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ABSTRACT  

LISICON-related compositions Li4±xSi1-xXx O4 (X = P, Al, Ge) are important materials that have 

been identified as potential solid electrolytes for all solid state batteries. Here we show that the 

room temperature lithium  ion conductivity can be improved by several orders of magnitude 

through substitution on Si sites. We apply a combined computer simulation and experimental 

approach to a wide range of compositions: Li4SiO4, Li3.75Si0.75P0.25O4, Li4.25Si0.75Al0.25O4, 

Li4Al0.33Si0.33P0.33O4 and Li4Al1/3Si1/6Ge1/6P1/3O4 which include new doped materials. Depending 

on the temperature, three different Li+ ion diffusion mechanisms are observed. The polyanion 

mixing introduced by substitution lowers the temperature at which the transition to a superionic 

state with high Li+ ion conductivity occurs. These insights help to rationalize the mechanism of 

the lithium ion conductivity enhancement and provide strategies for designing materials with 

promising transport properties. 
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1. Introduction 

Lithium ion batteries are widely used in electric vehicles and portable devices.1–5 However, 

owing to various intrinsic drawbacks of liquid electrolytes (for example, chemical and thermal 

instability and complex reactions at the solid/liquid interface), other technologies with better 

performance for specific applications are required. Among various electrochemical energy storage 

devices, All Solid State Batteries (ASSBs) have been proposed to provide improved chemical and 

electrochemical stability (wide potential window), greater safety and easier device fabrication.6–12  

The search for new, stable and highly conducting solid electrolytes has increased significantly in 

recent years. Considerable research efforts have been carried out in exploring crystal structural 

families with high ionic conductivity, including the NASICON (e.g. Na3Zr2Si2PO12),
13–16 

LISICON (LIthium Super Ionic CONductor, e.g. γ-Li3PO4)
17–21 and thio-LISICON,22–25 garnets 

(e.g. Li7La3Zr2O12)
26,27 and related structures.28–32 Among these structural families, the  

compositions Li10GeP2S12 (10 mS/cm at 25 oC) and Li9.54Si1.74P1.44S11.7Cl0.3 (25 mS/cm at 25 oC) 

reported by Kanno et al. present the highest ionic conductivities to date.6,25 However,  sulphide 

chemistry can be challenging in terms of its high sensitivity to moisture.33–35 It is believed that the 

reproducible synthesis of phase pure materials will be a particular issue that will be difficult to 

overcome. In contrast, oxide-based LISICON materials can be obtained from traditional solid state 

reactions and present fewer air-sensitivity issues. Previous studies show that the formation of solid 

solutions (such as Li4-xSi1-xPxO4 or Li4+xSi1-xAlxO4) can significantly improve the ionic 

conductivity.20,36–42 However, there is limited work on additional doping of these LISICON 

systems. 
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The mechanism for such drastic enhancement of conductivity in the solid solution compositions is 

considered to be caused by the increased concentration of defects which act as charge carriers. Our 

previous work revealed an interstitialcy or knock-on type mechanism in the case of lithium ion 

diffusion in Li3.5Si0.5P0.5O4 at 573 K.20 However, the influence of the polyanion groups (e.g. SiO4, 

PO4) has not been discussed in detail. In particular, there is limited work on compositions with 

more than two types of polyanion groups. For the composition Li4.25Si0.75Al0.25O4, previous work 

has reported that this material crystalizes in a LISICON structure.43 However, detailed 

crystallographic information, e.g. Li atomic positions and site occupancy, is still lacking. For 

Li4Al0.33Si0.33P0.33O4, to the best of our knowledge, no previous synthesis and characterisation 

work has been reported. Such crystal structural information is important to aid understanding of 

ion diffusion mechanisms at the atomistic scale. 

In this study, we investigate the temperature dependence of the crystal structure and the ion 

diffusion mechanism and whether the co-existence of various XO4 tetrahedra ((SiO4)
4-, (PO4)

3- and 

(AlO4)
5-) within a given structure leads to lower lithium ion transport barriers similar to the ‘mixed 

anion effect’ reported in polymer and glass-ceramic systems.44–47 We have synthesized, 

characterised and modelled a series of compositions (Li4SiO4, Li3.75Si0.75P0.25O4, 

Li4.25Si0.75Al0.25O4, Li4Al0.33Si0.33P0.33O4 and Li4Al1/3Si1/6Ge1/6P1/3O4) which are formed through 

cationic substitution on the Si4+ site of the parent LISICON-like Li4SiO4 structure (see Figure 1 

for compositional relations).  

 



 5 

 

Figure 1. Phase diagram showing the compositions studied (Li4SiO4 (blue),  

Li3.75Si0.75P0.25O4 (red), Li4.25Si0.75Al0.25O4 (dark yellow), Li4Al0.33Si0.33P0.33O4 (green)) and their 

relation to the three parent compositions (Li4SiO4, Li5AlO4 and Li3PO4). 

 

This work represents to our knowledge the first successful doping of more than three elements on 

the silicon site and the first application of van Hove analysis of these systems, which sheds new 

light on the nature of the superionic transition in LISICON materials. The findings here are directly 

transferrable to the high conductivity sulphide-based thio-LISICON systems and offer design 

strategies to further improve the conductivity. 

 

2. Methods 

2.1 Synthesis, structural and chemical characterization 

Li4SiO4, Li3.75Si0.75P0.25O4, Li4.25Si0.75Al0.25O4 and Li4Al0.33Si0.33P0.33O4 were synthesized by 

solid state reactions at 800°C. Stoichiometric raw materials (LiOH∙H2O, fumed SiO2, β-Li3PO4, 

Li4SiO4

Li5AlO4 Li3PO4

Li3.75Si0.75P0.25O4Li4.25Si0.75Al0.25O4

Li4Al0.33Si0.33P0.33O4
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Al(OH)3) were first ball milled (zirconia beads/powder = 12/1 in mass, 600 rpm, 12 hours) in 

zirconia jars. The as-homogenized mixture was then cold-pressed into pellets and heated at 800oC 

for 12 hours under Ar flow, followed by slow cooling to 298 K and then grinded. The Si/Al/P 

relative concentrations in the powder were confirmed by Energy Dispersed X-ray (EDX) analysis. 

The crystal structure of these samples was studied by powder X-ray diffraction. Neutron powder 

diffraction patterns were collected for Li4SiO4, Li3.75Si0.75P0.25O4 and Li4.25Si0.75Al0.25O4 using the 

high-resolution D2B diffractometer at ILL (Institute Laue-Langevin, Grenoble, France). The ionic 

conductivity values were measured using pellet samples fabricated by Spark Plasma Sintering 

process (700 °C, 30 minutes) followed by gold sputtering on each plane surface. AC Electrical 

Impedance Spectroscopy (EIS) measurements were performed under argon to avoid moisture at 

various stabilized temperatures ranging from 50 to 300 °C (upon heating and cooling with a step 

of 25 oC) using a Bio-Logic MTZ-35 Impedance Analyzer, in a frequency range of 30 MHz to 0.1 

Hz and with an excitation voltage of 0.1 V. From the Nyquist plots of the complex impedance 

data, the lithium ionic conductivities of the samples were derived. 

 

2.2 Atomistic modeling 

Atomistic potentials-based methods were used and are detailed elsewhere;48,49 hence only a brief 

overview is presented here. Molecular dynamics (MD) simulation of ion diffusion was performed 

with the LAMMPS code.50,51 The interatomic potentials we used here include a long-range 

Coulomb term, a short-range Morse function and a repulsive contribution. The parameters were 

taken from the extensive library of potentials developed by Pedone et al.,52 which have been shown 

to perform well in MD simulations of silicates and polyanion-type materials. The mathematical 
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form of the potentials and the values of the parameters are listed in Supplementary Information 

S1. Based on the crystal structure we determined from single crystal X-ray diffraction and powder 

neutron diffraction, a supercell containing about 6,000 atoms was generated. MD simulations were 

performed for long timescales (~ 3 ns) with a time step of 0.002 ps at a wide range of temperatures 

(473 to 1173 K). The mean squared displacement (MSD) of Li+ ions was resolved and the chemical 

diffusion coefficients (Dc) were then calculated from the relation: 𝐷𝑐 =
1

6

𝑑〈𝑀𝑆𝐷〉

𝑑𝑡
. The tracer 

diffusion coefficients (Dt) were derived in a similar way using the mean displacement squared 

(MDS). The ionic conductivities were then calculated according to the Nernst-Einstein equation: 

                  
𝜎

𝐷𝑐
=

𝑛𝑞2

𝑓𝑘𝑇
                    (1) 

 

in which f is the Haven Ratio defined as the ratio of Dc over Dt (their values are listed in the 

Supporting Information), n is the density of charge carrier (number of Li+ ions per volume unit), q 

is the charge, k is the Boltzmann constant and T is the system temperature. Such atomistic modeling 

techniques have been applied successfully to a range of lithium (and sodium) battery materials.53–

58 

 

3. Results and discussion 

3.1 Crystal structure of the LISICON-like materials 
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Figure 2. X-ray powder diffraction patterns for Li4SiO4 (blue), Li3.75Si0.75P0.25O4 (red), 

Li4.25Si0.75Al0.25O4 (dark yellow) and Li4Al0.33Si0.33P0.33O4 (green). The Bragg positions of 

Li4SiO4 (sub-cell model) are shown in blue bars. (*: superstructure reflexion) 

 

The crystal structures of Li4SiO4, Li3.75Si0.75P0.25O4, Li4.25Si0.75Al0.25O4 and Li4Al0.33Si0.33P0.33O4 

have been investigated using powder X-ray diffraction. The obtained diffraction patterns for the 

four samples are shown in Figure 2. 

All these four samples are well crystallized and single phase. It is known that Li4SiO4 crystallizes 

in a monoclinic ‘supercell’ (space group P21/m, no.11) with Z=14 at 298 K and undergoes a phase 

transition to a ‘sub-cell’ with Z=2 at temperatures higher than 750 K.20,59,60 This transition is due 

to a disordering within the Li+ crystallographic positions. This order-disorder transition in the Li+ 

ion positions suggests that the diffusion mechanism may change with temperature. In contrast, the 

crystal structures at 298 K of the substituted compositions Li3.75Si0.75P0.25O4, Li4.25Si0.75Al0.25O4 
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and Li4Al0.33Si0.33P0.33O4 can be described using the ‘sub-cell’ model. The cell parameters obtained 

through full pattern profile matching are listed in Table 1. 

 

Table 1. Cell parameters of Li4SiO4, Li3.75Si0.75P0.25O4, Li4.25Si0.75Al0.25O4 and 

Li4Al0.33Si0.33P0.33O4 obtained from full pattern profile matching of  

X-ray powder diffraction data. 

 

 Li4SiO4 Li3.75Si0.75P0.25O4 Li4.25Si0.75Al0.25O4 Li4Al0.33Si0.33P0.33O4 

a (Å) 5.1497(2) 5.10836(7) 5.1496(2) 5.1475(3) 

b (Å) 6.1001(2) 6.1126(2) 6.1771(4) 6.1779(5) 

c (Å) 5.2981(2) 5.3020(2) 5.3424(2) 5.3497(3) 

β (deg) 90.316(2) 90.343(2) 90.297(3) 90.335(3) 

V/Z  (Å3) 83.214(4) 82.776(3) 84.968(6) 85.061(9) 

 

The crystal structures can be described as isolated polyanionic tetrahedra (SiO4, PO4) connected 

to LiOn (n=4, 5 and 6) polyhedra through corner and/or edge sharing. For Li4SiO4 and 

Li3.75Si0.75P0.25O4, detailed structural descriptions were reported in previous studies.20,61 In 

Li3.75Si0.75P0.25O4, the Si and P atoms share the same crystallographic sites and (SiO4)
4- and (PO4)

3- 

coexist in a disordered manner. 

To the best of our knowledge, no investigation for the crystal structure of Li4.25Si0.75Al0.25O4 has 

been reported in the past. Ortiz-Landeros et al.43 have only stated that Li4+xSi1-xAlxO4  

(0 < x < 0.5) compositions show very similar X-ray diffraction pattern to that of Li4SiO4. In this 

work we have carried out powder neutron diffraction and single crystal X-ray diffraction for 

Li4.25Si0.75Al0.25O4. The refinement results of the crystal structure are listed in the Supplementary 
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Information. From neutron diffraction data, the refined lithium amount is 4.1(3) per formula. The 

crystal structure of Li4.25Si0.75Al0.25O4 is very similar to that of Li3.75Si0.75P0.25O4,
20 with a unit cell 

containing two XO4 tetrahedra and similar distribution of lithium crystallographic sites. Each X 

site is statistically shared by 0.75 Si and 0.25 Al atoms. In the mixed XO4 group, the average X-O 

bond length is 1.690 Å, which is very close to the value of 1.684 Å obtained by linear interpolation 

between the average Si-O distance in Li4SiO4 (1.641 Å) and Al-O distance in β-Li5AlO4 (1.814 Å) 

as reported by Hoppe et al..62 This is a strong indication that the experimental Si/Al stoichiometry 

of the powder is very close to the nominal one and that the structural model that we are using is 

valid. 

 

3.2 Ionic conductivity enhancement by mixing tetrahedral groups  

The ionic conductivity of each material has been measured by EIS technique as a function of 

temperature. Figure 3 shows a typical Nyquist plot obtained for Li4SiO4 at 473 K.  

A semi-circle can be observed at high frequencies, which can be attributed to the solid electrolyte 

lithium ion conduction. The spectra were fitted by an equivalent circuit (insert in Figure. 3) 

composed by an initial resistor R1 (for the device and current collectors resistance) in series with 

one resistor R2 (for solid electrolyte resistance) in parallel with a constant phase element CPE2 

(for the non-ideal capacitance between particles) and in series with another CPE3 (for the 

impedance of both the top and bottom electrode-electrolyte junctions). The ionic conductivity σ 

was then calculated using the equation: 

                𝜎 =
ℎ

𝑅𝑆
             (2) 
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in which h is the thickness of the solid electrolyte pellet, S the pellet surface and R the resistance 

obtained from the fitted R2 value. A fast reduction of the semi-circle diameter is noticed upon 

heating, in line with the enhancement of the ionic conductivity with temperature. 

 

Figure 3. Nyquist plot for EIS measured data (red circles) and fitted curve (blue line) using the 

inserted equivalent circuit. The curve is obtained from measuring a Li4SiO4 pellet (h = 1.60 mm 

and S = 26.75 mm2) at 473 K. The fitting was performed using the ZView software. 

 

The ionic conductivities have also been calculated using the MD method described in detail in the 

‘Methods’ section. In Figure 4 the experimental and MD simulated ionic conductivity values of 

Li4SiO4, Li3.75Si0.75P0.25O4, Li4.25Si0.75Al0.25O4, Li4Al0.33Si0.33P0.33O4 and Li4Al1/3Si1/6Ge1/6P1/3O4 

are plotted in the form of log (σT) as a function of 1000/T. 
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Figure 4. Li+ ionic conductivity (σ) Arrhenius plots for Li4SiO4 (blue), Li3.75Si0.75P0.25O4 (red), 

Li4.25Si0.75Al0.25O4 (dark yellow), Li4Al0.33Si0.33P0.33O4 (green) and Li4Al1/3Si1/6Ge1/6P1/3O4 

(orange). MD simulated values are shown in solid squares. Conductivity values deduced from 

EIS measurements are shown in circles. Linear fits for experimental values are plotted in solid 

lines. The activation energies are derived in the temperature range of 50 to 300 oC. 

 

For each composition, the EIS measured and the MD simulated ionic conductivity values are in 

good agreement and follow the expected Arrhenius relationship: 

        𝜎𝑇 = 𝐴 exp(−
𝐸𝑎

𝑘𝑇
)           (3) 

where A is a pre-exponential factor related to charge carrier concentration and Ea is the activation 

energy. Li4SiO4 shows low ionic conductivity in the common solid state battery working 

temperature range (RT to 473 K, with σ473K= 4.10-6 S/cm). In both mixed “binary” compositions 

the ionic conductivity values are increased by two orders of magnitude, with σ473K= 1.10-4 S/cm 
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for Li3.75Si0.75P0.25O4 and 2.10-4 S/cm for Li4.25Si0.75Al0.25O4. A further enhancement of the ionic 

conductivity is seen in the “ternary” composition Li4Al0.33Si0.33P0.33O4 with σ473K= 1.10-3 S/cm. 

These results indicate that substitution on the Si sites (thus creating either Li vacancies or Li+ 

interstitial sites) can effectively promote lithium ion diffusivity. This conclusion is valid not only 

for the oxide LISICON type materials, but also appears to be applicable for sulphide based solid 

electrolytes.25 It is significant that the MD simulated ionic conductivity of Li4Al1/3Si1/6Ge1/6P1/3O4 

is as high as 0.9 mS/cm at 300 K, which is one of the highest values among oxide-based solid 

electrolytes.29,46,63 We notice that the slopes of the data are not strictly linear in the temperature 

range of 300 to 1173 K, suggesting that the Li diffusion mechanism is temperature dependent. 

Nevertheless, the non-Arrhenius behaviour is consistent with the order-disorder transition in the 

Li+ ion positions previously observed using diffraction techniques. 

We now address the cause of this conductivity enhancement in substituted compositions. All 

these compositions crystalize in the LISICON-like structure, with isolated tetrahedra and a wide 

distribution of Li ions on their crystallographic sites. The crystal structure and Li distribution are 

the same in our MD simulations for these compositions; hence, the influence of structural 

differences and cation ordering is minimized, which allows us to focus on the effect arising from 

the mixing of the polyanion groups. In general, the presence of various polyanion groups in the 

structure improves cation mobility by lowering the energy barrier for Li+ migration. A similar 

phenomenon has been observed in the Li2S - GeS2 - LiBr - LiI system44: the mixing of S2-, I- and 

Br- anions lowers the activation energy and improves cation mobility. The mechanism is termed 

as the ‘mixed anion effect’. As an analogue, the ionic conductivity enhancement in the Li4SiO4-

related compositions can be termed as ‘mixed polyanion effect’, since the mixing anions are XO4 

groups. 



 14 

In order to evaluate the influence of each type of polyanion group, several intrinsic structural and 

energy characteristics of XO4 tetrahedra (X = Al3+, Si4+, Ge4+, and P5+) are listed in Table 2. 

 

Table 2. Tetrahedral anion charge m, X-O distance in LimXO4, X-O dissociation energy values,64 

Li+ - (XO4)
m- interaction minimum positions for different type of tetrahedra. * Value not 

available. 

(XO4)
m- 

X-O 

distance (Å) 

Molar 

mass 

X-O 

dissociation 

energy (eV) 

Li+-(XO4)
m- 

binding 

energy (eV) 

Li+-(XO4)
m-  

equilibrium 

distance (Å) 

(AlO4)
5- 1.814 91 5.03 -6.08 5.2 

(SiO4)
4- 1.641 92 * -5.15 5.1 

(GeO4)
4- 1.760 137 6.99 -5.06 5.2 

(PO4)
3- 1.520 95 6.17 -4.07 5.0 

 

Substitution of silicon can alter the properties of the polyanion groups and the lithium population 

in three main ways: 

1) Lithium carrier concentration: the tetrahedral anion charge, m, will not only influence the 

interaction between the tetrahedral group and Li+ ions, but also the number of charge carriers per 

formula. For example, with the same amount of substitution (25%) on the Si site, Li3.75Si0.75P0.25O4 

has 3.75 Li per formula, but Li4.25Si0.75Al0.25O4 has 4.25 Li per formula. In Figure 4 we can see 

that there is no significant difference of ionic conductivities between these two compositions. In 

comparison to the ionic conductivity values of other compositions, it seems that the variation of 

the concentration of charge carriers is not the key factor that helps to enhance conductivity values 

in the substituted compositions. 
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2) Polyanion size: the X-O bond length gives a direct description of the size of the tetrahedra. 

For consistency, the bond length values listed in Table 2 are taken from the average bond length 

in the corresponding ortho-oxide: Al-O from β-Li5AlO4 (ICSD-16229),62 Si-O from Li4SiO4 

(ICSD-8222),60 Ge-O from Li4GeO4 (ICSD-65177) and P-O from  γ-Li3PO4 (ICSD-77095). From 

PO4 to AlO4, the X-O bond length extends by 20%, which gives a 73% expansion of the 

tetrahedron. In previous studies,20,24,65–67 the contribution of the tetrahedral motion to the cation 

ionic conductivity has been discussed, known as the “paddle wheel effect”. The tetrahedra motion 

is affected by its degree of distortion as well as its rotation. The distortion is represented by the X-

O dissociation energy which describes how strong the bond is. The rotation is strongly related to 

the molar mass of the tetrahedral group. In the study of MD simulation of LGPS,24 the Li+ mobility 

is reported to correlate with a 30o rotation of the GeS4 and PS4 groups. 

3) Lithium potential energy surface: We have calculated the interaction between a Li+ ion and a 

(XO4)
m- group. In the calculation one Li+ ion and one (XO4)

m- group was set in a 40 x 40 x 40 Å 

lattice. The lattice energy was calculated as a function of separation r and is plotted in Figure 5 for 

each (XO4)
m- group. The results illustrate that the interaction between Li+ and XO4 can vary 

considerably in both the depth of the potential well and the equilibrium separation. The minimum 

energy value Emin, shows a difference as large as 1 eV between Li+-(PO4)
3- and Li+-(SiO4)

4- and 2 

eV between Li+-(PO4)
3- and Li+-(AlO4)

5-. The equilibrium separation can vary by 0.25 Å. 
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Figure 5. Simulated interaction between a Li+ ion and different (XO4)
m- tetrahedral groups. The 

interaction includes a long-range Coulomb term, a short-range Morse function and a repulsive 

contribution. 

 

The non-uniform potential wells for different Li+-(XO4)
m interactions may modify the  overall 

potential energy surface. In Li4SiO4 lithium occupies a much more uniform set of potential wells 

and the activation energy is relatively high (0.76 eV). In the substituted compositions 

Li3.75Si0.75P0.25O4, Li4.25Si0.75Al0.25O4, Li4Al0.33Si0.33P0.33O4 and Li4Al1/3Si1/6Ge1/6P1/3O4, the mixing 

of these XO4 groups with their non uniform potential wells may result in lower barriers between 

wells and reduced activation energies in the substituted compositions (0.53 eV for 

Li3.75Si0.75P0.25O4, 0.74 eV for Li4.25Si0.75Al0.25O4 and 0.53 eV for Li4Al0.33Si0.33P0.33O4 from our 

EIS measurements). The calculated activation energy of 0.28eV for Li4Al1/3Si1/6Ge1/6P1/3O4 is even 

lower. 
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3.3 Li+ diffusion mechanism 

To understand how the mixing of polyanion groups with different sizes and binding energies to 

Li+ affects the conduction mechanisms we have performed statistical analysis of the lithium 

diffusion. In our previous study,20 we showed that at 573 K Li+ diffusion in Li4SiO4 progresses via 

isolated Li+ hops with a low conductivity of around 10-6 S/cm. By contrast, the substituted 

composition Li3.5Si0.5P0.5O4 displayed three orders of magnitude higher conductivity (10-3 S/cm) 

at the same temperature with Li+ diffusion occurring via highly correlated motion. To further 

quantify these changes in diffusive behaviour, we have calculated and plotted the van Hove 

correlation functions for Li4SiO4, Li3.75Si0.75P0.25O4 and Li4Al1/3Si1/6Ge1/6P1/3O4 using trajectories 

obtained from our MD simulations, which can be split into the self-part Gs and the distinct-part Gd 

as follows: 

𝐺𝑠(𝑟, 𝑡) =  
1

4𝜋𝑟2𝑁
〈∑ 𝛿[𝑟 − |𝑟𝑖(𝑡0) − 𝑟𝑖(𝑡 + 𝑡0)|]

𝑁

𝑖=1

〉𝑡0
     (4) 

𝐺𝑑(𝑟, 𝑡) =  
1

4𝜋𝑟2𝑁
〈∑ 𝛿[𝑟 − |𝑟𝑖(𝑡0) − 𝑟𝑗(𝑡 + 𝑡0)|]

𝑁

𝑖≠𝑗

〉𝑡0
    (5) 

In these two equations, the self-part Gs and the distinct-part Gd are functions of the Li+-Li+ pair 

distance r and of the simulation time t. The angular brackets denote the ensemble average from 

the initial time t0. N denotes the number of Li+ ions in the system. δ() is the one-dimensional Dirac 

delta function. ri(t) denotes the position of the ith Li+ ion at time t. For a given r and t, the self-part 

Gs(r,t) or its transformed version r2Gs(r,t) is related to the probability of finding one atom after it 

travels a distance r after a time interval of t; the distinct-part Gd(r,t) or its transformed version 

r2Gd(r,t) compares the positions of a particle to the position of another particle at different time, 

and it is related to the probability of finding atom j (j ≠ i ) with a distance r (compare to the position 
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of atom i at t0) after a time interval of t. In the particular case with t=0, Gd(r,t) is reduced to the 

static Li+-Li+ pair distribution function. 

The transformed correlation function thus offers a measure of how correlated the motions of Li+ 

ions are. If r2Gs(r,t) retains its shape over different time intervals then non-correlated ion hopping 

is indicated, whereas peak broadening indicates correlated motion, disorder on the Li+ sublattice 

and, in extreme cases, liquid like diffusive behavior. This method has been successfully used to 

investigate the diffusion mechanism in other ion conducting materials such as Na3PS4
68 and garnet 

type Li7-xLa3(Zr2-xMx)O12,
69 but has never been applied to LISICON systems. In Figure 6, the 

transformed version of the self-part, r2Gs(r,t), is plotted as a function of r for Li4SiO4 and 

Li4Al1/3Si1/6Ge1/6P1/3O4 at various simulation temperatures (373, 573, 773 and 973 K). (The 

r2Gs(r,t) for Li3.75Si0.75P0.25O4 and the r2Gd(r,t) for the three compositions can be found in 

Supplementary Information.) For each temperature, six time interval values, t = 1, 10, 50, 100, 250 

and 500 ps, have been chosen to investigate the structural dynamics evolution. From these 

simulated data we can classify three distinct types of diffusive behavior according to the shape of 

r2Gs(r,t)= f(r) and r2Gs(r,t)=g(r). 
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Figure 6. Transformed version of the self-part of the van Hove correlation function, r2Gs(r, t) for 

Li4SiO4 (a), b), c), and d)) and Li4Al1/3Si1/6Ge1/6P1/3O4 (e), f), g), h)) at (from left to right) 373, 

573, 773 and 973 K. For each temperature, six curves for t = 1, 10, 50, 100, 250 and 500 ps are 

plotted. At each temperature, the six curves indicate one of the three mechanism types as shown 

in i). Li+ ions are shown in yellow, XO4 groups are shown in red. 
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displacement value; this probability shows weak time dependence. Such a correlation function is 

typical of atomic vibrations around equilibrium positions. This findingis in good agreement with 

the result found in the density plot of MD simulations in our previous work.20 This peak also 

appears in the other plots of Figure 6 (and listed in Table 3). As the temperature increases, a right 

shift of the peak position is observed, which is in agreement with the fact that the Li+ ions have 

higher thermal energy at higher temperature. 

 

Table 3. First peak position in the self-part of the van Hove correlation function 

 373 K 573 K 773 K 973 K 

Li4SiO4 0.20 Å 0.30 Å 0.35 Å 0.45 Å 

Li4Al1/3Si1/6Ge1/6P1/3O4 0.25 Å 0.30 Å 0.40 Å 0.50 Å 

 

At each temperature, the peak position for Li4Al1/3Si1/6Ge1/6P1/3O4 appears at slightly larger r value 

than for Li4SiO4, indicating that the motion of Li+ ions is less constricted. The mechanism of Li+ 

ion dynamics in these cases can be considered as a local oscillation. 

Type II - Ion Hopping: For Li4SiO4 at 773 K (Figure 6c)) and Li4Al1/3Si1/6Ge1/6P1/3O4 at 573 K 

(Figure 6f)), the intensity of the probability peak around 0.40 Å decreases with the evolution of 

the simulation time. Therefore the probability of finding a Li+ ion around its equilibrium position 

is reduced, indicating that Li+ ions have left their original position and migratedto other sites. 

Another feature in these Type II plots is the presence of a second peak at around r = 2.4 Å, which 

is the distance between a Li+ ion and its closest Li+ site in the lattice (varying from 1.8 to 2.9 Å). 

The appearance of this peak is the signal for Li+ ion jumping to its neighboring site and staying on 
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that site for a certain residual time. Similar to the peak at 0.40 Å, this peak is also time dependent, 

but its intensity increases with the measurement interval. Over timescales greater than ~100ps 

sufficient Li+ hops occur to give an appreciable probability of finding a Li+ ion on its neighboring 

site. The hopping can also be seen in the distinct-part of the van Hove correlation function (see 

Supplementary Information). In the distinct-part curve, there is a peak locating at around 0.4 Å, 

suggesting the lithium sites are occupied by a new Li+ ion other than the one at t=0. These features 

suggest that Li+ ion diffusion undergoes hopping mechanism in the Type II conditions. 

Type III - Correlated Superionic Flow: Li4SiO4 at 973 K (Figure 6d) and 

Li4Al1/3Si1/6Ge1/6P1/3O4 at 773 K (Figure 6g) and 973 K (Figure 6h): in these Type III plots, those 

curves at t = 1 ps have similar shapes as those in the Type I. However, the intensity of the peak is 

much weaker (it should be noticed that the scales of the vertical axis are not same), indicating a 

lower probability of finding a Li+ ion around its original position. The peak has a large tail, showing 

that some of the Li+ ions are displaced for distances larger than 1.5 Å in 1 ps. The curves at t = 10 

ps are similar to those in the Type II, with a relatively low intensity peak at 0.4 Å and a broad peak 

at 2.8 Å, suggesting that in these conditions 10 ps is long enough for a Li+ ion diffusing to its 

neighboring site. As the simulation time goes above 100 ps, no other significant peaks can be 

observed in these plots. This data shows that at high temperatures a  significant disordering of the 

Li+ sub-lattice in the structure occurs which leads to a more liquid like  distribution of Li+ ions. 

The diffusivity of the Li+ ions at these temperatures is significantly enhanced, leading to the non 

linear Arrhenius behavior in the conductivity values in Figure 4. The Li+ dynamics can thus be 

considered to undergo a phase transition into  ‘superionic flow’. 

As can be seen from the above discussion, the mechanism of Li+ ion diffusion in each composition 

is temperature dependent. From low to high temperature, the mechanism evolves from  Type I 
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local oscillation to  Type II isolated hopping and to  Type III superionic flow. When the diffusion 

mechanism changes from local oscillation to isolated hopping or isolated hopping to  superionic 

flow, a faster Li+ ion mobility is achieved, thus promoting higher ionic conductivity. The ‘mixed 

polyanion effect’ causes substituted compositions to show a transition to the next diffusion 

mechanism type  at a much lower temperature than in Li4SiO4. For instance, 

Li4Al1/3Si1/6Ge1/6P1/3O4 shows a transition to superionic motion at much lower temperature than 

Li4SiO4, and hence the room temperature conductivity is several orders of magnitude greater. In 

general, these results indicate the atomic scale origin of the orders of magnitude increase in ionic 

conductivity observed in substituted LISICON materials. 

 

4. Conclusions 

The lithium ion transport properties of a range of compositions (Li4SiO4, Li3.75Si0.75P0.25O4, 

Li4.25Si0.75Al0.25O4, Li4Al0.33Si0.33P0.33O4 and Li4Al1/3Si1/6Ge1/6P1/3O4) in the LISICON-type 

structural family have been investigated using a combination of synthesis, diffraction, impedance 

and modelling techniques. This includes the first detailed report of the crystal structure including 

atomic positions and site occupancies of Li4.25Si0.75Al0.25O4 and the transport properties of a new 

composition Li4Al0.33Si0.33P0.33O4.  

 

The following main findings emerge from our investigation. First, the ionic conductivity of 

Li4SiO4 is not high, but can be enhanced through successful substitution on the Si4+ site. Such 

doping leads to a ‘mixed polyanion effect’, which helps to modify the potential energy surface and 
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decrease the Li+ ion conduction barrier. Second, the MD modelling results reveal three 

temperature-dependent mechanisms for Li+ ion diffusion: i) local oscillation at low temperature; 

ii) isolated hopping at intermediate temperature and iii) superionic motion at high temperature.  

Moreover, we have shown that the type of mechanism in operation depends on both the 

temperature  and the composition.  Li4Al1/3Si1/6Ge1/6P1/3O4 shows a transition to superionic motion 

at a much lower temperature than Li4SiO4 and hence the room temperature ionic conductivity of 

0.9 mS/cm, is several orders of magnitude higher. The results are generally applicable to all 

materials in the LISICON family which share the same structural motif of Li-rich compounds with 

isolated polyanion tetrahedra. 

These insights are important in helping to rationalize how ionic transport is related to local 

structure and composition, and to develop new strategies for designing solid electrolyte materials 

with high ionic conductivity. A future avenue to exploit this effect would be mixed ‘oxysulphide’ 

compositions where the size difference in tetrahedra would be even greater than in the oxides 

considered here, although a major challenge presented by such oxysulphides (and by substituted 

LISICONs in general) is the suppression of phase separation. 
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