

ForestTemp - Sub-canopy microclimate temperatures of European forests

Stef Haesen, Jonas J. Lembrechts, Pieter de Frenne, Jonathan Roger Michel Henri Lenoir, Juha Aalto, Michael B. Ashcroft, Martin Kopecký, Miska Luoto, Ilya Maclean, Ivan Nijs, et al.

► To cite this version:

Stef Haesen, Jonas J. Lembrechts, Pieter de Frenne, Jonathan Roger Michel Henri Lenoir, Juha Aalto, et al.. ForestTemp - Sub-canopy microclimate temperatures of European forests. Global Change Biology, 2021, 27 (23), pp.6307-6319. 10.1111/gcb.15892 . hal-03614155

HAL Id: hal-03614155 https://u-picardie.hal.science/hal-03614155

Submitted on 13 May 2022 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. 1 ForestTemp – sub-canopy microclimate temperatures of European forests

2 Running title – 25m-grids of sub-canopy temperature

- 3 Stef Haesen¹, Jonas J. Lembrechts², Pieter De Frenne³, Jonathan Lenoir⁴, Juha Aalto⁵, Michael B. Ashcroft⁶, Martin Kopecký^{7,8}, Miska Luoto⁹, Ilya Maclean¹⁰, Ivan Nijs², Pekka Niittynen⁹, Johan van 4 den Hoogen¹¹, Nicola Arriga¹², Josef Brůna⁷, Nina Buchmann¹¹, Marek Čiliak¹³, Alessio Collalti¹⁴, 5 6 Emiel De Lombaerde³, Patrice Descombes^{15,16}, Mana Gharun¹¹, Ignacio Goded¹², Sanne Govaert³, Caroline Greiser¹⁷, Achim Grelle¹⁸, Carsten Gruening¹², Lucia Hederová⁷, Kristoffer Hylander¹⁷, Jürgen 7 Kreyling¹⁹, Bart Kruijt²⁰, Martin Macek⁷, František Máliš²¹, Matěj Man⁷, Giovanni Manca¹², Radim 8 9 Matula⁸, Camille Meeussen³, Sonia Merinero^{17,22}, Stefano Minerbi²³, Leonardo Montagnani^{23,24}, Lena Muffler²⁵, Romà Ogaya²⁶, Josep Penuelas^{26,27}, Roman Plichta²⁸, Miguel Portillo-Estrada², Jonas 10 Schmeddes¹⁹, Ankit Shekhar¹¹, Fabien Spicher⁴, Mariana Ujházyová¹³, Pieter Vangansbeke³, Robert 11 Weigel²⁵, Jan Wild⁷, Florian Zellweger²⁹, Koenraad Van Meerbeek¹ 12 13 *Corresponding author, OrcID = https://orcid.org/0000-0002-4491-4213, stef.haesen@kuleuven.be, 14 +32 16 32 24 67 15 ¹Department of Earth and Environmental Sciences, Celestijnenlaan 200E, 3001 Leuven, Belgium;
- 16 ²Research Group PLECO (Plants and Ecosystems), University of Antwerp, 2610 Wilrijk, Belgium; ³Forest 17 & Nature Lab, Department of Environment, Ghent University, Geraardsbergsesteenweg 267, 9090 Melle-Gontrode, Belgium; ; ⁴UMR CNRS 7058 'Ecologie et Dynamique des Systèmes Anthropisés' 18 19 (EDYSAN), Univ. de Picardie Jules Verne, Amiens, France; ⁵Finnish Meteorological Inst., P.O. Box 503, 20 FI-00101 Helsinki, Finland; ⁶Centre for Sustainable Ecosystem Solutions, School of Biological Sciences, 21 University of Wollongong, Wollongong, Australia; ⁷Institute of Botany of the Czech Academy of Sciences, Zámek 1, CZ-25243, Průhonice, Czech Republic; ⁸Faculty of Forestry and Wood Sciences, Czech 22 23 University of Life Sciences Prague, Kamýcká 129, CZ-165 21, Prague 6 - Suchdol, Czech Republic; ⁹Dept 24 of Geosciences and Geography, Gustaf Hällströmin katu 2a, FIN–00014 Univ. of Helsinki, Finland; 25 ¹⁰Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn, UK, TR10 9FE; 26 ¹¹Department of Environmental Systems Science, ETH Zurich, Universitaetstrasse 2, 8092 Zurich, Switzerland; ¹²European Commission, Joint Research Centre (JRC), Ispra, Italy; ¹³Faculty of Ecology and 27 28 Environmental Sciences, Technical University in Zvolen, T.G.Masaryka 24, 960 01 Zvolen, Slovakia; 29 ¹⁴Institute for Agriculture and Forestry Systems in the Mediterranean, National Research Council of Italy (CNR-ISAFOM), Perugia, Italy; ¹⁵Dept. of Ecology & Evolution, University of Lausanne, 1015 30 Lausanne, Switzerland; ¹⁶Musée et Jardins botaniques Cantonaux, 1007 Lausanne, Switzerland; 31 32 ¹⁷Department of Ecology, Environment and Plant Sciences and Bolin Centre for Climate Research, Stockholm University, 106 91 Stockholm, Sweden; ¹⁸Department of Ecology, Swedish University of 33

Agricultural Sciences, Uppsala, Sweden; ¹⁹Experimental Plant Ecology, Institute of Botany and 34 Landscape Ecology, University of Greifswald, D-17487 Greifswald, Germany; ²⁰Wageningen University 35 and Research, Wageningen, Netherlands; ²¹Faculty of Forestry, Technical University in Zvolen, 36 37 T.G.Masaryka 24, 960 01 Zvolen, Slovakia; ²²Department of Plant Biology and Ecology, University of Seville, Apartado 1095, 41080 Seville, Spain; ²³Forest Services, Autonomous Province of Bolzan, 39100 38 39 Bolzano, Italy; ²⁴Faculty of Science and Technology, Free University of Bolzano, 39100 Bolzano, Italy; 40 ²⁵Plant Ecology, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August University of Goettingen, Untere Karspuele 2, 37073 Goettingen, Germany; ²⁶CSIC, Global Ecology Unit CREAF- CSIC-41 42 UAB, Bellaterra, 08193, Catalonia, Spain; ²⁷CREAF, Cerdanyola del Vallès 08193, Catalonia, Spain; ²⁸Department of Forest Botany, Dendrology and Geobiocoenology, Mendel University in Brno, Czech 43 Republic; ²⁹Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, 44 45 Switzerland

46 **OrcIDs**

47 Jonas J. Lembrechts: https://orcid.org/0000-0002-1933-0750 48 Pieter De Frenne: https://orcid.org/0000-0002-8613-0943 49 Juha Aalto: https://orcid.org/0000-0001-6819-4911 50 Martin Kopecký: https://orcid.org/0000-0002-1018-9316 51 Jonathan Lenoir: https://orcid.org/0000-0003-0638-9582 52 Miska Luoto: https://orcid.org/0000-0001-6203-5143 53 Ilya Maclean: https://orcid.org/0000-0001-8030-9136 54 Ivan Nijs: https://orcid.org/0000-0003-3111-680X 55 Pekka Niittynen: https://orcid.org/0000-0002-7290-029X 56 Johan van den Hoogen: https://orcid.org/0000-0001-6624-8461 57 Nicola Arriga: https://orcid.org/0000-0001-5321-3497 58 Josef Brůna: https://orcid.org/0000-0002-4839-4593 59 Nina Buchmann: https://orcid.org/0000-0003-0826-2980 60 Marek Čiliak: https://orcid.org/0000-0002-6720-9365 61 Alessio Collalti: https://orcid.org/0000-0002-4980-8487 62 Emiel De Lombaerde: https://orcid.org/0000-0002-0050-2735 63 Patrice Descombes: https://orcid.org/0000-0002-3760-9907 64 Mana Gharun: https://orcid.org/0000-0003-0337-7367 65 Ignacio Goded: https://orcid.org/0000-0002-1912-325X 66 Sanne Govaert: https://orcid.org/0000-0002-8939-1305 67 Caroline Greiser: https://orcid.org/0000-0003-4023-4402 68 Achim Grelle: https://orcid.org/0000-0003-3468-9419 69 Carsten Gruening: https://orcid.org/0000-0002-6169-2827 70 Lucia Hederová: https://orcid.org/0000-0003-1283-0952 71 Kristoffer Hylander: https://orcid.org/0000-0002-1215-2648

Jürgen Kreyling: https://orcid.org/0000-0001-8489-7289 Bart Kruijt: https://orcid.org/0000-0002-6186-1731 Martin Macek: https://orcid.org/0000-0002-5609-5921 František Máliš: https://orcid.org/0000-0003-2760-6988 Matěj Man: https://orcid.org/0000-0002-4557-8768 Giovanni Manca: https://orcid.org/0000-0002-9376-0310 Radim Matula: https://orcid.org/0000-0002-7460-0100 Camille Meeussen: https://orcid.org/0000-0002-5869-4936 Sonia Merinero: https://orcid.org/0000-0002-1405-6254 Stefano Minerbi: https://orcid.org/0000-0002-6620-2735 Leonardo Montagnani: https://orcid.org/0000-0003-2957-9071 Lena Muffler: https://orcid.org/0000-0001-8227-7297 Romà Ogaya: http://orcid.org/0000-0003-4927-8479 Josep Penuelas: https://orcid.org/0000-0002-7215-0150 Roman Plichta: https://orcid.org/0000-0003-2442-8522 Miguel Portillo-Estrada: https://orcid.org/0000-0002-0348-7446 Ankit Shekhar: https://orcid.org/0000-0003-0802-2821 Fabien Spicher: https://orcid.org/0000-0002-9999-955X Mariana Ujházyová: https://orcid.org/0000-0002-5546-1547 Pieter Vangansbeke: https://orcid.org/0000-0002-6356-2858 Robert Weigel: https://orcid.org/0000-0001-9685-6783 Wild Jan: https://orcid.org/0000-0003-3007-4070 Florian Zellweger: https://orcid.org/0000-0003-1265-9147 Koenraad Van Meerbeek: https://orcid.org/0000-0002-9260-3815

2

72 ABSTRACT

73 Ecological research heavily relies on coarse-gridded climate data based on standardised temperature 74 measurements recorded at 2 m height in open landscapes. However, many organisms experience 75 environmental conditions that differ substantially from those captured by these macroclimatic (i.e. 76 free-air) temperature grids. In forests, the tree canopy functions as a thermal insulator, and buffers 77 sub-canopy microclimatic conditions, thereby affecting biological and ecological processes. To 78 improve the assessment of climatic conditions and climate change-related impacts on forest-floor 79 biodiversity and functioning, temperature grids reflecting forest microclimates are thus urgently 80 needed. Combining more than 1,200 time series of in situ near-surface forest temperatures with 81 topographical, biological and macroclimatic variables in a machine learning model, we predicted the 82 mean monthly offset between sub-canopy temperature at 15 cm above the surface and free-air 83 temperature over the period 2000-2020 at a spatial resolution of 25 m across Europe. This offset was 84 used to evaluate the difference between micro- and macroclimate across space and seasons and 85 finally enabled us to calculate mean annual and monthly temperatures for European forest understories. We found that sub-canopy air temperatures differ substantially from free-air 86 temperatures, being on average 2.1°C (standard deviation ± 1.6°C) lower in summer and 2.0°C higher 87 88 (± 0.7°C) in winter across Europe. Additionally, our high-resolution maps expose considerable 89 microclimatic variation within landscapes, not captured by the gridded macroclimatic products. The 90 provided forest sub-canopy temperature maps will enable future research to more accurately model 91 below-canopy biological processes and patterns, as well as species distributions.

92 Keywords: biodiversity, boosted regression trees, climate change, ecosystem processes, forest
 93 microclimate, SoilTemp, species distributions, thermal buffering

94 INTRODUCTION

95 Climate change is having profound impacts on Earth's biodiversity and ecosystem processes (Lenoir et 96 al., 2020; Pecl et al., 2017; Scheffers et al., 2016). Ecological research assessing the consequences of 97 climate change is, however, largely based on coarse-gridded climate data of approximately 1 km² or more (Lenoir et al., 2013; Willis & Bhagwat, 2009), such as WorldClim (1 km²; Fick & Hijmans, 2017), 98 CHELSA (1 km²; Karger et al., 2017), and TerraClimate (16 km²; Abatzoglou, Dobrowski, Parks, & 99 100 Hegewisch, 2018). For the terrestrial parts of the globe, these climatic grids are derived from 101 standardised meteorological stations recording weather conditions at approximately 2 meters height 102 in open and windy habitats to remove microclimatic effects (Jarraud, 2008). Consequently, these grids 103 are representative for long-term free-air temperatures (the "macroclimate") in open ecosystems. 104 However, many organisms experience temperatures that substantially deviate from those captured 105 by macroclimatic grids (Bramer et al., 2018; De Frenne et al., 2019). These so-called microclimatic 106 temperatures play a crucial role in dictating biological and ecological processes close to the ground 107 surface such as vegetation, carbon and nutrient dynamics and species distributions (Lembrechts, Nijs, 108 & Lenoir, 2018; Nilsson & Wardle, 2005; Perry, 1994).

109 The available coarse-grained macroclimate data have been shown to fall short in its ability to 110 capture small-scale biological and physical processes close to the ground surface (Lembrechts et al., 111 2019; Lenoir, Hattab, & Pierre, 2017). For example, most plants are responding to microclimatic 112 temperatures near the ground surface rather than free-air temperatures at 2 m height, and it has been 113 shown that the currently available macroclimate data inaccurately reflect the distribution of these 114 species (Lembrechts et al., 2019). This may lead to erroneous predictions of species range dynamics 115 (Lembrechts et al., 2018). The core of this problem is twofold. Firstly, macroclimatic grids do not 116 consider many climate-forcing factors operating near the ground surface. The ground and canopy 117 surfaces absorb solar radiation, and low wind speeds reduce thermal mixing of the air, leading to 118 significant fine-scale vertical and horizontal variation in air temperature (Geiger, 1950; Monin & 119 Obukhov, 1954; Richardson, 1922). Secondly, data readily available from global macroclimatic grids 120 consider the Earth to be a homogeneous surface of short vegetation with shading consistent with that 121 of a weather station. However, microclimates are arguably nowhere more evident than in forests, 122 where the amount of sunlight reaching the ground surfaces and absorbed by leaves varies 123 substantially owing to the structural complexity of forest canopies and significant variation in 124 evapotranspirative cooling (Bramer et al., 2018; De Frenne et al., 2019; Lenoir et al., 2017). 125 Furthermore, landscapes characterized by considerable topographic variation (e.g. slope, aspect, 126 elevation) have shown to harbour ample microclimatic variation (Lenoir et al., 2013; Macek, Kopecký,

127 & Wild, 2019) due to the effect of topography on processes such as cold-air drainage, incident solar128 radiation and hydrology (e.g. soil moisture).

129 Although not a new discipline, microclimate ecology has gained renewed interest over the 130 past years (Bramer et al., 2018; De Frenne et al., 2021), providing the scientific community with many 131 insights on the processes underlying microclimate variability, especially related to the implications of 132 climate change. For example, several mechanistic models are available to derive microclimatic 133 temperatures (Kearney & Porter, 2017; Kearney et al., 2014; Maclean, 2019). Other studies make use 134 of an empirical design, in which a network of microclimate temperature loggers is installed within a 135 certain region to cover large environmental gradients (Frey et al., 2016; George, Thompson, & 136 Faaborg, 2015; Govaert et al., 2020; Greiser, Meineri, Luoto, Ehrlén, & Hylander, 2018; Macek et al., 137 2019; Meeussen et al., 2021). Nonetheless, when moving to the continental extent, these methods 138 often reach their limitations. Although mechanistic models are capable of making accurate predictions 139 at high spatiotemporal resolutions across restricted spatial extents, they struggle to do this over large 140 spatial extents at high spatial resolution, as the processes must be modelled in hourly time-steps and 141 are thus more computationally intensive than their statistical counterparts (Maclean, Mosedale, & 142 Bennie, 2019). Moreover, the unpredictable nature of wind gusts underneath heterogeneous forest 143 canopies, and the effects of these on temperature gradients, makes it challenging to develop 144 mechanistic models of below-canopy microclimates (Landuyt et al., 2018). On the other hand, 145 empirical data from regional logger networks had not yet been combined within one database until 146 very recently (Lembrechts et al., 2020). To better model ecosystem functioning and predict the effects 147 of climate change on organisms living close to the Earth's surface, gridded microclimate data with a 148 broad geographical extent are thus urgently needed (Körner & Hiltbrunner, 2018; Lembrechts & 149 Lenoir, 2020; Zellweger et al., 2019). Yet, the spatiotemporal resolution used to define microclimate 150 is organism specific (Potter, Woods, & Pincebourde, 2013) and fractal by nature. This means that the 151 fractal dimension, in terms of spatiotemporal resolution, of microclimate as experienced by 152 understory plants, for instance, might be orders of magnitude larger than the fractal dimension of 153 microclimate as experienced by smaller organisms, like insects living in tree holes or dead wood 154 (Pincebourde & Woods, 2020).

To help fill this critical knowledge gap, the SoilTemp global database of soil and near-surface temperature time series has recently been launched (Lembrechts et al., 2020), collecting *in situ* temperature logger data from regional microclimate logger networks in various habitats across the globe. The currently available time series from 1,248 aboveground temperature sensors across European forests provide a unique opportunity to accurately predict sub-canopy forest temperature at a continental scale and at a spatial resolution that matters for organisms living in the forest 161 understory. Here, given our focus on the forest floor, we decided to work with a spatial resolution of 162 25 m. Not only for practical reasons (i.e. resolution at which predictor variables are available at a 163 continental extent), but also for ecological reasons as this is the scale at which both foresters (i.e. 164 forest inventories usually use plots ranging between 625 and 1,000 m²) and botanists (i.e. forest vegetation surveys usually use 100 to 500 m² plots) work to describe the forest understory in the field. 165 166 For this, we calculated the mean monthly temperature offset between microclimate temperature, 167 based on in situ temperature measurements from the SoilTemp database (Lembrechts et al., 2020), 168 and macroclimate temperature, based on ERA5-Land reanalysis data (Muñoz-Sabater et al., 2021). 169 This offset was then related to different variables (i.e. topographical, biological and macroclimatic) to 170 quantify the difference between micro- and macroclimate across space and seasons and to derive gridded microclimate products that are meaningful for studying biodiversity on the forest floor. 171 172 Moreover, the offset enables us to (i) model average sub-canopy temperatures over a 20-year period 173 and (ii) quantify the buffering capacities of forests across Europe, where buffering is defined as a 174 dampening of the macroclimate, such that temporal fluctuations related to the macroclimate still exist, yet much less pronounced than outside of the forest (De Frenne et al., 2021). 175

176 METHODS

177 Data acquisition

In situ microclimatic temperature measurements were compiled in SoilTemp, a global database of soil 178 179 and near-surface air temperature measurements combining both published and unpublished data 180 sources (Lembrechts et al., 2020). Firstly, we only included measurement locations within European 181 mainland forest habitats, defined as all tree elements detectable from multispectral high resolution 182 (20 m) satellite (Sentinel-2, Landsat 8) imagery (European Union, 2020) in all 27 EU countries, plus 183 Albania, Bosnia and Herzegovina, Kosovo, Liechtenstein, Montenegro, North Macedonia, Norway, 184 Serbia, the United Kingdom and Switzerland. Secondly, we selected near-surface air temperature 185 measurements at a height between 0-100 cm above ground from time series spanning at least one 186 month with a temporal resolution of less than four hours. Measurements taken at the same location, 187 but at different heights, were included as separate data points while keeping track of logger ID to 188 account for potential pseudo-replication issues (i.e. when dividing data in training and testing bins for 189 cross-validation). This resulted in 1,248 time series at 1,092 locations, extending over the period from 190 2000 to 2020 and geographically spanning a latitudinal gradient over Europe from Portugal (38.54N 191 8.00W) to Sweden (64.11N 19.45E) and a longitudinal gradient from Portugal (38.64N 8.60W) to 192 Finland (62.33N 30.37E; Supplementary Figure 1a). Note that different sensor and shielding 193 combinations were used within the input data and that they might contribute to errors in the model 194 (Supplementary Table 1). However, experimental research has shown that such errors are relatively 195 small in shaded environments such as forests (Maclean et al., 2021), an order of magnitude smaller 196 than the measured offsets.

197 Next, we aggregated the time series, usually available at hourly or sub-daily (e.g. every two or 198 four hours) native resolutions, to mean monthly temperatures, after visually checking each time series 199 for outliers and erroneous data. We further only selected months with at least 28 days of data, 200 resulting in a cumulative 24,291 months of near-surface air temperature (Supplementary table 2).

201 Offset calculation

We derived a monthly temperature offset value (ΔT = sub-canopy T°C – free-air T°C) between microclimate (i.e. sub-canopy) and macroclimate (i.e. free-air) temperature measurements in order to relate this ΔT to different explanatory variables and quantify the difference between micro- and macroclimate across space and seasons. Positive offset values thus indicate, on average, warmer forest microclimate conditions, whereas negative values point to a colder forest microclimate. The offset (ΔT) was calculated as the difference between the monthly mean microclimate temperature, as measured by the loggers, and the corresponding monthly mean air temperature value at 2 m height for exactly the same month, year and grid cell from ERA5-Land reanalysis data with a spatial resolution
of 0.1 × 0.1 degrees (Muñoz-Sabater et al., 2021).

211

Acquisition of covariate layers

212 Covariates were selected based on their known relevance for forest microclimatic temperatures 213 according to literature (Greiser et al., 2018; Zellweger et al., 2019), spatial resolution and availability 214 at the continental scale. In total, twenty covariate layers were selected to create a covariate layer 215 stack, including topographical, biological and macroclimatic variables.

216 Topographic layers were derived from a digital elevation model (EU-DEM v1.1) at 25 m 217 resolution (European Union, 2020). Both northness and eastness were derived as the cosine and sine 218 of the aspect (°), respectively. Additionally, we incorporated slope (°), elevation (m a.s.l.) and latitude 219 to account for the variation in incoming solar radiation (Lenoir & Svenning, 2013; Meineri & Hylander, 220 2017). Relative elevation (m) represents the elevational difference between each pixel and the lowest 221 pixel within a 500 m buffer. This is often used as a proxy for cold air drainage, as cold air moves 222 downslope (Ashcroft & Gollan, 2013). Distance to the coast was included because the heat capacity of 223 the ocean has an important effect on (microclimatic) temperatures (Vercauteren, Destouni, Dahlberg, 224 & Hylander, 2013; Zellweger et al., 2019). Furthermore, the effect of increased water vapour content 225 in the atmosphere near the coast affects cloud patterns which, in turn, influence incoming solar 226 radiation (Zellweger et al., 2019). Finally, the topographic wetness index (TWI) was used as a proxy for 227 soil moisture (Meineri, Dahlberg, & Hylander, 2015). The index quantifies the effect of topographic 228 variation on hydrological processes by taking into account both slope and specific catchment area 229 (Beven & Kirkby, 1979). We calculated TWI by using the Freeman FD8 flow algorithm with a flow 230 dispersion of 1.0, a flow width equal to the raster cell size (i.e. 25 m) and a local slope gradient 231 (Kopecký, Macek, & Wild, 2021).

232 The 2015 high resolution (20 m) Copernicus maps of tree cover density (%), which refers to 233 the percentage of tree cover per raster cell, and forest type (broadleaf vs. coniferous) were included. 234 To quantitatively capture the phenological differences between broadleaved and coniferous forests, 235 we calculated two NDVI values, representative for winter (December-February) and summer months 236 (June-August). NDVI variables were derived from Landsat 4, 5, 7 and 8 satellite images over a period 237 from 2000-2020 provided in Google Earth Engine (Gorelick et al., 2017). Each image underwent pre-238 processing by converting low-quality data (e.g. due to presence of clouds, snow or shadows) into 239 missing values based on the masks provided with the downloaded images.

Furthermore, long-term average macroclimatic conditions were considered by including four
WorldClim bioclimatic variables covering the period between 1970 and 2000 (Fick & Hijmans, 2017):
BIO1 (Mean Annual Temperature), BIO5 (Maximum Temperature of the Warmest Month), BIO6

(Minimum Temperature of the Coldest Month) and BIO12 (Annual Precipitation). These were chosen 243 244 due to the specific interaction of these variables with some of the topographical and biological 245 variables. For instance, Greiser et al. (2018) found that forest density was an important driver for 246 minimum and maximum microclimate temperatures in summer, whereas topography had a stronger 247 influence on extreme temperatures in autumn and winter. Furthermore, mean annual cloud cover (%) 248 over 2000-2014 derived from MODIS products was included to account for the effect of cloud cover on incoming solar radiation (Wilson & Jetz, 2016). Annual snow cover probability (%) was derived as 249 250 the average of monthly snow probability based on a pixel-wise frequency of snow occurrence (snow 251 cover > 10%) in MODIS daily snow cover products (MOD10A1 & MYD10A1; Hall, Riggs, Salomonson, 252 DiGirolamo, & Bayr, 2002) over 2001-2019. Finally, we also included the sensor height above the 253 ground surface as a covariate in our models as this significantly impacts the magnitude of the 254 temperature offset (De Frenne et al., 2019; Geiger, 1950).

When necessary, covariate map layers were reprojected and resampled to an equal area projection in EPSG:3035 (ETRS89-extended / LAEA Europe) at 25 m resolution using bilinear interpolation for quantitative data and the nearest neighbour method for categorical data. We present variable importance quantitatively and the relationship between each covariate and the response visually in partial dependence plots (Supplementary Figure 2). Furthermore, we show the strongest two- and three-way interactions among covariates (Supplementary Figure 3).

261 Geospatial modelling

Machine-learning techniques often outperform other statistical techniques such as generalized linear 262 models (GLMs) or generalized additive models (GAMs) in terms of predictive power (Appelhans, 263 264 Mwangomo, Hardy, Hemp, & Nauss, 2015). As we aim to maximize predictive power within the 265 environmental space covered by our data rather than explanatory power, we used boosted regression 266 trees (BRTs), also referred to as gradient boosting machine, to model the relationship between the 267 selected covariates and ΔT (Appelhans et al., 2015; Elith, Leathwick, & Hastie, 2008). Especially for 268 regression, BRTs are particularly valuable due to their capacity to uncover nonlinear relationships as 269 well as their automatic detection of complex interactions among covariates (Supplementary Figure 3). 270 Furthermore, this algorithm is capable to handle multicollinearity among covariates (Supplementary 271 Figure 4), outliers and missing data. On the other hand, BRTs are prone to (i) overfitting due to 272 sequential fitting of trees (Elith et al., 2008) and (ii) errors when extrapolating outside the boundaries 273 of the training data. To deal with these issues, we (i) implemented model regularization by means of 274 low learning rate values (0.1-0.001) and cross-validation (Elith et al., 2008) while also (ii) providing a 275 map indicating where the model is extrapolating beyond the values of the training data.

276 BRTs were built using the gbm R package (Ridgeway, 2005). We searched for the optimal 277 hyperparameter values with the caret package (Kuhn, 2012) by means of a grid search over the 278 possible values of the four hyperparameters: interaction depth (2-6); total number of trees (100-279 10,000); learning rate (0.1-0.001); and the minimal observations in each terminal node (8-12) (Elith et 280 al., 2008). In total, 14,925 models were evaluated by 10-fold cross-validation (CV) while (i) taking into 281 account logger ID to avoid pseudo-replication between folds and (ii) stratifying by the biogeographical 282 regions of Europe (Cervellini et al., 2020), meaning that each fold contained 10% of the loggers in each 283 biogeographical region. Finally, optimal hyperparameter values were selected by maximizing R²_{CV}.

284 Once the optimal hyperparameters were determined, we applied a stratified bootstrap 285 approach to fit 30 different models (van den Hoogen et al., 2019). The bootstrapping procedure each 286 time randomly sampled the data with replacement to fit the model. The biogeographical regions of 287 Europe (Cervellini et al., 2020) were used as stratum for the random sampling to ensure that every 288 biogeographical region was proportionally represented according to data availability in each region. 289 Each of the bootstrapped models made separate predictions for each month – that is 3,141,115,825 290 European forest pixels classified 360 times (12 months × 30 bootstraps). Model precision was then 291 quantified by calculating, per pixel, a 95% confidence interval (mean ± 1.96 SE) for each month. We 292 predicted temperature at 15 cm height as this is the most common height within the input data 293 (Supplementary Table 2). Furthermore, most understory forest plant species (e.g. herbs, grasses, 294 sedges and ferns) fit, on average, to this height.

295 Machine-learning techniques, like BRTs, are known to be less capable to extrapolate beyond 296 the boundaries set by the environmental variables in the original training data. To assess where our 297 model is extrapolating – and thus possibly providing less reliable predictions – we calculated for each 298 pixel the percentage of quantitative covariate layers for which the pixel value lies outside the range of 299 data covered by the dataset. Finally, we used a spatial leave-one-out cross-validation analysis to test 300 the effect of spatial autocorrelation in the dataset (Supplementary Figure 5; Roberts et al., 2017; van 301 den Hoogen et al., 2021). This approach each time validates a model on data from one distinct location 302 and trains a model on the remaining data. This is repeatedly done for each of our 1,092 locations. 303 Because of potential spatial autocorrelation close to the validation location, this process is repeated 304 with an increasing buffer around the validation location, each time excluding data points that fall 305 within the defined buffer zone from the training data. This method allows assessing if the R² stabilizes, 306 an indication of limited spatial autocorrelation.

307 Offset and forest microclimate temperature maps at 25 m resolution

Here, we make the European monthly temperature offset grids available as open data. These can, in turn, be used to convert gridded macroclimate products into gridded microclimate products. We 310 opted to illustrate the calculation of the mean annual forest microclimatic temperature (further 311 referred to as "forestBIO1") but this calculation can be carried out for all other temperature-related 312 bioclimatic variables from BIO1 to BIO11 (Fick & Hijmans, 2017; Karger et al., 2017). Firstly, we 313 calculated (i) the mean annual temperature offset as the average of the monthly offset maps and (ii) 314 the mean annual temperature over 2000-2019 from monthly TerraClimate data (Abatzoglou et al., 315 2018). Secondly, we calculated forestBIO1 by adding anomalies of the predicted mean annual offset 316 to the corresponding TerraClimate mean annual temperature map (Abatzoglou et al., 2018). All calculations were performed in R version 4.0.2 (R Core Team, 2020). The Tier-2 Genius 317

318 cluster from the high-performance computing facilities of Flanders was used to perform the 319 calculations.

320 RESULTS AND DISCUSSION

321

ForestTemp – microclimatic temperature maps of European forests

Our bootstrapped models for monthly temperature offset performed well with a coefficient of 322 323 determination (R^2) of 0.79 (95% CI: 0.78-0.80), a root mean square error of 1.19°C (1.17°C – 1.21°C) 324 and a mean absolute error of 0.87°C (0.85°C – 0.89°C). The spatial leave-one-out cross-validation also 325 showed reasonably good predictive performance with R² stabilizing around 0.55 when increasing the 326 buffer size above 100 km (Supplementary Figure 5). Mean monthly temperature offsets at 15 cm 327 above ground over 30 bootstrap iterations ranged between -2.5°C and 10.8°C in January and from -328 5.8°C to 3.2°C in July (Supplementary Table 3). Model predictions described expected patterns in ΔT, 329 with forest microclimates overall being warmer than the macroclimate during winter, and colder during summer (Figure 1). This corresponds to earlier findings for temperate systems, where forests 330 331 act as a thermal insulator: on average cooling the understory by 2.1°C in summer and warming it by 332 2.0°C in winter compared to monthly free-air temperature (De Frenne et al., 2019; Geiger, 1950). Our 333 model was also able to capture the phenological difference between broadleaved and coniferous 334 forests. We found bimodal peaks in winter, particularly pronounced in January (Figure 2), with 335 temperature offsets in coniferous forests, on average, 1.0°C warmer (Supplementary Figure 6). This 336 likely relates to the differences in tree cover density between these two forest types during that time 337 of year. The observed pattern can further be caused by the fact that coniferous forests are, at the 338 continental scale, more abundant in places with snow, which is known to act as an additional thermal 339 insulator (Aalto, Scherrer, Lenoir, Guisan, & Luoto, 2018). Mean annual temperature offset ranged 340 between -5.7°C and 7.8°C, which translates into a mean annual forest microclimate temperature 341 (forestBIO1) between -2.0°C and 22.1°C across Europe (Figure 3), compared to mean annual 342 macroclimate temperature ranging between -3.5°C and 20.4°C.

343 The bootstrapped models turned out robust, as standard errors were generally small 344 compared to the modelled temperature offsets: standard errors of the mean of monthly temperature 345 offsets stayed below 0.6°C in most months and across most parts of Europe (Figure 4, Supplementary 346 Table 3). Higher standard errors are noticed when predicting the offset at very high (above mid-347 Sweden) and very low latitudes (southern Spain) as well as in high-elevational regions, which are 348 expected to be caused by extrapolation outside the environmental gradient covered by the availability 349 of temperature loggers installed in forest ecosystems (Figure 5a; Supplementary Figure 1b). The overall precision of each prediction is represented by the width of the 95% confidence interval for 350 351 each pixel (Figure 5b), which reaches 2.5°C in winter (January) and 1.2°C in summer (July, 352 Supplementary Table 3).

As for any other machine learning technique, we caution against the use of data from regions 353 354 where the model is extrapolating (mainly in southern Spain, high elevations areas of the Alps and 355 Scandinavia, Figure 5a). As with any spatial model, our model is calibrated on certain environmental 356 conditions, and predictions outside these conditions might induce errors. This problem partly stems 357 from undersampled regions in the database (e.g. southern Spain, the United Kingdom, large parts of 358 eastern Europe and high-elevation forested areas) which should be a scope of future research. The extrapolation (Figure 5a) and precision (Figure 5b) maps could therefore be used as spatial masks to 359 360 remove or downweight the pixels for which predictions are beyond the range of values covered by the 361 models or unprecise.

362 Drivers of microclimate

363 As expected, seasonality (i.e. month of the year) plays a crucial role in defining the direction of the 364 monthly temperature offset, overall being positive in autumn and winter and negative during spring 365 and summer (Supplementary Figure 2). Bioclimatic variables seem to be important covariates, with 366 the exception of mean annual temperature due to its high collinearity with other climatic variables 367 (Supplementary Figure 4). However, we notice an overall negative relationship between the offset and mean annual temperature (Supplementary Figure 2), which might be related to the predicted 368 369 decoupling of forest microclimate warming from warming of the free air (De Frenne et al., 2019; Lenoir 370 et al., 2017). However, global warming-related disturbances like extreme droughts, pest outbreaks 371 (e.g. pathogens, bark beetles) and increased fire incidence could nullify the insulation capacity of the 372 forest canopy, disrupting this low coupling. Furthermore, the high importance of distance to the coast 373 and mean annual precipitation suggest an important role for water (McLaughlin et al., 2017). On the 374 one hand, temperature buffering is a function of local soil moisture, which in turn can be driven by 375 distance to water bodies and precipitation (Davis, Dobrowski, Holden, Higuera, & Abatzoglou, 2019). 376 For instance, it is the effect of increased water vapour content in the atmosphere near the coast which 377 affects cloudiness, which in turn is an important variable as it affects shading and incoming solar 378 radiation. On the other hand, moisture can have an impact on different levels by increasing the 379 vegetation or snow cover. Besides, snow also seems to be important in driving the temperature offset 380 (Aalto et al., 2018). The interaction between snow cover and sensor height (Supplementary Figure 3c) 381 clearly hints towards an insulating effect of snow on the sensor which is, contrary to standardised 382 meteorological stations, not kept free of snow or ice. We thus expect that large positive wintertime 383 offsets in regions with high snow cover probability (i.e. high-latitudinal and high-elevational regions) 384 are mainly caused by this snow insulating effect. Of moderate importance are topographic variables 385 such as slope and elevation which show a positive and negative relationship with ΔT , respectively. 386 Moreover, sensor height, with a clear positive effect on ΔT , and the NDVI play an intermediate role.

387 Surprisingly, biotic variables such as tree cover density or forest type seem to be less good predictors 388 for the offset at the continental scale. However, the spatial resolution of 25 m used here is probably 389 still too coarse to capture these effects (Kašpar et al., 2021). More importantly, the availability of 390 accurate stand-level data at 25 m resolution (e.g. basal area, stem density, leaf area density or tree 391 height) is still limited. Airborne or terrestrial LiDAR-derived variables could be a valuable source of 392 data to solve these issues in the future (Frey et al., 2016; George et al., 2015; Kašpar et al., 2021). 393 However, just like with mean annual temperature, these effects might be partially captured by or 394 confounded with the combination of seasonality and NDVI.

395 Note that we do not intend to unravel the physical mechanisms driving the offset between 396 forest microclimate temperatures and free-air temperature. We are aware that most of our 397 explanatory variables (e.g. tree cover density, northness or slope) rather affect physical mechanisms 398 driving the offset (e.g. incoming solar radiation, wind speed) than sub-canopy temperatures directly 399 (Bennie, Huntley, Wiltshire, Hill, & Baxter, 2008). However, as we aim to create continental high-400 resolution sub-canopy temperature maps for understory vegetation in European forests, a few strong 401 correlative relationships could be better than complex, physical models that are computationally 402 difficult to run at the continental extent and at high spatiotemporal resolution. Additionally, some 403 potentially important variables are not incorporated within our models, either due to the limited 404 availability or coarse spatial resolution of those variables. One of the possible limitations of our study 405 is the assumption that forests, and their characteristics, are static over time. However, large parts of 406 European forests are managed (Senf & Seidl, 2021), which makes it virtually impossible to incorporate 407 up-to-date vegetation variables such as forest height, basal area or age. Furthermore, although we 408 incorporated snow cover probability in the model, which shows an important interaction with sensor 409 height, we do need the exact snow height and duration at high spatiotemporal resolution to quantify 410 the insulation effect of snow on the logger sensors at different heights (Gisnås, Westermann, Schuler, 411 Melvold, & Etzelmüller, 2016). Unfortunately, data on snow water equivalent, needed to calculate 412 snow height and duration, are only available at a coarse spatial resolution of 5 km². Incorporating this 413 into the model would not substantially capture the effect as there is still high, fine-scale spatial 414 variability within each pixel. In addition, given the strong correlation of fine-scale snow dynamics with 415 topography, inclusion of the latter is likely to partially capture this effect (Aalto et al., 2018; Niittynen 416 & Luoto, 2018).

Finally, the 25 m spatial resolution is a significant step forward compared to existing microclimate products across large spatial extents. Nonetheless, we have to acknowledge the remaining within-pixel variability, due to the fractal nature of microclimates, both in spatial and temporal terms. Moreover, we know that some organisms, depending on their body size, utilize 421 microclimatic variation at orders of magnitude less than the spatiotemporal resolution used in this 422 study. For instance, small insects can use sunflecks and microhabitats (tree holes and dead wood) 423 available within a 25 m × 25 m grid cell to seek micro-variation in temperature throughout the course 424 of the day. Hence, recent research argues in favour of incorporating especially higher temporal 425 resolutions in ecological analyses (Bütikofer et al., 2020). However, given current-day data availability 426 and computational power as well as our focus on the forest floor, this study mapped microclimates at 427 a continental scale according to the state-of-the-art.

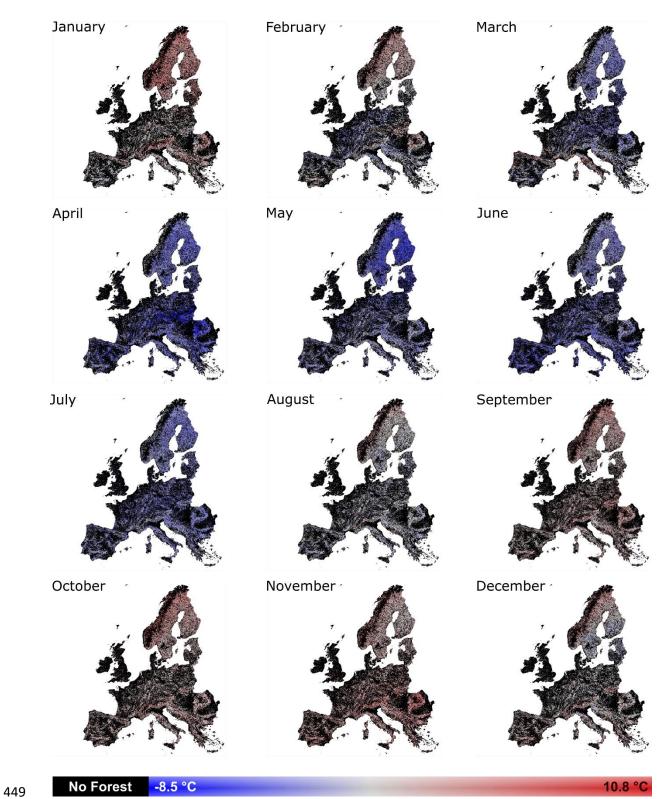
428

Applications and future perspectives

429 The outcomes of this study allow researchers to use accurate forest microclimate temperature data in large-scale analyses. This is an important step forward as the mismatch between macro- and 430 431 microclimate forest temperatures is substantial and can thus seriously bias the outcome of ecological 432 and global change studies. For example, microclimate-informed species distribution models (SDM; 433 Lenoir et al., 2017) could reveal more accurate insights into the various processes underlying species 434 vulnerability to climate change on different aspects, including climate change exposure, sensitivity, 435 adaptability and dispersal (Pacifici et al., 2015). Climate change exposure can be buffered by 436 microclimate whereas climate sensitivity impacts a species' ability to cope with microclimatic 437 warming. Furthermore, microclimatic variation affects the spatial distribution of adaptive genetic 438 variation and thus the ability of a population to survive climate change (De Kort et al., 2020; Graae et 439 al., 2018). Finally, microclimate drives the spatial distribution of dispersal pathways throughout the landscape and thus directly impacts dispersal ability and populations in fragmented landscapes. 440 441 Understanding how these processes interact with microclimate to shape species responses and their 442 vulnerability to climate change is fundamental to predicting range dynamics.

We trust the predicted thermal offsets for forest ecosystems and their possibility to derive gridded microclimate products will enable future research to more correctly model ecological processes and patterns in the forest understory, as well as forest-dwelling species distributions affected by climate change. These maps are available as GeoTIFFs for download through figshare (doi: 10.6084/m9.figshare.14618235) and will be updated as more or better data become available.

448 FIGURES



450 *Figure 1: Predicted mean monthly air temperature offset across European forests.* Mean monthly temperature 451 offset at 15 cm above ground between in-situ forest microclimate and free-air temperatures (sub-canopy T°C

452 minus free-air T°C) (in °C).

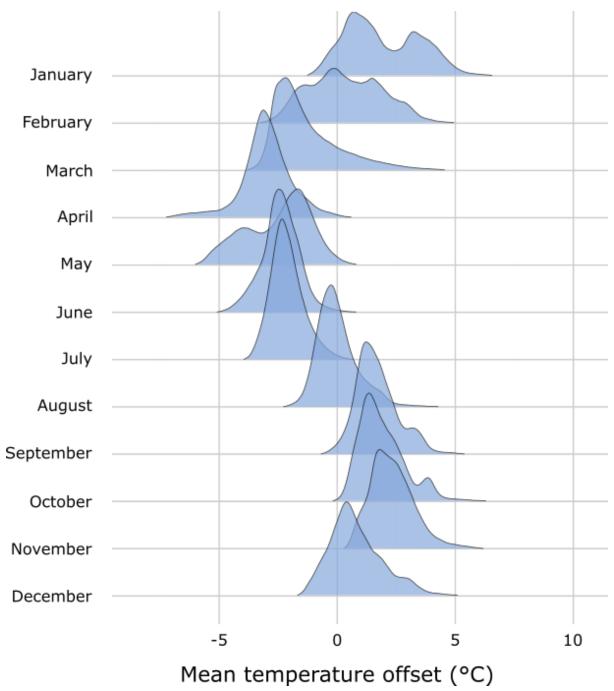
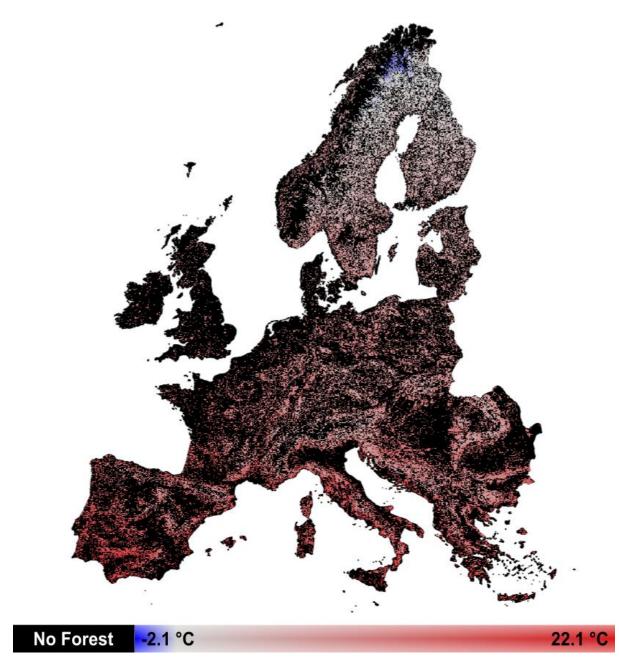
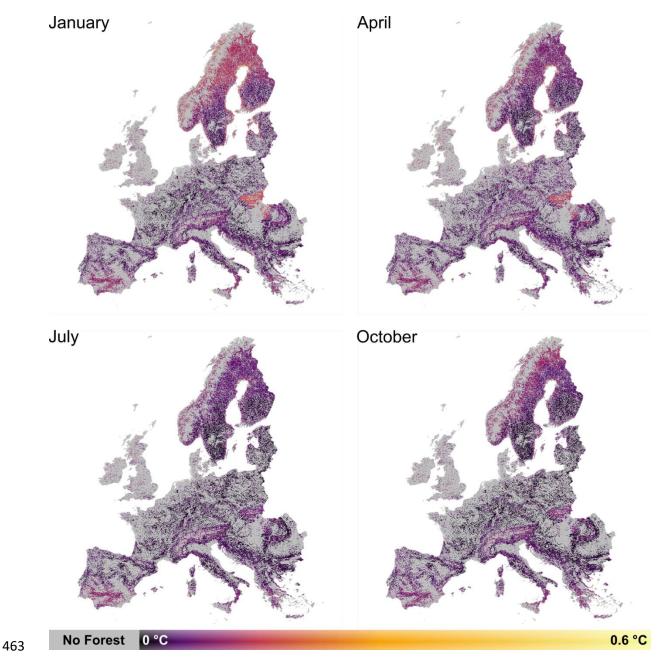


Figure 2: Histograms of mean monthly temperature offsets. Density ridgeplots for the monthly temperature offset at 15 cm above ground between in-situ forest microclimate and free-air temperatures (sub-canopy T°C – free-air T°C) (in °C) indicating, per month, the distribution of 1,000,000 randomly sampled raster pixel values

457 across European forests.

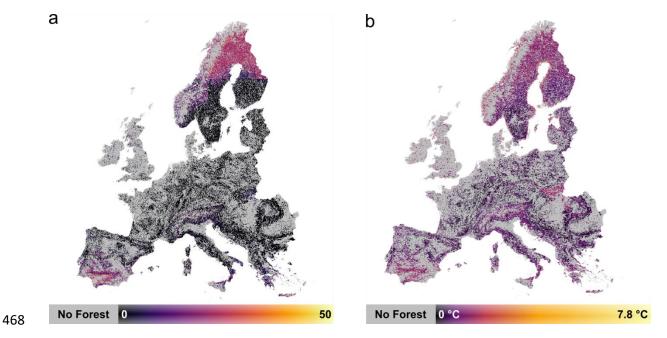


459 Figure 3: forestBI01. Mean annual temperature at 15 cm above ground in European forests (in °C) with a spatial
460 resolution of 25 m, representative of the 2000-2020 period, calculated using the maps of monthly mean air
461 temperature offsets at 25 m resolution (Figure 2) added to the mean annual air temperature from TerraClimate
462 at 4 km resolution.



464 Figure 4: Robustness of the temperature offset model at 15 cm above ground across European forests. 465 Standard errors of the mean from predicted mean monthly temperature offsets (sub-canopy T^oC minus free-air 466 T^oC) at 15 cm above ground derived from 30 bootstrapped models (in $^{\circ}$ C). For additional months, see

467 supplementary Figure 7. See Supplementary Table 3 for detailed quantitative data.



469 *Figure 5: Extrapolation and precision maps.* (a) The percentage of quantitative variables for which the pixel lies
 470 outside the range of data covered by the training data. Pixels with high values indicate that the model has to

471 extrapolate for many of the covariates for that specific pixel (i.e. due to missing in-situ measurements). (b)

472 Precision of predictions for each pixel, calculated as the width of the bootstrapped 95% confidence interval for

473 each pixel.

474 ACKNOWLEDGMENTS

475 SH received funding from a FLOF fellowship of the KU Leuven (project nr. 3E190655). JJL and IN 476 received funding from the Research Foundation Flanders (FWO) (grant nr. WOG W001919N). PDF, PV, 477 EDL and CM received funding from the European Research Council (project FORMICA; http://www.formica.ugent.be; grant nr. 757833). JA received funding from the Academy of Finland 478 479 Flagship (grant nr. 337552) and the University of Helsinki (project MicroClim; grant no. 7510145). MK, 480 MM, JW, LH, JB and MM received funding from the Czech Science Foundation (grant nr. GAČR 20-481 28119S) and the Czech Academy of Sciences (grant nr. RVO 67985939). JL received funding from: (i) 482 the Agence Nationale de la Recherche (ANR) (project IMPRINT ; grant nr. ANR-19-CE32-0005-01); (ii) 483 the Centre National de la Recherche Scientifique (CNRS) (Défi INFINITI 2018: MORFO); and the 484 Structure Fédérative de Recherche (SFR) Condorcet (FR CNRS 3417: CREUSE). NB and MG received funding from the Swiss National Science Foundation (grant nr. 20FI21_148992 and grant nr. 485 486 20FI20_173691). SG received funding from the Research Foundation Flanders (FWO) (grant nr. 487 GOH1517N). FM received funding from the Slovak Research and Development Agency (grant nr. APVV-19-0319). FZ received funding from the Swiss National Science Foundation (grant no. 193645). 488

We thank Dr. Wanda De Keersmaecker for her help with the calculations and recommendations concerning the NDVI. JL and FS acknowledge Manuel Nicolas and all forest officers from the Office National des Forêts (ONF) who are in charge of the RENECOFOR network and who provided help and local support for the installation and maintenance of temperature loggers in the field. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation Flanders (FWO) and the Flemish Government – department EWI.

496 **Conflict of Interest**: The authors declare that they have no conflict of interest.

497 **REFERENCES**

- Aalto, J., Scherrer, D., Lenoir, J., Guisan, A., & Luoto, M. (2018). Biogeophysical controls on soilatmosphere thermal differences: implications on warming Arctic ecosystems. *Environmental Research Letters*, *13*(7), 074003. https://doi.org/10.1088/1748-9326/aac83e
- 501 Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A., & Hegewisch, K. C. (2018). TerraClimate, a high-
- resolution global dataset of monthly climate and climatic water balance from 1958–2015.
- 503 Scientific Data, 5(1), 170191. https://doi.org/10.1038/sdata.2017.191
- Appelhans, T., Mwangomo, E., Hardy, D. R., Hemp, A., & Nauss, T. (2015). Evaluating machine
 learning approaches for the interpolation of monthly air temperature at Mt. Kilimanjaro,
 Tanzania. *Spatial Statistics*, 14, 91–113. https://doi.org/10.1016/j.spasta.2015.05.008

507 Ashcroft, M. B., & Gollan, J. R. (2013). The sensitivity of topoclimatic models to fine-scale

- 508 microclimatic variability and the relevance for ecological studies. *Theoretical and Applied* 509 *Climatology*, 114(1–2), 281–289. https://doi.org/10.1007/s00704-013-0841-0
- 510 Bennie, J., Huntley, B., Wiltshire, A., Hill, M. O., & Baxter, R. (2008). Slope, aspect and climate:
- Spatially explicit and implicit models of topographic microclimate in chalk grassland. *Ecological Modelling*, 216(1), 47–59. https://doi.org/10.1016/j.ecolmodel.2008.04.010
- Beven, K. J., & Kirkby, M. J. (1979). A physically based, variable contributing area model of basin
 hydrology. *Hydrological Sciences Bulletin*, 24(1), 43–69.
- 515 https://doi.org/10.1080/02626667909491834
- 516 Bramer, I., Anderson, B. J., Bennie, J., Bladon, A. J., De Frenne, P., Hemming, D., ... Gillingham, P. K.
- 517 (2018). Advances in Monitoring and Modelling Climate at Ecologically Relevant Scales.
- 518 Advances in Ecological Research, 58, 101–161. https://doi.org/10.1016/BS.AECR.2017.12.005
- Bütikofer, L., Anderson, K., Bebber, D. P., Bennie, J. J., Early, R. I., & Maclean, I. M. D. (2020). The
 problem of scale in predicting biological responses to climate. *Global Change Biology*, *26*(12),
- 521 6657–6666. https://doi.org/10.1111/gcb.15358

522 Cervellini, M., Zannini, P., Di Musciano, M., Fattorini, S., Jiménez-Alfaro, B., Rocchini, D., ... Chiarucci,

- 523 A. (2020). A grid-based map for the Biogeographical Regions of Europe. *Biodiversity Data*
- 524 *Journal, 8*. https://doi.org/10.3897/BDJ.8.e53720
- Davis, K. T., Dobrowski, S. Z., Holden, Z. A., Higuera, P. E., & Abatzoglou, J. T. (2019). Microclimatic
 buffering in forests of the future: the role of local water balance. *Ecography*, 42(1), 1–11.
 https://doi.org/10.1111/ecog.03836
- 528 De Frenne, P., Lenoir, J., Luoto, M., Scheffers, B. R., Zellweger, F., Aalto, J., ... Hylander, K. (2021).
- 529 Forest microclimates and climate change: Importance, drivers and future research agenda.
- 530 Global Change Biology, (November 2020), gcb.15569. https://doi.org/10.1111/gcb.15569

- 531 De Frenne, P., Zellweger, F., Rodríguez-Sánchez, F., Scheffers, B. R., Hylander, K., Luoto, M., ... Lenoir,
- 532 J. (2019). Global buffering of temperatures under forest canopies. *Nature Ecology & Evolution*,

533 *3*(5), 744–749. https://doi.org/10.1038/s41559-019-0842-1

- 534 De Kort, H., Panis, B., Helsen, K., Douzet, R., Janssens, S. B., & Honnay, O. (2020). Pre-adaptation to
- 535 climate change through topography-driven phenotypic plasticity. *Journal of Ecology*, *108*(4),
- 536 1465–1474. https://doi.org/10.1111/1365-2745.13365
- Elith, J., Leathwick, J. R., & Hastie, T. (2008). A working guide to boosted regression trees. *Journal of Animal Ecology*, 77(4), 802–813. https://doi.org/10.1111/j.1365-2656.2008.01390.x
- 539 European Union. (2020). Copernicus Land Monitoring Service. *European Environment Agency (EEA)*.
- 540 Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: new 1-km spatial resolution climate surfaces for
- 541 global land areas. *International Journal of Climatology*, *37*(12), 4302–4315.
- 542 https://doi.org/10.1002/joc.5086
- 543 Frey, S. J. K., Hadley, A. S., Johnson, S. L., Schulze, M., Jones, J. A., & Betts, M. G. (2016). Spatial
- 544 models reveal the microclimatic buffering capacity of old-growth forests. *Science Advances*,
- 545 2(4), e1501392. https://doi.org/10.1126/sciadv.1501392
- Geiger, R. (1950). *The climate near the ground*. Cambridge, Mass.: Harvard University Press. 482p.
 pages.
- 548 George, A. D., Thompson, F. R., & Faaborg, J. (2015). Using LiDAR and remote microclimate loggers
- 549 to downscale near-surface air temperatures for site-level studies. *Remote Sensing Letters*,

550 *6*(12), 924–932. https://doi.org/10.1080/2150704X.2015.1088671

Gisnås, K., Westermann, S., Schuler, T. V., Melvold, K., & Etzelmüller, B. (2016). Small-scale variation
of snow in a regional permafrost model. *The Cryosphere*, *10*(3), 1201–1215.

553 https://doi.org/10.5194/tc-10-1201-2016

- 554 Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth
- Engine: Planetary-scale geospatial analysis for everyone. *Remote Sensing of Environment, 202,*18–27. https://doi.org/10.1016/j.rse.2017.06.031
- 557 Govaert, S., Meeussen, C., Vanneste, T., Bollmann, K., Brunet, J., Cousins, S. A. O., ... De Frenne, P.
- 558 (2020). Edge influence on understorey plant communities depends on forest management.
 559 *Journal of Vegetation Science*, *31*(2), 281–292. https://doi.org/10.1111/jvs.12844
- Graae, B. J., Vandvik, V., Armbruster, W. S., Eiserhardt, W. L., Svenning, J.-C., Hylander, K., ... Lenoir,
- 561 J. (2018). Stay or go how topographic complexity influences alpine plant population and
- 562 community responses to climate change. *Perspectives in Plant Ecology, Evolution and*
- 563 *Systematics, 30*(September 2017), 41–50. https://doi.org/10.1016/j.ppees.2017.09.008
- 564 Greiser, C., Meineri, E., Luoto, M., Ehrlén, J., & Hylander, K. (2018). Monthly microclimate models in

565 a managed boreal forest landscape. *Agricultural and Forest Meteorology*, 250–251(December

566 2017), 147–158. https://doi.org/10.1016/j.agrformet.2017.12.252

- Hall, D. K., Riggs, G. A., Salomonson, V. V, DiGirolamo, N. E., & Bayr, K. J. (2002). MODIS snow-cover
 products. *Remote Sensing of Environment*, *83*(1–2), 181–194. https://doi.org/10.1016/S0034 4257(02)00095-0
- Jarraud, M. (2008). *Guide to meteorological instruments and methods of observation (WMO-No. 8)*.
 Geneva, Switzerland: World Meteorological Organisation.
- 572 Karger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R. W., ... Kessler, M. (2017).
- 573 Climatologies at high resolution for the earth's land surface areas. *Scientific Data*, 4(1), 170122.
 574 https://doi.org/10.1038/sdata.2017.122
- 575 Kašpar, V., Hederová, L., Macek, M., Müllerová, J., Prošek, J., Surový, P., ... Kopecký, M. (2021).
- 576 Temperature buffering in temperate forests: Comparing microclimate models based on ground
- 577 measurements with active and passive remote sensing. *Remote Sensing of Environment*, 263,
- 578 112522. https://doi.org/10.1016/j.rse.2021.112522
- Kearney, M. R., & Porter, W. P. (2017). NicheMapR an R package for biophysical modelling: the
 microclimate model. *Ecography*, 40(5), 664–674. https://doi.org/10.1111/ecog.02360
- 581 Kearney, M. R., Shamakhy, A., Tingley, R., Karoly, D. J., Hoffmann, A. A., Briggs, P. R., & Porter, W. P.
- 582 (2014). Microclimate modelling at macro scales: A test of a general microclimate model
- 583 integrated with gridded continental-scale soil and weather data. *Methods in Ecology and*

584 *Evolution*, *5*(3), 273–286. https://doi.org/10.1111/2041-210X.12148

- 585 Kopecký, M., Macek, M., & Wild, J. (2021). Topographic Wetness Index calculation guidelines based
- 586 on measured soil moisture and plant species composition. *Science of The Total Environment,*
- 587 757, 143785. https://doi.org/10.1016/j.scitotenv.2020.143785
- 588 Körner, C., & Hiltbrunner, E. (2018). The 90 ways to describe plant temperature. *Perspectives in Plant*
- 589 Ecology, Evolution and Systematics, 30, 16–21. https://doi.org/10.1016/j.ppees.2017.04.004
- 590 Kuhn, M. (2012). The caret Package. *Journal of Statistical Software*, 28.
- Landuyt, D., Perring, M. P., Seidl, R., Taubert, F., Verbeeck, H., & Verheyen, K. (2018). Modelling
- 592 understorey dynamics in temperate forests under global change–Challenges and perspectives.
- 593 *Perspectives in Plant Ecology, Evolution and Systematics, 31, 44–54.*
- 594 https://doi.org/10.1016/j.ppees.2018.01.002
- Lembrechts, J. J., Aalto, J., Ashcroft, M. B., De Frenne, P., Kopecký, M., Lenoir, J., ... Nijs, I. (2020).
- 596 SoilTemp: A global database of near-surface temperature. *Global Change Biology*, (March),
- 597 gcb.15123. https://doi.org/10.1111/gcb.15123
- 598 Lembrechts, J. J., & Lenoir, J. (2020). Microclimatic conditions anywhere at any time! Global Change

- 599 *Biology*, *26*(2), 337–339. https://doi.org/10.1111/gcb.14942
- Lembrechts, J. J., Lenoir, J., Roth, N., Hattab, T., Milbau, A., Haider, S., ... Nijs, I. (2019). Comparing
- 601 temperature data sources for use in species distribution models: From in-situ logging to remote
- 602 sensing. *Global Ecology and Biogeography*, (August 2018), geb.12974.
- 603 https://doi.org/10.1111/geb.12974
- Lembrechts, J. J., Nijs, I., & Lenoir, J. (2018). Incorporating microclimate into species distribution
 models. *Ecography*, 1–13. https://doi.org/10.1111/ecog.03947
- Lenoir, J., Bertrand, R., Comte, L., Bourgeaud, L., Hattab, T., Murienne, J., & Grenouillet, G. (2020).
- 607 Species better track climate warming in the oceans than on land. *Nature Ecology & Evolution*,
 608 4(8), 1044–1059. https://doi.org/10.1038/s41559-020-1198-2
- 609 Lenoir, J., Graae, B. J., Aarrestad, P. A., Alsos, I. G., Armbruster, W. S., Austrheim, G., ... Svenning, J.-
- 610 C. (2013). Local temperatures inferred from plant communities suggest strong spatial buffering
- of climate warming across Northern Europe. *Global Change Biology*, *19*(5), 1470–1481.
- 612 https://doi.org/10.1111/gcb.12129
- Lenoir, J., Hattab, T., & Pierre, G. (2017). Climatic microrefugia under anthropogenic climate change:
 implications for species redistribution. *Ecography*, 40(2), 253–266.
- 615 https://doi.org/10.1111/ecog.02788
- 616 Lenoir, J., & Svenning, J.-C. (2013). Latitudinal and Elevational Range Shifts under Contemporary
- 617 Climate Change. In *Encyclopedia of Biodiversity* (pp. 599–611). https://doi.org/10.1016/B978-0618 12-384719-5.00375-0
- 619 Macek, M., Kopecký, M., & Wild, J. (2019). Maximum air temperature controlled by landscape
- 620 topography affects plant species composition in temperate forests. *Landscape Ecology*, *34*(11),
- 621 2541–2556. https://doi.org/10.1007/s10980-019-00903-x
- Maclean, I. M. D. (2019). Predicting future climate at high spatial and temporal resolution. *Global*
- 623 *Change Biology*, (August), gcb.14876. https://doi.org/10.1111/gcb.14876
- Maclean, I. M. D., Duffy, J. P., Haesen, S., Govaert, S., De Frenne, P., Vanneste, T., ... Van Meerbeek,
- 625 K. (2021). On the measurement of microclimate. *Methods in Ecology and Evolution*, 2041-
- 626 210X.13627. https://doi.org/10.1111/2041-210X.13627
- 627 Maclean, I. M. D., Mosedale, J. R., & Bennie, J. J. (2019). Microclima: An <scp>r</scp> package for
- 628 modelling meso- and microclimate. *Methods in Ecology and Evolution*, *10*(2), 280–290.
- 629 https://doi.org/10.1111/2041-210X.13093
- 630 McLaughlin, B. C., Ackerly, D. D., Klos, P. Z., Natali, J., Dawson, T. E., & Thompson, S. E. (2017).
- 631 Hydrologic refugia, plants, and climate change. *Global Change Biology*, 23(8), 2941–2961.
- 632 https://doi.org/10.1111/gcb.13629

- 633 Meeussen, C., Govaert, S., Vanneste, T., Haesen, S., Van Meerbeek, K., Bollmann, K., ... De Frenne, P.
- 634 (2021). Drivers of carbon stocks in forest edges across Europe. *Science of The Total*
- 635 *Environment, 759,* 143497. https://doi.org/10.1016/j.scitotenv.2020.143497
- 636 Meineri, E., Dahlberg, C. J., & Hylander, K. (2015). Using Gaussian Bayesian Networks to disentangle
- 637 direct and indirect associations between landscape physiography, environmental variables and
- 638 species distribution. *Ecological Modelling*, *313*, 127–136.
- 639 https://doi.org/10.1016/j.ecolmodel.2015.06.028
- 640 Meineri, E., & Hylander, K. (2017). Fine-grain, large-domain climate models based on climate station
- and comprehensive topographic information improve microrefugia detection. *Ecography*,
- 642 40(8), 1003–1013. https://doi.org/10.1111/ecog.02494
- Monin, A. S., & Obukhov, A. M. (1954). Basic laws of turbulent mixing in the surface layer of the
 atmosphere. *Contrib. Geophys. Inst. Acad. Sci. USSR*, 151(163), e187.
- 645 Muñoz-Sabater, J., Dutra, E., Agust\'\i-Panareda, A., Albergel, C., Arduini, G., Balsamo, G., ... Thépaut,
- J.-N. (2021). ERA5-Land: A state-of-the-art global reanalysis dataset for land applications. *Earth System Science Data Discussions*, 2021, 1–50. https://doi.org/10.5194/essd-2021-82
- Niittynen, P., & Luoto, M. (2018). The importance of snow in species distribution models of arctic
 vegetation. *Ecography*, 41(6), 1024–1037. https://doi.org/10.1111/ecog.03348
- Nilsson, M. C., & Wardle, D. A. (2005). Understory vegetation as a forest ecosystem driver: Evidence
- 651 from the northern Swedish boreal forest. *Frontiers in Ecology and the Environment*, 3(8), 421–

652 428. https://doi.org/10.1890/1540-9295(2005)003[0421:UVAAFE]2.0.CO;2

- 653 Pacifici, M., Foden, W. B., Visconti, P., Watson, J. E. M., Butchart, S. H. M., Kovacs, K. M., ... Rondinini,
- 654 C. (2015). Assessing species vulnerability to climate change. *Nature Climate Change*, 5(3), 215–
 655 224. https://doi.org/10.1038/nclimate2448
- 656 Pecl, G. T., Araújo, M. B., Bell, J. D., Blanchard, J., Bonebrake, T. C., Chen, I.-C., ... Williams, S. E.
- 657 (2017). Biodiversity redistribution under climate change: Impacts on ecosystems and human
- 658 well-being. *Science*, *355*(6332), eaai9214. https://doi.org/10.1126/science.aai9214
- 659 Perry, D. A. (1994). *Forest Ecosystems*. Johns Hopkins University Press.

660 Pincebourde, S., & Woods, H. A. (2020). There is plenty of room at the bottom: microclimates drive

- 661 insect vulnerability to climate change. *Current Opinion in Insect Science*, *41*, 63–70.
- 662 https://doi.org/10.1016/j.cois.2020.07.001
- Potter, K. A., Arthur Woods, H., & Pincebourde, S. (2013). Microclimatic challenges in global change
 biology. *Global Change Biology*, *19*(10), 2932–2939. https://doi.org/10.1111/gcb.12257
- 665 R Core Team. (2020). *R: A Language and Environment for Statistical Computing*. Vienna, Austria.
- 666 Richardson, L. F. (1922). Weather prediction by numerical process. *Cambridge UK: Cambridge*

667

University Press.

- 668 Ridgeway, G. (2005). *Generalized boosted models: A guide to the gbm package*.
- Roberts, D. R., Bahn, V., Ciuti, S., Boyce, M. S., Elith, J., Guillera-Arroita, G., ... Dormann, C. F. (2017).
- 670 Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic
- 671 structure. *Ecography*, 40(8), 913–929. https://doi.org/10.1111/ecog.02881
- Scheffers, B. R., De Meester, L., Bridge, T. C. L., Hoffmann, A. A., Pandolfi, J. M., Corlett, R. T., ...
- Watson, J. E. M. (2016). The broad footprint of climate change from genes to biomes to people.
- 674 Science, 354(6313), aaf7671. https://doi.org/10.1126/science.aaf7671
- 675 Senf, C., & Seidl, R. (2021). Mapping the forest disturbance regimes of Europe. Nature Sustainability,
- 676 4(1), 63–70. https://doi.org/10.1038/s41893-020-00609-y
- van den Hoogen, J., Geisen, S., Routh, D., Ferris, H., Traunspurger, W., Wardle, D. A., ... Crowther, T.
- 678 W. (2019). Soil nematode abundance and functional group composition at a global scale.
- 679 Nature, 572(7768), 194–198. https://doi.org/10.1038/s41586-019-1418-6
- van den Hoogen, J., Robmann, N., Routh, D., Lauber, T., van Tiel, N., Danylo, O., & Crowther, T. W.
- 681 (2021). A geospatial mapping pipeline for ecologists. *BioRxiv*, 1–9.
- 682 https://doi.org/10.1101/2021.07.07.451145
- 683 Vercauteren, N., Destouni, G., Dahlberg, C. J., & Hylander, K. (2013). Fine-Resolved, Near-Coastal
- 684 Spatiotemporal Variation of Temperature in Response to Insolation. *Journal of Applied*
- 685 *Meteorology and Climatology*, *52*(5), 1208–1220. https://doi.org/10.1175/JAMC-D-12-0115.1
- Willis, K. J., & Bhagwat, S. A. (2009). Biodiversity and Climate Change. *Science*, *326*(5954), 806–807.
 https://doi.org/10.1126/science.1178838
- 688 Wilson, A. M., & Jetz, W. (2016). Remotely Sensed High-Resolution Global Cloud Dynamics for
- 689 Predicting Ecosystem and Biodiversity Distributions. *PLOS Biology*, *14*(3), e1002415.
- 690 https://doi.org/10.1371/journal.pbio.1002415
- 2019 Zellweger, F., Coomes, D., Lenoir, J., Depauw, L., Maes, S. L., Wulf, M., ... De Frenne, P. (2019).
- 692 Seasonal drivers of understorey temperature buffering in temperate deciduous forests across
- Europe. *Global Ecology and Biogeography*, *28*(12), 1774–1786.
- 694 https://doi.org/10.1111/geb.12991

695