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ABSTRACT 72 

Ecological research heavily relies on coarse-gridded climate data based on standardised temperature 73 

measurements recorded at 2 m height in open landscapes. However, many organisms experience 74 

environmental conditions that differ substantially from those captured by these macroclimatic (i.e. 75 

free-air) temperature grids. In forests, the tree canopy functions as a thermal insulator, and buffers 76 

sub-canopy microclimatic conditions, thereby affecting biological and ecological processes. To 77 

improve the assessment of climatic conditions and climate change-related impacts on forest-floor 78 

biodiversity and functioning, temperature grids reflecting forest microclimates are thus urgently 79 

needed. Combining more than 1,200 time series of in situ near-surface forest temperatures with 80 

topographical, biological and macroclimatic variables in a machine learning model, we predicted the 81 

mean monthly offset between sub-canopy temperature at 15 cm above the surface and free-air 82 

temperature over the period 2000-2020 at a spatial resolution of 25 m across Europe. This offset was 83 

used to evaluate the difference between micro- and macroclimate across space and seasons and 84 

finally enabled us to calculate mean annual and monthly temperatures for European forest 85 

understories. We found that sub-canopy air temperatures differ substantially from free-air 86 

temperatures, being on average 2.1°C (standard deviation ± 1.6°C) lower in summer and 2.0°C higher 87 

(± 0.7°C) in winter across Europe. Additionally, our high-resolution maps expose considerable 88 

microclimatic variation within landscapes, not captured by the gridded macroclimatic products. The 89 

provided forest sub-canopy temperature maps will enable future research to more accurately model 90 

below-canopy biological processes and patterns, as well as species distributions. 91 

Keywords: biodiversity, boosted regression trees, climate change, ecosystem processes, forest 92 

microclimate, SoilTemp, species distributions, thermal buffering  93 
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INTRODUCTION 94 

Climate change is having profound impacts on Earth’s biodiversity and ecosystem processes (Lenoir et 95 

al., 2020; Pecl et al., 2017; Scheffers et al., 2016). Ecological research assessing the consequences of 96 

climate change is, however, largely based on coarse-gridded climate data of approximately 1 km² or 97 

more (Lenoir et al., 2013; Willis & Bhagwat, 2009), such as WorldClim (1 km²; Fick & Hijmans, 2017), 98 

CHELSA (1 km²; Karger et al., 2017), and TerraClimate (16 km²; Abatzoglou, Dobrowski, Parks, & 99 

Hegewisch, 2018). For the terrestrial parts of the globe, these climatic grids are derived from 100 

standardised meteorological stations recording weather conditions at approximately 2 meters height 101 

in open and windy habitats to remove microclimatic effects (Jarraud, 2008). Consequently, these grids 102 

are representative for long-term free-air temperatures (the “macroclimate”) in open ecosystems. 103 

However, many organisms experience temperatures that substantially deviate from those captured 104 

by macroclimatic grids (Bramer et al., 2018; De Frenne et al., 2019). These so-called microclimatic 105 

temperatures play a crucial role in dictating biological and ecological processes close to the ground 106 

surface such as vegetation, carbon and nutrient dynamics and species distributions (Lembrechts, Nijs, 107 

& Lenoir, 2018; Nilsson & Wardle, 2005; Perry, 1994). 108 

The available coarse-grained macroclimate data have been shown to fall short in its ability to 109 

capture small-scale biological and physical processes close to the ground surface (Lembrechts et al., 110 

2019; Lenoir, Hattab, & Pierre, 2017). For example, most plants are responding to microclimatic 111 

temperatures near the ground surface rather than free-air temperatures at 2 m height, and it has been 112 

shown that the currently available macroclimate data inaccurately reflect the distribution of these 113 

species (Lembrechts et al., 2019). This may lead to erroneous predictions of species range dynamics 114 

(Lembrechts et al., 2018). The core of this problem is twofold. Firstly, macroclimatic grids do not 115 

consider many climate-forcing factors operating near the ground surface. The ground and canopy 116 

surfaces absorb solar radiation, and low wind speeds reduce thermal mixing of the air, leading to 117 

significant fine-scale vertical and horizontal variation in air temperature (Geiger, 1950; Monin & 118 

Obukhov, 1954; Richardson, 1922). Secondly, data readily available from global macroclimatic grids 119 

consider the Earth to be a homogeneous surface of short vegetation with shading consistent with that 120 

of a weather station. However, microclimates are arguably nowhere more evident than in forests, 121 

where the amount of sunlight reaching the ground surfaces and absorbed by leaves varies 122 

substantially owing to the structural complexity of forest canopies and significant variation in 123 

evapotranspirative cooling (Bramer et al., 2018; De Frenne et al., 2019; Lenoir et al., 2017). 124 

Furthermore, landscapes characterized by considerable topographic variation (e.g. slope, aspect, 125 

elevation) have shown to harbour ample microclimatic variation (Lenoir et al., 2013; Macek, Kopecký, 126 
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& Wild, 2019) due to the effect of topography on processes such as cold-air drainage, incident solar 127 

radiation and hydrology (e.g. soil moisture). 128 

Although not a new discipline, microclimate ecology has gained renewed interest over the 129 

past years (Bramer et al., 2018; De Frenne et al., 2021), providing the scientific community with many 130 

insights on the processes underlying microclimate variability, especially related to the implications of 131 

climate change. For example, several mechanistic models are available to derive microclimatic 132 

temperatures (Kearney & Porter, 2017; Kearney et al., 2014; Maclean, 2019). Other studies make use 133 

of an empirical design, in which a network of microclimate temperature loggers is installed within a 134 

certain region to cover large environmental gradients (Frey et al., 2016; George, Thompson, & 135 

Faaborg, 2015; Govaert et al., 2020; Greiser, Meineri, Luoto, Ehrlén, & Hylander, 2018; Macek et al., 136 

2019; Meeussen et al., 2021). Nonetheless, when moving to the continental extent, these methods 137 

often reach their limitations. Although mechanistic models are capable of making accurate predictions 138 

at high spatiotemporal resolutions across restricted spatial extents, they struggle to do this over large 139 

spatial extents at high spatial resolution, as the processes must be modelled in hourly time-steps and 140 

are thus more computationally intensive than their statistical counterparts (Maclean, Mosedale, & 141 

Bennie, 2019). Moreover, the unpredictable nature of wind gusts underneath heterogeneous forest 142 

canopies, and the effects of these on temperature gradients, makes it challenging to develop 143 

mechanistic models of below-canopy microclimates (Landuyt et al., 2018). On the other hand, 144 

empirical data from regional logger networks had not yet been combined within one database until 145 

very recently (Lembrechts et al., 2020). To better model ecosystem functioning and predict the effects 146 

of climate change on organisms living close to the Earth’s surface, gridded microclimate data with a 147 

broad geographical extent are thus urgently needed (Körner & Hiltbrunner, 2018; Lembrechts & 148 

Lenoir, 2020; Zellweger et al., 2019). Yet, the spatiotemporal resolution used to define microclimate 149 

is organism specific (Potter, Woods, & Pincebourde, 2013) and fractal by nature. This means that the 150 

fractal dimension, in terms of spatiotemporal resolution, of microclimate as experienced by 151 

understory plants, for instance, might be orders of magnitude larger than the fractal dimension of 152 

microclimate as experienced by smaller organisms, like insects living in tree holes or dead wood 153 

(Pincebourde & Woods, 2020). 154 

To help fill this critical knowledge gap, the SoilTemp global database of soil and near-surface 155 

temperature time series has recently been launched (Lembrechts et al., 2020), collecting in situ 156 

temperature logger data from regional microclimate logger networks in various habitats across the 157 

globe. The currently available time series from 1,248 aboveground temperature sensors across 158 

European forests provide a unique opportunity to accurately predict sub-canopy forest temperature 159 

at a continental scale and at a spatial resolution that matters for organisms living in the forest 160 
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understory. Here, given our focus on the forest floor, we decided to work with a spatial resolution of 161 

25 m. Not only for practical reasons (i.e. resolution at which predictor variables are available at a 162 

continental extent), but also for ecological reasons as this is the scale at which both foresters (i.e. 163 

forest inventories usually use plots ranging between 625 and 1,000 m²) and botanists (i.e. forest 164 

vegetation surveys usually use 100 to 500 m² plots) work to describe the forest understory in the field. 165 

For this, we calculated the mean monthly temperature offset between microclimate temperature, 166 

based on in situ temperature measurements from the SoilTemp database (Lembrechts et al., 2020), 167 

and macroclimate temperature, based on ERA5-Land reanalysis data (Muñoz-Sabater et al., 2021). 168 

This offset was then related to different variables (i.e. topographical, biological and macroclimatic) to 169 

quantify the difference between micro- and macroclimate across space and seasons and to derive 170 

gridded microclimate products that are meaningful for studying biodiversity on the forest floor. 171 

Moreover, the offset enables us to (i) model average sub-canopy temperatures over a 20-year period 172 

and (ii) quantify the buffering capacities of forests across Europe, where buffering is defined as a 173 

dampening of the macroclimate, such that temporal fluctuations related to the macroclimate still 174 

exist, yet much less pronounced than outside of the forest (De Frenne et al., 2021).   175 
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METHODS 176 

Data acquisition 177 

In situ microclimatic temperature measurements were compiled in SoilTemp, a global database of soil 178 

and near-surface air temperature measurements combining both published and unpublished data 179 

sources (Lembrechts et al., 2020). Firstly, we only included measurement locations within European 180 

mainland forest habitats, defined as all tree elements detectable from multispectral high resolution 181 

(20 m) satellite (Sentinel-2, Landsat 8) imagery (European Union, 2020) in all 27 EU countries, plus 182 

Albania, Bosnia and Herzegovina, Kosovo, Liechtenstein, Montenegro, North Macedonia, Norway, 183 

Serbia, the United Kingdom and Switzerland. Secondly, we selected near-surface air temperature 184 

measurements at a height between 0-100 cm above ground from time series spanning at least one 185 

month with a temporal resolution of less than four hours. Measurements taken at the same location, 186 

but at different heights, were included as separate data points while keeping track of logger ID to 187 

account for potential pseudo-replication issues (i.e. when dividing data in training and testing bins for 188 

cross-validation). This resulted in 1,248 time series at 1,092 locations, extending over the period from 189 

2000 to 2020 and geographically spanning a latitudinal gradient over Europe from Portugal (38.54N 190 

8.00W) to Sweden (64.11N 19.45E) and a longitudinal gradient from Portugal (38.64N 8.60W) to 191 

Finland (62.33N 30.37E; Supplementary Figure 1a). Note that different sensor and shielding 192 

combinations were used within the input data and that they might contribute to errors in the model 193 

(Supplementary Table 1). However, experimental research has shown that such errors are relatively 194 

small in shaded environments such as forests (Maclean et al., 2021), an order of magnitude smaller 195 

than the measured offsets. 196 

Next, we aggregated the time series, usually available at hourly or sub-daily (e.g. every two or 197 

four hours) native resolutions, to mean monthly temperatures, after visually checking each time series 198 

for outliers and erroneous data. We further only selected months with at least 28 days of data, 199 

resulting in a cumulative 24,291 months of near-surface air temperature (Supplementary table 2). 200 

Offset calculation 201 

We derived a monthly temperature offset value (∆T = sub-canopy T°C – free-air T°C) between 202 

microclimate (i.e. sub-canopy) and macroclimate (i.e. free-air) temperature measurements in order to 203 

relate this ∆T to different explanatory variables and quantify the difference between micro- and 204 

macroclimate across space and seasons. Positive offset values thus indicate, on average, warmer 205 

forest microclimate conditions, whereas negative values point to a colder forest microclimate. The 206 

offset (∆T) was calculated as the difference between the monthly mean microclimate temperature, as 207 

measured by the loggers, and the corresponding monthly mean air temperature value at 2 m height 208 
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for exactly the same month, year and grid cell from ERA5-Land reanalysis data with a spatial resolution 209 

of 0.1 × 0.1 degrees (Muñoz-Sabater et al., 2021). 210 

Acquisition of covariate layers 211 

Covariates were selected based on their known relevance for forest microclimatic temperatures 212 

according to literature (Greiser et al., 2018; Zellweger et al., 2019), spatial resolution and availability 213 

at the continental scale. In total, twenty covariate layers were selected to create a covariate layer 214 

stack, including topographical, biological and macroclimatic variables. 215 

Topographic layers were derived from a digital elevation model (EU-DEM v1.1) at 25 m 216 

resolution (European Union, 2020). Both northness and eastness were derived as the cosine and sine 217 

of the aspect (°), respectively. Additionally, we incorporated slope (°), elevation (m a.s.l.) and latitude 218 

to account for the variation in incoming solar radiation (Lenoir & Svenning, 2013; Meineri & Hylander, 219 

2017). Relative elevation (m) represents the elevational difference between each pixel and the lowest 220 

pixel within a 500 m buffer. This is often used as a proxy for cold air drainage, as cold air moves 221 

downslope (Ashcroft & Gollan, 2013). Distance to the coast was included because the heat capacity of 222 

the ocean has an important effect on (microclimatic) temperatures (Vercauteren, Destouni, Dahlberg, 223 

& Hylander, 2013; Zellweger et al., 2019). Furthermore, the effect of increased water vapour content 224 

in the atmosphere near the coast affects cloud patterns which, in turn, influence incoming solar 225 

radiation (Zellweger et al., 2019). Finally, the topographic wetness index (TWI) was used as a proxy for 226 

soil moisture (Meineri, Dahlberg, & Hylander, 2015). The index quantifies the effect of topographic 227 

variation on hydrological processes by taking into account both slope and specific catchment area 228 

(Beven & Kirkby, 1979). We calculated TWI by using the Freeman FD8 flow algorithm with a flow 229 

dispersion of 1.0, a flow width equal to the raster cell size (i.e. 25 m) and a local slope gradient 230 

(Kopecký, Macek, & Wild, 2021). 231 

The 2015 high resolution (20 m) Copernicus maps of tree cover density (%), which refers to 232 

the percentage of tree cover per raster cell, and forest type (broadleaf vs. coniferous) were included. 233 

To quantitatively capture the phenological differences between broadleaved and coniferous forests, 234 

we calculated two NDVI values, representative for winter (December-February) and summer months 235 

(June-August). NDVI variables were derived from Landsat 4, 5, 7 and 8 satellite images over a period 236 

from 2000-2020 provided in Google Earth Engine (Gorelick et al., 2017). Each image underwent pre-237 

processing by converting low-quality data (e.g. due to presence of clouds, snow or shadows) into 238 

missing values based on the masks provided with the downloaded images. 239 

Furthermore, long-term average macroclimatic conditions were considered by including four 240 

WorldClim bioclimatic variables covering the period between 1970 and 2000 (Fick & Hijmans, 2017): 241 

BIO1 (Mean Annual Temperature), BIO5 (Maximum Temperature of the Warmest Month), BIO6 242 
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(Minimum Temperature of the Coldest Month) and BIO12 (Annual Precipitation). These were chosen 243 

due to the specific interaction of these variables with some of the topographical and biological 244 

variables. For instance, Greiser et al. (2018) found that forest density was an important driver for 245 

minimum and maximum microclimate temperatures in summer, whereas topography had a stronger 246 

influence on extreme temperatures in autumn and winter. Furthermore, mean annual cloud cover (%) 247 

over 2000-2014 derived from MODIS products was included to account for the effect of cloud cover 248 

on incoming solar radiation (Wilson & Jetz, 2016). Annual snow cover probability (%) was derived as 249 

the average of monthly snow probability based on a pixel-wise frequency of snow occurrence (snow 250 

cover > 10%) in MODIS daily snow cover products (MOD10A1 & MYD10A1; Hall, Riggs, Salomonson, 251 

DiGirolamo, & Bayr, 2002) over 2001-2019. Finally, we also included the sensor height above the 252 

ground surface as a covariate in our models as this significantly impacts the magnitude of the 253 

temperature offset (De Frenne et al., 2019; Geiger, 1950). 254 

When necessary, covariate map layers were reprojected and resampled to an equal area 255 

projection in EPSG:3035 (ETRS89-extended / LAEA Europe) at 25 m resolution using bilinear 256 

interpolation for quantitative data and the nearest neighbour method for categorical data. We present 257 

variable importance quantitatively and the relationship between each covariate and the response 258 

visually in partial dependence plots (Supplementary Figure 2). Furthermore, we show the strongest 259 

two- and three-way interactions among covariates (Supplementary Figure 3). 260 

Geospatial modelling 261 

Machine-learning techniques often outperform other statistical techniques such as generalized linear 262 

models (GLMs) or generalized additive models (GAMs) in terms of predictive power (Appelhans, 263 

Mwangomo, Hardy, Hemp, & Nauss, 2015). As we aim to maximize predictive power within the 264 

environmental space covered by our data rather than explanatory power, we used boosted regression 265 

trees (BRTs), also referred to as gradient boosting machine, to model the relationship between the 266 

selected covariates and ∆T (Appelhans et al., 2015; Elith, Leathwick, & Hastie, 2008). Especially for 267 

regression, BRTs are particularly valuable due to their capacity to uncover nonlinear relationships as 268 

well as their automatic detection of complex interactions among covariates (Supplementary Figure 3). 269 

Furthermore, this algorithm is capable to handle multicollinearity among covariates (Supplementary 270 

Figure 4), outliers and missing data. On the other hand, BRTs are prone to (i) overfitting due to 271 

sequential fitting of trees (Elith et al., 2008) and (ii) errors when extrapolating outside the boundaries 272 

of the training data. To deal with these issues, we (i) implemented model regularization by means of 273 

low learning rate values (0.1-0.001) and cross-validation (Elith et al., 2008) while also (ii) providing a 274 

map indicating where the model is extrapolating beyond the values of the training data. 275 
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BRTs were built using the gbm R package (Ridgeway, 2005). We searched for the optimal 276 

hyperparameter values with the caret package (Kuhn, 2012) by means of a grid search over the 277 

possible values of the four hyperparameters: interaction depth (2-6); total number of trees (100-278 

10,000); learning rate (0.1-0.001); and the minimal observations in each terminal node (8-12) (Elith et 279 

al., 2008). In total, 14,925 models were evaluated by 10-fold cross-validation (CV) while (i) taking into 280 

account logger ID to avoid pseudo-replication between folds and (ii) stratifying by the biogeographical 281 

regions of Europe (Cervellini et al., 2020), meaning that each fold contained 10% of the loggers in each 282 

biogeographical region. Finally, optimal hyperparameter values were selected by maximizing R²CV. 283 

Once the optimal hyperparameters were determined, we applied a stratified bootstrap 284 

approach to fit 30 different models (van den Hoogen et al., 2019). The bootstrapping procedure each 285 

time randomly sampled the data with replacement to fit the model. The biogeographical regions of 286 

Europe (Cervellini et al., 2020) were used as stratum for the random sampling to ensure that every 287 

biogeographical region was proportionally represented according to data availability in each region. 288 

Each of the bootstrapped models made separate predictions for each month – that is 3,141,115,825 289 

European forest pixels classified 360 times (12 months × 30 bootstraps). Model precision was then 290 

quantified by calculating, per pixel, a 95% confidence interval (mean ± 1.96 SE) for each month. We 291 

predicted temperature at 15 cm height as this is the most common height within the input data 292 

(Supplementary Table 2). Furthermore, most understory forest plant species (e.g. herbs, grasses, 293 

sedges and ferns) fit, on average, to this height. 294 

Machine-learning techniques, like BRTs, are known to be less capable to extrapolate beyond 295 

the boundaries set by the environmental variables in the original training data. To assess where our 296 

model is extrapolating – and thus possibly providing less reliable predictions – we calculated for each 297 

pixel the percentage of quantitative covariate layers for which the pixel value lies outside the range of 298 

data covered by the dataset. Finally, we used a spatial leave-one-out cross-validation analysis to test 299 

the effect of spatial autocorrelation in the dataset (Supplementary Figure 5; Roberts et al., 2017; van 300 

den Hoogen et al., 2021). This approach each time validates a model on data from one distinct location 301 

and trains a model on the remaining data. This is repeatedly done for each of our 1,092 locations. 302 

Because of potential spatial autocorrelation close to the validation location, this process is repeated 303 

with an increasing buffer around the validation location, each time excluding data points that fall 304 

within the defined buffer zone from the training data. This method allows assessing if the R² stabilizes, 305 

an indication of limited spatial autocorrelation. 306 

Offset and forest microclimate temperature maps at 25 m resolution 307 

Here, we make the European monthly temperature offset grids available as open data. These can, in 308 

turn, be used to convert gridded macroclimate products into gridded microclimate products. We 309 
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opted to illustrate the calculation of the mean annual forest microclimatic temperature (further 310 

referred to as “forestBIO1”) but this calculation can be carried out for all other temperature-related 311 

bioclimatic variables from BIO1 to BIO11 (Fick & Hijmans, 2017; Karger et al., 2017). Firstly, we 312 

calculated (i) the mean annual temperature offset as the average of the monthly offset maps and (ii) 313 

the mean annual temperature over 2000-2019 from monthly TerraClimate data (Abatzoglou et al., 314 

2018). Secondly, we calculated forestBIO1 by adding anomalies of the predicted mean annual offset 315 

to the corresponding TerraClimate mean annual temperature map (Abatzoglou et al., 2018).  316 

All calculations were performed in R version 4.0.2 (R Core Team, 2020). The Tier-2 Genius 317 

cluster from the high-performance computing facilities of Flanders was used to perform the 318 

calculations.  319 
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RESULTS AND DISCUSSION 320 

ForestTemp – microclimatic temperature maps of European forests 321 

Our bootstrapped models for monthly temperature offset performed well with a coefficient of 322 

determination (R²) of 0.79 (95% CI: 0.78-0.80), a root mean square error of 1.19°C (1.17°C – 1.21°C) 323 

and a mean absolute error of 0.87°C (0.85°C – 0.89°C). The spatial leave-one-out cross-validation also 324 

showed reasonably good predictive performance with R² stabilizing around 0.55 when increasing the 325 

buffer size above 100 km (Supplementary Figure 5). Mean monthly temperature offsets at 15 cm 326 

above ground over 30 bootstrap iterations ranged between -2.5°C and 10.8°C in January and from -327 

5.8°C to 3.2°C in July (Supplementary Table 3). Model predictions described expected patterns in ∆T, 328 

with forest microclimates overall being warmer than the macroclimate during winter, and colder 329 

during summer (Figure 1). This corresponds to earlier findings for temperate systems, where forests 330 

act as a thermal insulator: on average cooling the understory by 2.1°C in summer and warming it by 331 

2.0°C in winter compared to monthly free-air temperature (De Frenne et al., 2019; Geiger, 1950). Our 332 

model was also able to capture the phenological difference between broadleaved and coniferous 333 

forests. We found bimodal peaks in winter, particularly pronounced in January (Figure 2), with 334 

temperature offsets in coniferous forests, on average, 1.0°C warmer (Supplementary Figure 6). This 335 

likely relates to the differences in tree cover density between these two forest types during that time 336 

of year. The observed pattern can further be caused by the fact that coniferous forests are, at the 337 

continental scale, more abundant in places with snow, which is known to act as an additional thermal 338 

insulator (Aalto, Scherrer, Lenoir, Guisan, & Luoto, 2018). Mean annual temperature offset ranged 339 

between -5.7°C and 7.8°C, which translates into a mean annual forest microclimate temperature 340 

(forestBIO1) between -2.0°C and 22.1°C across Europe (Figure 3), compared to mean annual 341 

macroclimate temperature ranging between -3.5°C and 20.4°C. 342 

The bootstrapped models turned out robust, as standard errors were generally small 343 

compared to the modelled temperature offsets: standard errors of the mean of monthly temperature 344 

offsets stayed below 0.6°C in most months and across most parts of Europe (Figure 4, Supplementary 345 

Table 3). Higher standard errors are noticed when predicting the offset at very high (above mid-346 

Sweden) and very low latitudes (southern Spain) as well as in high-elevational regions, which are 347 

expected to be caused by extrapolation outside the environmental gradient covered by the availability 348 

of temperature loggers installed in forest ecosystems (Figure 5a; Supplementary Figure 1b). The 349 

overall precision of each prediction is represented by the width of the 95% confidence interval for 350 

each pixel (Figure 5b), which reaches 2.5°C in winter (January) and 1.2°C in summer (July, 351 

Supplementary Table 3). 352 
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As for any other machine learning technique, we caution against the use of data from regions 353 

where the model is extrapolating (mainly in southern Spain, high elevations areas of the Alps and 354 

Scandinavia, Figure 5a). As with any spatial model, our model is calibrated on certain environmental 355 

conditions, and predictions outside these conditions might induce errors. This problem partly stems 356 

from undersampled regions in the database (e.g. southern Spain, the United Kingdom, large parts of 357 

eastern Europe and high-elevation forested areas) which should be a scope of future research. The 358 

extrapolation (Figure 5a) and precision (Figure 5b) maps could therefore be used as spatial masks to 359 

remove or downweight the pixels for which predictions are beyond the range of values covered by the 360 

models or unprecise. 361 

 Drivers of microclimate 362 

As expected, seasonality (i.e. month of the year) plays a crucial role in defining the direction of the 363 

monthly temperature offset, overall being positive in autumn and winter and negative during spring 364 

and summer (Supplementary Figure 2). Bioclimatic variables seem to be important covariates, with 365 

the exception of mean annual temperature due to its high collinearity with other climatic variables 366 

(Supplementary Figure 4). However, we notice an overall negative relationship between the offset and 367 

mean annual temperature (Supplementary Figure 2), which might be related to the predicted 368 

decoupling of forest microclimate warming from warming of the free air (De Frenne et al., 2019; Lenoir 369 

et al., 2017). However, global warming-related disturbances like extreme droughts, pest outbreaks 370 

(e.g. pathogens, bark beetles) and increased fire incidence could nullify the insulation capacity of the 371 

forest canopy, disrupting this low coupling. Furthermore, the high importance of distance to the coast 372 

and mean annual precipitation suggest an important role for water (McLaughlin et al., 2017). On the 373 

one hand, temperature buffering is a function of local soil moisture, which in turn can be driven by 374 

distance to water bodies and precipitation (Davis, Dobrowski, Holden, Higuera, & Abatzoglou, 2019). 375 

For instance, it is the effect of increased water vapour content in the atmosphere near the coast which 376 

affects cloudiness, which in turn is an important variable as it affects shading and incoming solar 377 

radiation. On the other hand, moisture can have an impact on different levels by increasing the 378 

vegetation or snow cover. Besides, snow also seems to be important in driving the temperature offset 379 

(Aalto et al., 2018). The interaction between snow cover and sensor height (Supplementary Figure 3c) 380 

clearly hints towards an insulating effect of snow on the sensor which is, contrary to standardised 381 

meteorological stations, not kept free of snow or ice. We thus expect that large positive wintertime 382 

offsets in regions with high snow cover probability (i.e. high-latitudinal and high-elevational regions) 383 

are mainly caused by this snow insulating effect. Of moderate importance are topographic variables 384 

such as slope and elevation which show a positive and negative relationship with ∆T, respectively. 385 

Moreover, sensor height, with a clear positive effect on ∆T, and the NDVI play an intermediate role. 386 
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Surprisingly, biotic variables such as tree cover density or forest type seem to be less good predictors 387 

for the offset at the continental scale. However, the spatial resolution of 25 m used here is probably 388 

still too coarse to capture these effects (Kašpar et al., 2021). More importantly, the availability of 389 

accurate stand-level data at 25 m resolution (e.g. basal area, stem density, leaf area density or tree 390 

height) is still limited. Airborne or terrestrial LiDAR-derived variables could be a valuable source of 391 

data to solve these issues in the future (Frey et al., 2016; George et al., 2015; Kašpar et al., 2021). 392 

However, just like with mean annual temperature, these effects might be partially captured by or 393 

confounded with the combination of seasonality and NDVI. 394 

Note that we do not intend to unravel the physical mechanisms driving the offset between 395 

forest microclimate temperatures and free-air temperature. We are aware that most of our 396 

explanatory variables (e.g. tree cover density, northness or slope) rather affect physical mechanisms 397 

driving the offset (e.g. incoming solar radiation, wind speed) than sub-canopy temperatures directly 398 

(Bennie, Huntley, Wiltshire, Hill, & Baxter, 2008). However, as we aim to create continental high-399 

resolution sub-canopy temperature maps for understory vegetation in European forests, a few strong 400 

correlative relationships could be better than complex, physical models that are computationally 401 

difficult to run at the continental extent and at high spatiotemporal resolution. Additionally, some 402 

potentially important variables are not incorporated within our models, either due to the limited 403 

availability or coarse spatial resolution of those variables. One of the possible limitations of our study 404 

is the assumption that forests, and their characteristics, are static over time. However, large parts of 405 

European forests are managed (Senf & Seidl, 2021), which makes it virtually impossible to incorporate 406 

up-to-date vegetation variables such as forest height, basal area or age. Furthermore, although we 407 

incorporated snow cover probability in the model, which shows an important interaction with sensor 408 

height, we do need the exact snow height and duration at high spatiotemporal resolution to quantify 409 

the insulation effect of snow on the logger sensors at different heights (Gisnås, Westermann, Schuler, 410 

Melvold, & Etzelmüller, 2016). Unfortunately, data on snow water equivalent, needed to calculate 411 

snow height and duration, are only available at a coarse spatial resolution of 5 km². Incorporating this 412 

into the model would not substantially capture the effect as there is still high, fine-scale spatial 413 

variability within each pixel. In addition, given the strong correlation of fine-scale snow dynamics with 414 

topography, inclusion of the latter is likely to partially capture this effect (Aalto et al., 2018; Niittynen 415 

& Luoto, 2018). 416 

Finally, the 25 m spatial resolution is a significant step forward compared to existing 417 

microclimate products across large spatial extents. Nonetheless, we have to acknowledge the 418 

remaining within-pixel variability, due to the fractal nature of microclimates, both in spatial and 419 

temporal terms. Moreover, we know that some organisms, depending on their body size, utilize 420 
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microclimatic variation at orders of magnitude less than the spatiotemporal resolution used in this 421 

study. For instance, small insects can use sunflecks and microhabitats (tree holes and dead wood) 422 

available within a 25 m × 25 m grid cell to seek micro-variation in temperature throughout the course 423 

of the day. Hence, recent research argues in favour of incorporating especially higher temporal 424 

resolutions in ecological analyses (Bütikofer et al., 2020). However, given current-day data availability 425 

and computational power as well as our focus on the forest floor, this study mapped microclimates at 426 

a continental scale according to the state-of-the-art. 427 

 Applications and future perspectives 428 

The outcomes of this study allow researchers to use accurate forest microclimate temperature data 429 

in large-scale analyses. This is an important step forward as the mismatch between macro- and 430 

microclimate forest temperatures is substantial and can thus seriously bias the outcome of ecological 431 

and global change studies. For example, microclimate-informed species distribution models (SDM; 432 

Lenoir et al., 2017) could reveal more accurate insights into the various processes underlying species 433 

vulnerability to climate change on different aspects, including climate change exposure, sensitivity, 434 

adaptability and dispersal (Pacifici et al., 2015). Climate change exposure can be buffered by 435 

microclimate whereas climate sensitivity impacts a species’ ability to cope with microclimatic 436 

warming. Furthermore, microclimatic variation affects the spatial distribution of adaptive genetic 437 

variation and thus the ability of a population to survive climate change (De Kort et al., 2020; Graae et 438 

al., 2018). Finally, microclimate drives the spatial distribution of dispersal pathways throughout the 439 

landscape and thus directly impacts dispersal ability and populations in fragmented landscapes. 440 

Understanding how these processes interact with microclimate to shape species responses and their 441 

vulnerability to climate change is fundamental to predicting range dynamics. 442 

 We trust the predicted thermal offsets for forest ecosystems and their possibility to derive 443 

gridded microclimate products will enable future research to more correctly model ecological 444 

processes and patterns in the forest understory, as well as forest-dwelling species distributions 445 

affected by climate change. These maps are available as GeoTIFFs for download through figshare (doi: 446 

10.6084/m9.figshare.14618235) and will be updated as more or better data become available.  447 
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FIGURES 448 

 449 

Figure 1: Predicted mean monthly air temperature offset across European forests. Mean monthly temperature 450 
offset at 15 cm above ground between in-situ forest microclimate and free-air temperatures (sub-canopy T°C 451 
minus free-air T°C) (in °C).452 
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 453 

Figure 2: Histograms of mean monthly temperature offsets. Density ridgeplots for the monthly temperature 454 
offset at 15 cm above ground between in-situ forest microclimate and free-air temperatures (sub-canopy T°C – 455 
free-air T°C) (in °C) indicating, per month, the distribution of 1,000,000 randomly sampled raster pixel values 456 
across European forests. 457 
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 458 

Figure 3: forestBIO1. Mean annual temperature at 15 cm above ground in European forests (in °C) with a spatial 459 
resolution of 25 m, representative of the 2000-2020 period, calculated using the maps of monthly mean air 460 
temperature offsets at 25 m resolution (Figure 2) added to the mean annual air temperature from TerraClimate 461 
at 4 km resolution. 462 
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 463 

Figure 4: Robustness of the temperature offset model at 15 cm above ground across European forests. 464 
Standard errors of the mean from predicted mean monthly temperature offsets (sub-canopy T°C minus free-air 465 
T°C) at 15 cm above ground derived from 30 bootstrapped models (in °C). For additional months, see 466 
supplementary Figure 7. See Supplementary Table 3 for detailed quantitative data. 467 
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 468 

Figure 5: Extrapolation and precision maps. (a) The percentage of quantitative variables for which the pixel lies 469 
outside the range of data covered by the training data. Pixels with high values indicate that the model has to 470 
extrapolate for many of the covariates for that specific pixel (i.e. due to missing in-situ measurements). (b) 471 
Precision of predictions for each pixel, calculated as the width of the bootstrapped 95% confidence interval for 472 
each pixel.  473 
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