensitivity in resistant tumor cells [22]. However, there was
inconclusive evidence for the role of Ca2+ ions and Ca2+ channels in the modulation of chemoresistance,
and furthermore, there was no evidence that Ca2+ channels blocking activity per se was necessary for
the reversal of drug resistance [21]. Although Ca2+ channels blockers have been studied in combination
with chemotherapeutic drugs for several decades, it is noteworthy that the mechanism of action for
these Ca2+ blockers in inhibiting the growth of some drug-resistant tumors was entirely independent
of Ca2+ channels modulation, and instead appeared to be related to non-specific interactions with the
MultiDrug Resistance-1 (MDR1) protein ([23] for review). For instance, Kiwit et al. have shown that
calcium antagonists did not influence chemoresistance in gliomas that do not express MDR1. On the
other hand, addition of calcium antagonists to the adjuvant chemotherapy could overcome primary
chemoresistance only in tumors expressing the multidrug-resistant phenotype [24].

Since the beginning of the 2010s, a growing number of studies have shown a clear link between
Ca2+ channels expression (and/or function) and sensitivity to chemotherapeutic drugs. Many calcium
channels are involved in chemoresistance, against a number of chemotherapeutic drugs, in a large
variety of cancers. We will more specifically focus on the main calcium entry, SOCE, and its key actors,
the Orai and TRP channels.

2.1.1. Orai/Stim Mediated SOCE and Chemoresistance

Depending on cancer cell lines and chemotherapeutic drugs, SOCE can lead to increased or
decreased resistance. First, because each cell line differentially express Orai and Stim proteins.
Second because both Orai1 and Stim1 were shown to regulate the activity of a number of intracellular
effectors including PKC β2 [25], PKC δ [26], extracellular signal-related kinases ERK1/2 [27], and both
cytoplasmic kinase Pyk2 and calpain [28]. Third, both Orai1 and Stim1 were shown to have SOCE
independent functions. For instance, the Secretory Pathway Ca2+-ATPase SPCA2 can activate Orai1
independently of ER calcium stores or Stim proteins [29]. Within such a complex regulatory network
and the role of Orai1/Stim1 downstream targets in both pro-survival and pro-apoptotic processes, the
resistance of each cell line is likely to depend on the activated signalling pathway [30].

Increased Resistance Conferred by the Overexpression of Stim and Orai Proteins

Numerous studies have now established a clear link between the Orai/Stim complex and cell
resistance, although the mechanisms are not always accurately described. For instance, Stim1-mediated
SOCE protects osteosarcoma cells from undergoing cisplatin-induced apoptosis. Knockdown of Stim1
effectively sensitizes cells to cisplatin via promoting Endoplasmic Reticulum (ER) stress-mediated
apoptosis [31]. In pancreatic adenocarcinoma, both Stim1 and Orai1 mediate SOCE and have a
pro-survival anti-apoptotic role, as Orai1 and/or Stim1 silencing by siRNA enhance 5-Fluoro-Uracile
(5-FU) and gemcitabine induced apoptosis [30]. Mechanisms by which the Orai/Stim complex
affects chemoresistance include MDR transporters and intracellular signalling pathways (Figure 1).
The overexpression of the transporter MDR1 is one of the best known mechanisms by which breast
cancers cells develop chemoresistance [32]. It has notably been shown that high salts were able to
induce MDR1 mediated treatment resistance in breast cancer cells through SOCE [33]. It has also
been shown that Orai1 and Stim1 expression are increased in chemoresistant ovarian carcinoma
cells, associated to an increase of SOCE. During the acquisition of the chemoresistant phenotype,
Orai1 expression is upregulated by the Akt signalling pathway, leading to an increase of SOCE [34].
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Furthermore, Orai1 expression is also elevated in hepatocellular carcinoma (HCC) tissues, and
contributes to a chemoresistant phenotype. Orai1-mediated Ca2+ entry is able to block 5-FU-induced
autophagic cell death in HepG2 cells via activation of the PI3K/Akt/mTOR signalling pathway [35].
In human gastrointestinal stromal tumors, Orai1 is able to mediate tumor-promoting SOCE via c-KIT
and the ERK pathway [36]. Whilst far less studied than its sibling Orai1, Orai3 protein deserves special
attention, because of (i) its exclusive presence in mammals [37], (ii) its receptivity to pharmacological
modulation [38], and (iii) its recent emergence in the cancer field, especially in breast cancer. Many data
establish now a clear link between Orai3 and chemoresistance (Figure 1). Orai3 was primarily described
as involved in proliferation, cell cycle progression, and Estrogen Receptor positive (ER+) breast cancer
cells survival [39]. In these cells, SOCE is dependent on Orai3 expression, whereas Estrogen Receptor
negative (ER−) cells depends on Orai1 [40]. In such ER− cells, Bhattacharya et al. [41] have shown that
Orai3 and Stim1 were able to mediate TGF-β induced expression of Snai1, a transcriptional repressor
protein known to mediate Epithelial to Mesenchymal Transition (EMT), a cell state transition process
implicated in drug resistance [32]. This process was AKT and NF-κB (p65)-dependent [41]. In ER+

breast cancer cells, Orai3-dependent survival was found to be transduced—at least in part—via the
ERK and c-myc pathway [42]. Overexpression of Orai3 protein in ER+ breast cancer cells revealed
consistent chemoresistance against cisplatin, 5-FU and paclitaxel treatments. The main effect of Orai3
upregulation was a SOCE-induced downregulation of the tumor suppressor protein p53, leading
to reduced apoptosis [43]. The complete pathway leading to p53 downregulation was extensively
deciphered: increased SOCE is able to activate PI3K, but not Akt. Instead, the Sgk1 pathway is
specifically activated, leading to Mdm2 activation and p53 downregulation. Sgk1 activation is also
responsible for the inactivation of the Sek-1 kinase, and therefore to an hypo-phosphorylated and thus
activated Nedd4.2 ubiquitin ligase, able to decrease p53 protein expression [43]. All these results are
summarized in Figure 1 and in Table S1.
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Figure 1. Chemoresistance pathways involving Orai calcium channels. Orai calcium channels are able
to modulate sensitivity to chemotherapy. Processes known to alter chemoresistance are highlighted
in bold. These include calcium overload, MultiDrug Resistance (MDR), autophagy, modulation of
signalling pathways (MAPK and PI3K-Akt/Sgk), transcription factors (NF-κB, c-myc, p53), and EMT
(Epithelial to Mesenchymal Transition). Processes initiated by Orai1 and Orai3 are summarized by
purple and blue arrows, respectively. The dashed arrows are not different from plain arrows, except
that they cross other arrows.

Reduced Resistance Conferred by the Overexpression of Stim and Orai Proteins

Resistance to apoptosis can also be acquired through a remodeling of the Ca2+ protein network that
will reduce the likelihood of cytosolic Ca2+ overload. In androgen-independent, apoptosis-resistant
prostate cancer cells, such remodeling was shown to involve reduced SOCE via downregulation
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of Orai1 or Stim1 proteins, and adaptation of the ER to the conditions of reduced Ca2+ storage
and uptake [18,44]. In prostate cancer cells, low Orai1 expression was shown to contribute to the
establishment of an apoptosis-resistant phenotype, irrespective of the apoptosis-inducing stimulus [17].
Orai3 overexpression in prostate cancer cells is able to impair the Orai1-mediated SOCE and causes
prostate cancer cell resistance [45].

2.1.2. Transient Receptor Potential (TRP) Channels

Transient Receptor Potential (TRP) channels are non-selective cation channels that can allow Ca2+

influx. The major groups of TRP channels include, among others, TRPM (Melastatin), TRPV (Vanilloid),
and TRPC (Canonical). These channels have been associated with chemoresistance in many cancers
since a decade [46,47].

TRPV—It has recently been shown that 5-FU induced breast cancer cell death was up-regulated
by TRPV1 activation [48]: Ca2+ entry through TRPV1 is able to decrease chemoresistance. Nabissi et
al. have shown that treatment with the TRPV2 agonist cannabidiol, by enhancing TRPV2 expression
and activation, increased the chemosensitivity of human glioblastoma cells to the cytotoxic effects of
various chemotherapeutic agents commonly used in the treatment of glioblastoma (temozolomide,
carmustine and doxorubicin). Abrogation of chemoresistance was obtained by increased calcium
influx through TRPV2 channel leading to a calcium-dependant cell death [49]. Moreover, cannabidiol
and the proteasome inhibitor bortezomib synergise to increase cytotoxicity in multiple myeloma cell
lines through TRPV2 activation [50]. Taken together, these data suggest that TRPV2 activation can
potentiate the effects of cytotoxic drugs in various cancer types.

TRPM—In gastric cancer, Almasi et al. have shown that TRPM2 channel expression is negatively
correlated with overall patient survival. Moreover, TRPM2 downregulation sensitized gastric cancer
cells to paclitaxel and doxorubicin. Indeed, TRPM2, by activating both Akt and JNK signalling
pathways, promote gastric cancer cell survival [51]. It has been shown that TRPM2 knockdown
activates alternative pathway of cell death in breast cancer cells, leading to enhanced cytotoxicity
after treatment with doxorubicin or N-methyl-N′-nitro-N-nitrosoguanidine [52]. In a similar manner,
knockdown of TRPM8 was able to enhance epirubicin-induced apoptosis in osteosarcoma cells,
and this effect was mediated through impaired regulation of intracellular Ca2+ concentration and the
Akt-GSK-3β pathway [53].

TRPC—Downregulation of TRPC1 was shown to contribute to drug resistance in ovarian cancer,
possibly by regulating autophagy [54]. Autophagy can be also mediated by TRPC5 and promotes drug
resistance via CaMKKβ/AMPKα/mTOR pathway in breast cancer cells [55]. The TRPC5 channel has
been largely associated with drug resistance in several cancers. TRPC5 can regulate Ca2+ homeostasis
by forming a store-operated channel or a store independent channel. In addition, TRPC5-mediated
Ca2+ entry is elicited by several physiological messengers, including reduced thioredoxin, protons,
sphingosine-1-phosphate, lysophospholipids, NO and Ca2+ itself (see [56] for review). TRPC5 can
confer chemoresistance to anticancer drugs in breast cancer. It has been shown that TRPC5 was
essential for MDR1 induction in drug-resistant cancer cells [57], notably through activation of the
transcription factor NFATc3 [58]. TRPC5 might even act as a non-invasive chemoresistance marker,
since increasing circulating exosomes-carrying TRPC5 predicts chemoresistance in metastatic breast
cancer patients [59]. In colorectal cancer, TRPC5 overexpression induces the Wnt/β-catenin signalling
pathway and the up-regulation of MDR1 [60]. The same team demonstrated the essential role of
glycolysis in TRPC5 induced chemoresistance in human colorectal cancer cells by maintaining Ca2+

homeostasis [61].
In HCC cells, inhibiting TRPC6 enhanced the efficacy of doxorubicin. Moreover, Ca2+ was found

to be essential in mediating mechanisms of EMT, HIF-1α signalling and DNA damage repair, conferring
multidrug resistance in HCC cells. Multidrug resistance was attributed to the sustained accumulation
of intracellular free Ca2+ induced by TRPC6 overexpression. The pathway by which TRPC6 is able
to induce multidrug resistance in these cells was demonstrated to be STAT3-dependent [62]. In a
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variety of other cancer cell lines (breast, prostate, bone, skin, lung), TRPC6 expression was on the
contrary shown to lead to Ca2+-dependent apoptotic death and activation of apoptotic genes. Using
the antineoplastic drug GaQ3 (an organic derivative of gallium), Madan et al. demonstrated that
these apoptotic pathways were activated by the transcriptional upregulation of TRPC6 (and hence
intracellular calcium) by p53 [63].

Mechanisms concerning the involvement of TRP channel in chemoresistance are provided in
Table S1.

2.1.3. Voltage-Gated Calcium Channels and Chemotherapy

Voltage-gated calcium channels (VGCC) are expressed throughout the body and perform several
key physiological functions. In small cell lung cancer (SCLC), cells expressing the voltage-dependent
calcium channel α2δ1 subunit (isolated from SCLC cell lines or patient-derived xenograft models)
exhibit cancer stem cells characteristics and chemotherapeutic resistance. Treatment with etoposide
enhanced the cell populations expressing α2δ1 in vitro and in vivo. Chemoresistance in these SCLC
cell lines was shown to be mediated by the ERK pathway [64]. Moreover, the suppression of expression
or activity of T-type Ca2+ channel induce apoptosis and hence allow resistance of ovarian cancer cells
to chemotherapeutic treatments [65]. Apoptosis was accompanied by decreased Akt phosphorylation
and alterations in FOXO and FOXM1 expression. Table S1 succinctly summarizes this information.

2.2. Intracellular Calcium Stores

Like extracellular calcium, intracellular calcium plays a decisive role in chemoresistance processes.
Several intracellular organelles are implicated in such mechanisms, notably endoplasmic reticulum
(ER) and mitochondria. Due to its closed proximity to the mitochondria, Ca2+ transport mechanisms
from the ER to the mitochondria are allowed by the interaction of inositol 1,4,5-trisphosphate receptor
(IP3R), the Glucose-Regulated Protein 75 and the Voltage-Dependent Anion Channel (VDAC) and the
Mitochondrial Calcium Uniport (MCU). Since the MCU is the primary mediator of the mitochondrial
Ca2+ uptake, its expression and function in cancer processes have been extensively investigated over
the last ten years. Overexpression of MCU has been correlated to breast cancer progression [66], but
its role in chemoresistance processes remains poorly understood. The amount of Ca2+ transferred
from the ER to mitochondria impacts the sensitivity of cells to apoptotic stimuli and their resistance to
apoptosis [67]. Moreover, it has been demonstrated that cancer cells escape cell death by lowering the
ER Ca2+-store, due to a Ca2+ transfer between ER and mitochondria [68].

2.2.1. Intracellular Ca2+ Channels Expression Is Associated to Chemoresistance

Due to the close interaction with mitochondria, and its role in the regulation of mitochondrial
Ca2+ load, IP3R expression and/or activation have been associated to cancer cell survival and
chemoresistance [69]. In bladder cancer cells, IP3R1 expression level has been inversely correlated
to cisplatin-resistance: resistant cells express reduced IP3R1 level, and IP3R1-knockdown prevents
apoptosis, leading to cisplatin resistance. On the other hand, IP3R1 overexpression in resistant cells
induces apoptosis and increases sensitivity to cisplatin [70]. Conversely, high IP3R expression levels
were associated to low resistance of epithelial pulmonary lung cancer cells to cisplatin treatment [71].

As a key regulator of the ER-mitochondrial interaction, the anti-apoptotic Bcl-2 protein is the
subject of utmost attention. The Bcl-2-family members, which are generally divided into three
categories (anti-apoptotic proteins, pro-apoptotic executioners and pro-apoptotic BH3-only proteins),
act at two different intracellular compartments: the mitochondria and the ER [72]. Mechanistically,
anti-apoptotic family members prevent cell death by sequestering the BH3 domains and by preventing
their interaction with pro-apoptotic Bax/Bak proteins [73,74]. Small molecules (like BH3 mimetics)
can disrupt this interaction, resulting in apoptotic cell death of cancer cells. Bcl-2 expression has
been correlated to tumor growth enhancement and to chemoresistance [75] by increasing the passive
Ca2+ leak from the ER [76]. Interestingly, the anti-apoptotic protein Bcl-2 expression level seems
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to be a determinant for cancer cell sensitivity to cisplatin [77]. In non-small cell lung cancer and
bladder cancer, cisplatin sensitivity could be enhanced by downregulating Bcl-2 [78,79]. In addition,
Bcl-2 downregulation in SK-OV-3 ovarian cancer cells increases Ca2+ levels in the cytosol and in the
mitochondria, as well as the number of ER–mitochondrial contact points after cisplatin treatment,
thereby increasing the sensitivity to the chemotherapeutic agent [80].

2.2.2. Chemotherapy Modulates Intracellular Ca2+ Channels Activity

Numerous studies have demonstrated that intracellular channels/transporters/pumps expression
is altered in cancers, leading to intracellular Ca2+ homeostasis perturbation. However, the impact
of chemotherapeutic agents on the activity of these intracellular Ca2+ channels is less described.
Zhang et al. established that paclitaxel accelerates spontaneous Ca2+ oscillations by increasing the
IP3R opening frequency in the presence of Neuronal Calcium Sensor-1, a Ca2+ binding protein [81].
Moreover, Boutin et al. have demonstrated that PKA-induced IP3R1 over-activation triggers
[Ca2+]ER decrease: this mechanism allows the prostate cancer cell line LNCAP to survive androgen
deprivation [82]. Recently, Kang et al. demonstrated that Trifluoperazine, a well-known antipsychotic
drug with anticancer effects [83–86], inhibits glioblastoma invasion by binding to the Ca2+-binding
protein, calmodulin subtype 2 (CaM2). This binding dissociates CaM2 from IP3R1 and IP3R2 leading
to massive and irreversible Ca2+ release from intracellular stores by IP3R1 and IP3R2 subsequent
opening [87].

2.2.3. Signalling Pathways Involved in Chemoresistance Related to Intracellular Ca2+ Channels

Mechanisms of intracellular Ca2+ pathways involved in chemoresistance are poorly understood,
but few teams have succeeded in deciphering the communication between ER and mitochondria in
such processes. In ovarian cancer cells, TAT-fused inositol 1,4,5-trisphosphate receptor-derived peptide
(TAT-IDPS), which targets the BH4 domain of Bcl-2, enhances the cytotoxicity of cisplatin by stimulating
Ca2+ efflux from the endoplasmic reticulum (ER) into the cytosol and the mitochondria, which further
increased cisplatin-induced ER stress-mediated apoptosis by enhancing calpain-1 expression and by
activating the mitochondrial apoptotic pathway [88]. Conversely, Bcl-2 attenuates cisplatin-induced
Ca2+ release from the ER into the cytosol and the mitochondria, thus inhibiting cisplatin-induced
ER stress-mediated apoptosis and activation of the mitochondrial apoptosis pathway. In this
context, decreased ER mitochondrial crosstalk is responsible for Bcl-2 attenuation of cisplatin-induced
mitochondrial Ca2+ accumulation in SKOV3 cells [89]. All these results are summarized in Figure 2
and compiled in Table S1.

Chemoresistance mechanisms have thus been described through phosphorylations inducing
overactivation of IP3R1. Various pharmacological strategies by blocking Bcl-2 inhibition (TAT-IDPs or
Bad/BH3 mimetics) or PKA inhibitors (such as H89) have already been suggested to counteract such
chemoresistance processes [88,89].

2.2.4. Intracellular Ca2+ Channels: Targets to Overcome Chemoresistance

Because of their inaccessibility to pharmacological agents, intracellular channels or receptors
do not appear as priority target to overcome chemoresistance. Nevertheless, it has been shown that
BH3 binding and the amount of Bim scaffolded by anti-apoptotic Bcl-2 proteins can be used as a
predictive marker for the apoptotic response of cancer cells to chemotherapy [90]. It is proposed that
cancer cells, in which the mitochondria contain high levels of Bcl-2 and Bim, are most sensitive to
toxic stimuli, including chemotherapeutic drugs [91,92]. Hence, from these studies, it seems that the
mitochondrial apoptotic priming can predict the tumor response to cytotoxic chemotherapy [91,92].
The mitochondrial priming state is thereby not the same in all malignancies [93]. For instance, cancers
that are highly primed are those that respond most favorably to chemotherapy (e.g., blood cancers,
including Chronic Lymphocytic Leukemia), whereas those that are unprimed respond poorly to
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chemotherapy (endometrial and renal cell carcinomas, serous borderline tumors) [90]. In the latter
cases, the therapeutic window for using chemotherapy is very limited [72]. The number of studies
published on the role of intracellular calcium channels or receptors in tumoral progression has increased
over the last ten years, and may lead to them being considered as new targets for chemotherapy.
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Figure 2. Schematic representation of intracellular Ca2+ pathways involved in chemoresistance.
Anti-apoptotic Bcl-2 protein enhances chemoresistance by a dual role at both the Endoplasmic
Reticulum (ER), by inhibiting Ca2+ depletion through Inositol 1,4,5-trisphosphate Receptors (IP3Rs),
and the mitochondria by inhibiting apoptotic complex Bax/Bak formation. TAT-fused inositol
1,4,5-trisphosphate receptor-derived peptide (TAT-IDPS), by inhibiting BH4 domain, enhances Ca2+

efflux from the ER through IP3Rs to mitochondrial Voltage-Dependent Anion Channel (VDAC).

3. Potassium Channels

Among ion channels, potassium channels compose the largest family, presenting 78 sequences
coding for alpha pore forming subunit [94]. Besides regulating many physiological functions
(membrane potential, cell volume, excitability . . . ), their involvement in cancer progression is now
clearly established (e.g., proliferation, migration or invasiveness capacities, apoptosis resistance and
angiogenesis, see [95–97] for review). By using a K+ ionophore, amphotericin B, the study reported
by Sharp et al., was one of the first showing the importance of K+ flux in cisplatin resistance in ovary
carcinoma [98]. In the 2000s, Liang et al. showed that cisplatin induced biophysical modifications
of the membrane (lipid composition, fluidity), and cisplatin-resistant epidermal carcinoma cells
present hyperpolarizing membrane potential compared to the sensitive parental cells [99]. Moreover,
Marklund et al. [100,101] reported that both reduction of intracellular K+ concentration or addition of
K+ flux modulators (amphotericin B and bumetanide) regulated cisplatin-induced apoptosis. These
early results suggested that the activity of K+ channel was associated to therapeutic resistance.
Since this demonstration, numerous groups detailed more precise mechanisms involving K+ channel
in chemoresistance.

3.1. Correlation between the Expression Levels of K+ Channels and Sensitivity to Chemotherapeutic Drugs

Several studies have reported a correlation between the expression levels of K+ channels and
the sensitivity to cytotoxic drugs. Both overexpression and reduction of K+ channels expression
are involved in chemosensitivity. For example, using big data analysis, Liu et al. demonstrated an
association between the reduction of KCNN3 expression (a gene encoding for the SK3 K+ channel)
and drug resistance of ovarian cancer [102]. Similar associations were reported on the classically
used cisplatin [103]. Indeed, the decreased KCNMA1 (also referred to as BKCa—Calcium activated
large conductance potassium channel—or maxi K channel) expression (involving potentially miR-31)
was described to be associated to less sensitivity to this platinum-based chemotherapy in ovarian
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cell lines. In the same way, an association between the reduction of hERG (Kv11.1) expression and
increased resistance to vincristine, paclitaxel and hydroxy-camptothecin is reported for different
cancer cells [104]. Using similar approaches, Han et al. demonstrated that the voltage activated
potassium channel Kv1.5 could participate in the cellular response of gastric cancer cells to adriamycin,
and that a downregulation of the channel expression could promote the multidrug phenotype
of these cells [105]. Additionally, the Leanza group demonstrated, in several cancer cell lines, a
similar relationship between reduced expression of Kv1.1 and Kv1.3 and decreased sensitivity to
drugs, provoking mitochondrial-induced apoptotic death [106]. Another study conducted using
small cell lung carcinoma cells demonstrated a relation between K+ channel expression profile and
drug resistance [107]. More precisely, authors demonstrated that the expression level of BKCa and
Kv channels was inversely correlated to the MRP1 expression levels. They hypothesized that this
observation could be a consequence of exposition to doxorubicin, which modulate the transcription
factor c-jun (known to affect expression of both MRP1 and Kv channels). In this work, the relationship
between K+ channel repression and chemosensitivity should be an acquired mechanism of resistance.

On the contrary, there are different cases described with association between overexpression and
resistance to therapy. For example, an association between an upregulation of hEag1 (Kv10.1) and
TWIK-2 channels and an increase of cisplatin resistance was shown by Liang et al. [108]. However,
these authors described that channels are overexpressed but they did not obtain mechanistic association
between the channel function and the efficiency of cisplatin in the epidermal and liver carcinoma cells
tested. Arcangeli’s group showed higher levels of KCa3.1 and Kv11.1 channels in cisplatin-resistant
colorectal cancer cells compared with their cisplatin-sensitive counterparts. In resistant cells, the
treatment by riluzole (an activator of KCa3.1 and also an inhibitor of hERG) overcomes cisplatin
resistance in both in vitro and in vivo models [109]. Pardo’s group demonstrated also that, depending
on the clinical status, acute myeloid leukemia cells could express hEag1 and the inhibition of this
channel improves the apoptosis induction by different chemotherapeutic drugs, suggesting the
involvement of this channel in basal resistance [110]. hEag1 was also involved in chemoresistance
in ovarian cancer cells. By using immunohistochemistry on tissue samples from patients treated
with cisplatin-based adjuvant chemotherapy, Hui et al. found that a decreased hEag1 expression was
correlated with a favorable prognosis and also predicts higher sensitivity to cisplatin treatment [111].
They also found that hEag1 silencing facilitated the sensitivity of ovarian cancer cells to apoptosis
induced by cisplatin through the NF-κB pathway. They thus proposed hEag1 as a potential indicator
to predict chemosensitivity.

3.2. Chemotherapy Modulates K+ Channel Activity

Chemotherapy can also alter the activity of K+ channels without affecting their expression.
Chemotherapy drugs may increase or decrease the K+ channel activity depending on cancer types and
drugs nature. In human lung epidermoid cancer cells, cisplatin activates the KCa3.1 channel without
affecting its expression levels [112]. This activating effect of cisplatin on KCa3.1 may be due to the
increase in intracellular calcium concentration by cisplatin. Results from our laboratory demonstrated
similar implication of intracellular calcium concentration on chemoresistance in breast cancer ([43],
section Ca2+ channel). In addition, it has also been observed in human carcinoma HeLa-S3 cells, that
Ca2+ influx through Ca2+ channels is necessary for cisplatin-induced activation of a Ca2+-dependent
K+ channel inhibited by charybdotoxin (BKCa channel) [113]. Also, Jirsch et al. presented in small cell
lung cancers cells an increase activity of inwardly rectifying potassium channel associated to increased
resistance [114]. The reduction of the activity of KCa3.1 has been demonstrated in both glioma cells
(13-06-MG) and colon cancer cells (LoVo) by an oxaliplatin treatment, but not with cisplatin. Indeed,
oxaliplatin decreases the KCa3.1 channel open probability [115].
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3.3. Signalling Pathways Involved in Chemoresistance Related to K+ Channels

Some groups tried to further detail the cellular mechanisms linking K+ channels to chemotherapeutic
resistance. Chemotherapeutic resistance could be assigned to numerous cellular processes [116].
Among them, links with K+ channels were reported in the modification of apoptosis regulation, feedback
regulation through miRNA or even the relationship between tumour and microenvironment cells.

It is now well known that K+ channels are involved in the regulation of the apoptosis mechanism
through the control of mitochondrial membrane potential, the regulation of cell volume and the
availability of K+ regulating caspase activity [117]. Indeed, different studies report that K+ channels
are located in the mitochondrial membrane where they are involved in mitochondrial functions.
Checchetto et al. reviewed the role of the major mitoK+ channel types described (Kv1.3, Kv1.5, KATP,
BKCa, KCa3.1, TASK3) and their involvement in cell death [118]. For example, the calcium-activated
potassium channel KCa3.1 has been linked to the melanoma cell response in the presence of
vemurafenib [119]. It was previously demonstrated that this BRAF inhibitor promotes apoptosis
through a ROS-dependent pathway, which is prevented by the α-tocopherol. In the study by
Bauer et al., it was demonstrated that the combination of TRAM-34 with vemurafenib induced an
apoptotic pathway presenting general control through the anti-apoptotic and pro-apoptotic Bcl-2
family. Additionally, to the modification of MMP’s functions, they showed that early events are the
production of ROS, which is crucial in the apoptotic cascade of this model. TRAIL (TNF-Related
Apoptosis-Inducing Ligand) is a recent therapeutic opportunity to treat aggressive melanoma that
presents high selectivity to cancer cells but also applicability limitations due to development of
resistance. Quast et al. showed that the KCa3.1 inhibition by using TRAM-34 could also overcome
the resistance to TRAIL in melanoma cell lines [120]. The same authors also deciphered the apoptotic
pathway, which involves activation of caspases 3, 8 and 9, modification of the mitochondrial membrane
potential, a dependency to Bax, and the release of mitochondrial factors like cytochrome c, AIF and
SMAC (Figure 3). It is worth noting that the cellular response involving K+ channel is very specific
of the cellular type involved. KCa3.1 channel can also be involved in cisplatin sensitivity. Using the
epidermoid cancer cell model, Lee et al. demonstrated that the activity of KCa3.1 is necessary to
the cisplatin-induced death [112]. In this model, authors showed that the channel participates in the
control of the Regulatory Volume Decrease (RVD) and caspase3/7 activity, two processes implicated
in the apoptotic mechanism. In the same manner, it has been reported that the activity of the hERG
channel is important for cisplatin-induced death of gastric cells [121]. This work demonstrated that
cisplatin exposure increases the expression of hERG and that the activity of this channel is necessary
in cisplatin-induced death of the different cell lines used. In addition, authors demonstrated that the
activity of the channel is important to the caspase dependent apoptotic pathway through the regulation
of Bax/Bcl-2 axis and active caspase 3. Their results were confirmed by using animal model where they
also demonstrated the involvement of the hERG channels in the cisplatin-induced apoptosis. Using
cisplatin-resistant colorectal cancer cell, Pillozzi et al. showed that the combined activation of KCa3.1
and inhibition of Kv11.1 by riluzole reduced the level of p-Akt and p-ERK and increased caspase-3,
demonstrating a synergic effect with cisplatin to overcome the resistance to this chemotherapeutic
agent [109]. In addition, they demonstrate that the modification of the channel activity allowed an
increase in the incorporation of platinum salt in the cell to promote its activity.

To the best of our knowledge, only one report described the implication of K+ channel in
the modulation of the EGFR-Ras-Raf signalling pathway and an association with chemosensitivity
(Figure 3). In side population of lung cancer stem cells, Choi et al. demonstrated that the use of
different K+ channel modulators affect the gefitinib efficiency to kill lung cancer cell line [122]. Indeed,
application of 4-aminopyridine (Kv blocker), TetraEthylAmmonium (Kv blocker) or flupirtine (Kv7
opener) in combination with gefitinib decreases drastically cell viability compared to the use of the
compound alone. This effect is correlated to the reduction of p-EGFR, total Ras, p-Raf and p-ERK1/2,
compared to the gefitinib condition alone.
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sensitivity to different chemotherapies by regulating pro-survival pathways (intrinsec or extrinsec
apoptosis pathways, volume regulation, Akt/RAS/MAPK pathways, interacting with receptors or
transporters). MDR: Multidrug Resistance Protein; EGFR: Epidermal Growth Factor Receptor; CXCR4:
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Among the different molecular mechanisms described in the literature, some articles reported
a close link between miRNA, K+ channel, and chemoresistance (Figure 3). For instance, by using
immunohistochemistry, different SCLC cell lines resistant to chemotherapeutic drugs and preclinical
in vivo model, Liu et al. demonstrated the involvement of the Kir2.1 channel in drug resistance [123].
First, they described that overexpression of the channel is responsible for the increase of the
MRP1/ABCC1 protein in the different cell lines tested and that the level of the channel and of
the MDR are correlated with clinical parameters. Second, they evaluated different putative regulators
of the channel. They have shown that (i) Kir2.1 expression is modulated by the RAS/MAPK pathway,
(ii) Kir2.1 channel is directly regulated by the miR-7, already described in the chemoresistance process.
They thus described that miR-7 (downregulated in SCLC) and RAS/MAPK pathway promote directly
the expression of Kir2.1, which that is a crucial actor in the resistance to cisplatin, adriamycin and
etoposide in the different models used in this study. Similarly, it was described in glioblastoma cell line
that reduced expression of miR-296-3p is concurrent to the increase expression of hEag1 and these two
modifications are associated to an increased resistance to temozolomide, etoposide, and imatinib [124].
The authors demonstrated here that overexpression of the miRNA drastically decreases the level of
hEag1 and restores sensitivity to the drugs. On the contrary, the use of antago-miR to mimic the
cancerous conditions promotes resistance in association with an increase of the hEag1 transcription.

A study conducted by Pillozzi et al. reported an interesting relationship between cancer cells and
the microenvironment, more precisely acute lymphoblastic leukemia (ALL) cells and bone marrow
mesenchymal cells (MSC), involving hERG1 channel and resistance to chemotherapeutic drugs [125].
They demonstrated that the complex involving β1-integrin subunit, CXCR4 and hERG1 channel is
important for interactions between MSC and ALL cells, and regulates protection against drugs of
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ALL cells by MSC. They probed deeper into the mechanism by using different hERG1 inhibitors and
demonstrated that this channel is crucial for the protection of ALL by microenvironment cells. These
results are summarized in Figure 3 and in Table S1.

3.4. K+ Channels: Targets to Overcome Chemoresistance

Evidence reported previously suggest that K+ channels could be interesting adjuvant targets
to fight against the resistance of cancer cells. For instance, astemizole, an inhibitor of Kv10.1, has
been evaluated in combination with gefitinib on lung cancer cells [126]. In their models, the authors
demonstrated that this association enhances the mortality of cancer cells compared to the application
of separate molecules. To pursue these demonstrations, different research teams evaluate this type of
combination on preclinical models based on in vivo analyses. For example, the concomitant activation
of KCa3.1 and inhibition of hERG1 allow to overcome cisplatin resistance in colorectal cells [109].

Interestingly, some inhibitors of K+ channels can induce cell death, bypassing the classical mechanisms
of chemotherapies. Indeed, Leanza et al. demonstrated that the use of mitoKv1.3 permeant inhibitors
could affect this channel at the mitochondrial level, provoking the release of cytochrome C and eliciting
the death of cancer cells [127]. This approach could be very interesting to bypass the barrier of the
deregulation of the Bax/Bcl-2 pathway.

All elements presented through this state of research about K+ channel implicated in chemoresistance
suggest that it should be interesting to clinically evaluate specific modulators of this class of
ion transporters.

4. Magnesium Channels

Magnesium (Mg2+) is the second most abundant cation in the cell. The main role of Mg2+ is to
act as a coenzyme in virtually all the biochemical catalytic reactions [128]. Although Mg2+ status is
not systematically assessed in clinical examination, recent epidemiological data suggest that Mg2+

deficiency can be linked to an increase in cancer risk. For example, 100 mg daily decrease of Mg2+

intake is associated with a 24% increase in the incidence of pancreatic cancer [129]. Moreover, increase
of Mg2+ intake is also associated with a reduction of colorectal adenoma risk [130]. Mg2+ homeostasis
of the cell is mainly regulated by the expression of Mg2+ transporters at the plasma membrane.
A growing number of studies show that Mg2+ transporters could be involved in cancer progression.
Importantly, Mg2+ cytosolic concentration is increased in doxorubicin-resistant colon cancer cells
while the Mg2+ influx is reduced when compared to sensitive cancer cells [131]. This lower Mg2+

influx is due to the downregulation of TRPM6 and TRPM7 Mg2+ channel expression. Interestingly,
TRPM7 silencing in drug sensitive cells shifts their phenotype toward a more resistant one. These
data suggest that drug resistance is associated with alteration of Mg2+ homeostasis through TRPM7
regulation in colon cancer cells (Figure 4). However, the role of TRPM7 in cancer cell resistance has
never been studied, even if its expression is clearly linked to cancer progression and reduced survival
in breast and pancreatic cancer patients [132,133]. It has also been shown that human mitochondrial
Mrs2 protein expression is upregulated in a multidrug-resistant gastric cancer cell line compared
to its non-resistant counterpart [134]. Mrs2 is located in the mitochondria inner membrane and is
responsible for Mg2+ transport in the mitochondria of mammals. Interestingly, Mrs2 expression seems
positively correlated with the multidrug resistance of gastric cancer cells in vitro and in vivo. In gastric
cancer cells, Mrs2 overexpression inhibits adriamycin-induced apoptosis, probably by suppressing
Bax-induced cytochrome-C release by mitochondria. Moreover, p27 is downregulated while cyclin D1
is upregulated following Mrs2 overexpression, leading to gastric cancer cell proliferation enhancement.
Although these data suggest that Mrs2 may be a promising target against multidrug resistant gastric
cancer, the role of mitochondrial Mg2+ has not been yet elucidated (Figure 4).

The only described mechanism by which magnesium is able to confer resistance was published
some 30 years ago: Mg2+ was reported as essential for vincristine binding to the plasma membrane
of multidrug-resistant human myelogenous leukemia K562 cells [135]. The binding was observed at
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100 µM Mg2+, and reached a maximum effect in the 5–10 mM Mg2+ range. The candidate for drug
efflux from K62 cells is the ATPase MDR1. The ATPase activity of MDR1 is indeed dependent on
Mg2+, but can also be modulated by other divalent cations, including manganese (Mn2+) and cobalt
(Co2+). On the other hand, calcium (Ca2+), zinc (Zn2+), nickel (Ni2+), cadmium (Cd2+) and copper
(Cu2+) inhibit the Mg2+-catalyzed ATP hydrolysis [136].
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free Mg2+ could promote multidrug resistance through three main potential mechanisms: À Mg2+

IIbinds to MDR1 leading to drug extrusion; Á Mg2+ enters into the mitochondria through Mrs2 channel
leading to Bax inhibition and resistance to apoptosis, Â Mg2+ activates the nuclear PPM1D phosphatase
which alters p53 stabilization and protects cancer cells against apoptosis. Chemoresistant cancer cells
have a lower Mg2+ influx and lower amounts of TRPM6 and TRPM7 channels at the plasma membrane.

Calcium blockers verapamil and nicardipine are able to inhibit both vincristine binding to the
plasma membrane of K52 cells and drug efflux in a competitive manner, independently of the
surrounding calcium concentration [136,137]. Taken together, these findings confirm that unlike
Ca2+, Mg2+ is essential for active transport of drug outside the cell [137]. Mg2+ is also required for the
catalytic activity of the Protein Phosphatase Magnesium-dependent 1D (PPM1D) that confers cisplatin
resistance in ovarian and cervical cancer cell cells by deactivating p53 [138]. PPM1D promotes drug
resistance in gynecological malignancies by acting as a downstream target of Akt. Moreover, recent
studies show that mutations of PPM1D in hematopoietic stem cells confer a selective advantage to resist
apoptosis-induced by cytotoxic treatments in a context of clonal hematopoiesis prior to malignancy
development [139,140]. On the other hand, clinical data demonstrate that patients treated with
cetuximab and panitumumab, monoclonal antibodies targeting the epithelial growth factor receptor
(EGFR), develop hypomagnesemia [141–145]. All these results are summarized in Figure 4 and in
Table S1. These data suggest that hypomagnesemia is a side-effect of chemotherapy that is associated
with better clinical benefits. However, total serum Mg2+ level is measured for hypomagnesemia
assessment in clinical studies and does not necessarily represents the bioactive fraction of Mg2+ into
cells and tissues.

It is tempting to speculate that any modification of the Mg2+ transporter expression could disturb
cytosolic Mg2+ homeostasis leading to enhanced drug resistance in cancer cells. However, future
investigations are needed to better understand how Mg2+ transporters are expressed and could
eventually coordinate during cancer progression from primary tumor to metastatic and multidrug
resistant cancer.
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5. Chloride Channels

The role of selective anion channels, more specifically chloride channels, has been well-described
in physiological contexts and their implications in the excitability (neurons, skeletal, cardiac and smooth
muscle), the regulation of cell volume, trans-epithelial transport, internal and external acidification,
cell cycle progression and apoptosis are the subject of numerous studies ([146] for review). However,
anion transporters were initially less studied in the cancer context until the discovery of some structural
similarities with the MDR drug transporters involved in chemoresistance. For a decade, the number
of reports has grown exponentially and different groups presented reviews about specific class of
chloride channels (e.g., CLIC1 [147]; TMEM16A [148]). Although there is no official classification, the
chloride channels are subdivided into five classes: ClC family (with 9 members), CFTR, Ca2+-activated
chloride channels, Maxi-chloride channels and Volume Regulated Chloride (VRAC) channels [149].
Like other ion channels, chloride channels and subsequent signalling pathways are involved in
tumor progression and aggressiveness through the regulation of cell motility, cell cycle progression
or apoptosis resistance. Additionally, some groups revealed the implication of chloride channels in
tumor resistance to chemotherapy. Two major trends have recently emerged: on one hand, expression
or activity reductions of VRAC induce resistance to the pro-apoptotic molecules by regulating the
apoptotic volume decrease (AVD), and on the other hand, different chloride channels are upregulated
and trigger pro-survival pathway or promote different mechanisms to reduce drugs activity.

5.1. Volume Regulated Chloride Channel Reduction and Promotion of Chemoresistance

One of the first events at the onset of the apoptosis is a variation of the cell volume due to a
modification of the ions (classically K+ and Cl−), solutes and water transports, which precedes caspases
activation. Among the different transporters involved in this mechanism, the implication of VRAC
has been well established. In addition, it is strictly demonstrated that different chemotherapeutic
drugs induce cancer cell apoptosis. The reports of activity or expression reduction of the VRAC
molecular support in relation with chemotherapy sensitivity are obvious (Figure 5, left part). For
instance, it has been described that doxorubicin could affect VRAC current in MCF-7 cells and the cell
response is based on the relationship between MDR1 expression and I(Cl-swell) activity [150]. In addition,
by using epidermoid cancer cell lines sensitive or resistant to cisplatin, Okada’s group demonstrates
the involvement of VRAC in the response to this drug [151–153]. The association of this type of current
to drug resistance has also been reported in lung, nasopharyngeal carcinoma or anthracyclin MDR cell
line [154–156] and was the object of specific reviews to this subject [157,158]. Interestingly, the molecular
identification of the VRAC channel, the LRCC8 family [159], occurred recently and new understanding
appeared with this highlight. Indeed, it has been shown that the specific subunit composition of the
VRAC current affects differentially the sensitivity to chemotherapeutic compounds [160].

5.2. Upregulation of Chloride Channels and Chemoresistance

As previously described, chemotherapy resistance is based on the modification of different cellular
processes (e.g., apoptosis resistance, autophagy regulation, and MDR modulation). By affecting these
processes, chloride channels have also been demonstrated to be major regulators of drug resistance
(Figure 5, right part). It has been thus demonstrated that the overexpression of CLIC1 or ANO1
are correlated to the resistance of glioblastoma cancer stem cells, ovarian or breast cancer [161–164].
In another way, Bill et al. demonstrated that ANO1 channel could be functionally linked to the EGFR
pathway and its expression level could be used as predictive biomarker to anti-EGFR therapy in head
and neck squamous cancer [165].

Chloride channel can be located at the plasma or intracellular membrane level. Weylandt et
al. demonstrated that ClC-3 could participate in the acidification of intracellular compartment in
order to promote the chelation of the etoposide in neuroendocrine tumor cells and consequently
reduce the activity of this compound [166]. Similarly, it was shown that ClC-3 could participate
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in cisplatin resistance in erythroleukemia or glioma models by modulating the pH of intracellular
compartments, such as lysosome [167,168]. In addition, Fujito et al. demonstrated that ClC-3 and
ANO1, by regulating intracellular chloride level, could control the transcription of HER2 in breast
cancer cells through the PI3K/Akt/mTOR or STAT3 pathways, depending on the cell/channel type
promoting the resistance to anti-HER2 therapies [169]. ClC-3 has also been demonstrated to participate
in cisplatin resistance by regulating the Akt pathway and the autophagy process of glioma cells [170]
or to promote the decreased answer to different compounds by regulating the overexpression of MDR1
by NF-κB and p65 signalling [171]. CLC-5 has been demonstrated to promote bortezomib resistance in
multiple myeloma cell lines by increasing the pro-survival autophagy and inhibiting the Akt-mTOR
pathway [172]. In choriocarcinoma models, sensitive or not to methotrexate and floxuridine, CLIC1
channel has been shown to be overexpressed in resistant cells and linked with the upregulation of
MRP1 in order to promote drug resistance [173]. All these results are summarized in Figure 5 and
Table S1.
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Figure 5. Chemoresistance pathways involving Cl− channels. Cl− channels can modulate the
sensitivity to different chemotherapies by inhibiting the AVD or by modulating the prosurvival
pathways and the drugs availabilities. The dashed line separates two virtual cells presenting either
reduction activity of Cl− channels (left part) or an upregulation of Cl− channels (right part). MDR1:
Multidrug Resistance 1; VRAC: Volume Regulated Chloride Channel; AVD: Apoptosis Volume
Decrease; HER2: Human Epidermal growth factor Receptor 2; MRP1: Multidrug associated Resistance
Protein 1; EGFR: Epidermal Growth Factor Receptor.

6. Other Ion Channels

As previously described, the associations between Ca2+, K+, Mg2+ or Cl− channels with
chemoresistance present an increasing number of iterations in the bibliography. However, little
information is available regarding the involvement of other channels, water, and solute transporters in
the literature. It is however worth mentioning that voltage-gated sodium channels and ASIC channels
have been associated with chemoresistance.

6.1. Voltage-Gated Sodium Channel in the Chemoresistance Process

This class of ion channel is known to participate in tumor progression by improving cell
invasiveness capacity in different tumor types (e.g., breast, colorectal, prostate cancer [174–176]).
However, Gerard et al. described that the NG108-15 cells (“neuroblastoma x glioma” hybrid cells),
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that are resistant to doxorubicin, show a 1.66-fold increase in Na+ conductance when compared to
the parental cells [177]. These results are in good agreement with those obtained by Yamashita et al.,
who showed that leukemia cells expressing a MDR phenotype present a bigger voltage-gated Na+

current compared to the sensitive ones [178]. In this study, they confirmed the association between
voltage-gated Na+ current and MDR phenotype by using revertant cell lines (cell lines that lost the
acquired resistance to drug) that did not maintain the Na+ conductance.

6.2. ASIC Channels in the Chemoresistance Process

It has recently been demonstrated by Zhang et al. that the ASIC1a channel participates in
chemotherapy resistance of HCC [179]. ASIC1a is shown to be more expressed in HCC tissues, and the
authors have deciphered a pathway involving the channel in the chemoresistance. They notably show
that ASIC1a is expressed at the plasma membrane level, where it allows a Ca2+ influx, which regulates
the PI3K/Akt pathway, protecting the cells against apoptosis in an extracellular acidic environment.

7. Conclusions

Chemoresistance is a major hurdle in cancer treatment leading to recurrence of cancer. Resistance
is a complex phenomenon involving multiple mechanisms, including activation of signalling pathways,
apoptosis resistance improvement, and increasing extrusion of therapeutic compounds, among
others mechanisms. Although many drugs/therapies are now available in oncology, resistance
to treatments impedes complete therapeutic successes and is responsible for mid- and long-term
recurrence of the disease. Ion fluxes have been reported to modulate the response of cancer cells to
several chemotherapeutic drugs [7]. Additionally, apoptosis regulation by ion channels is also well
described ([180,181] for review) and consequently, it is interesting to understand their implication in
the resistance to therapeutic compounds.

Although many papers report an association between chemoresistance and ion channel expression
and/or activity, relatively few studies provide the complete mechanism of resistance. It appears
thus necessary to improve knowledge about the different mechanisms involving ion channels, to
enable potential new therapeutic associations (including ion channel modulators) to ideally overcome
resistance to chemotherapeutic compounds.

Studies reported herein usually describe the implication of one channel in the regulation of
chemoresistance processes. However, studies about complexes of ion channels are emerging to explain
their involvement in the control of tumour progression. For example, our group demonstrated that
the Kv10.1 potassium channel and the Orai1 calcium channel are associated to promote survival of
breast cancer cells [182]. It was also demonstrated that the SK3 potassium channel, in association with
TRPC1 and Orai1 calcium channels, regulated colon cancer cell migration [183]. Based on data from
the literature, and since global ion channel expression is rather dynamically and interdependently
regulated, we propose that ion channels-dependant chemoresistance processes are likely to depend
on more complex mechanisms than only one channel and only one downstream signalling process
(Figure 6). For example, K+ channels can be associated with Cl− channels to regulate cell volume and
modulate apoptosis resistance. In the same manner, the association of K+ channels with Ca+ ones
could be very important in controlling intracellular signalling pathways or expression/repression of
transcription factors. Future research in this field should thus take relationships between ion channels
into account, and provide better description of the downstream molecular mechanisms involved
in chemoresistance.

To conclude, this emerging field can highlight new targets or new evidence for overriding
chemoresistance, but intensive work is still necessary to complete the list of actors involved,
the interdependency between some of these actors, and their exact roles in chemoresistance processes
by deciphering downstream signalling mechanisms more accurately. Ion channel blockers have
been successfully developed over decades by pharmaceutical industries to treat cardiac or psychiatric
disorders. Yet, their therapeutic potency has not been extensively investigated in clinical cancer therapy.
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Such ion channel blockers could, however, be very useful: for instance, verapamil, a Ca2+ channel
blocker significantly increases the survival of patients with anthracycline-resistant metastatic breast
carcinoma when given in association with chemotherapy [184]. Moreover, mibefradil dihydrochloride,
a T-type Ca2+ channel blocker, acts as a radiosensitizer by potentiating the effect of hypofractionated
radiation on patients with recurrent glioblastoma [185]. Others Na+ channel blockers, such as riluzole,
have also been described in cancer therapy for patients with brain metastases originating from
melanoma [186,187]. Hopefully, accumulating data on chemoresistance conferred by ion channels
(most of which are summarized in the present review) will help repurpose ion channels modulators in
clinical trials to improve cancer treatment.Cancers 2019, 11, x 17 of 27 
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Bcl-2 B-cell lymphoma 2
BKCa Large conductance, Ca2+-activated K+ channels
CFTR Cystic Fibrosis Transmembrane conductance Regulator
ClC Chloride Channel
CLIC1 Chloride Intracellular Channel 1
CXCR4 C-X-C Chemokine Receptor 4
ER Endoplasmic Reticulum
EMT Epithelial to Mesenchymal Transition
HCC HepatoCellular Carcinoma
hEag1 human Ether-à-Go-Go
hERG human Ether-à-Go-Go-Related Gene
IP3R Inositol 1,4,5-trisphosphate Receptor
MCU Mitochondrial Calcium Uniport
MDR MultiDrug Resistance
miRNA micro-RNA
MMP Matrix MetalloProteinase
MRP1 Multidrug Resistance-associated Protein 1
MSC Bone Marrow Mesenchymal Cells
RVD Regulatory Volume Decrease
SMAC Second Mitochondria-derived Activator of Caspases
SK3 Small conductance, Ca2+ activated K+ channel 3
SOC channels Store-Operated Calcium channels
SOCE Store-Operated Calcium Entry
TAT-IDPs TAT-fused inositol 1,4,5-trisphosphate receptor derived peptide
TRAIL Tumor-necrosis-factor Related Apoptosis Inducing Ligand
VDAC Voltage-Dependent Anion Channel
VRAC Volume-Regulated Anion Channel
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