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Abstract. In this paper, the bi-objective quadratic multiple knapsack problem is tackled with

a hybrid population-based method. The proposed method starts by computing two reference

solutions, where a specialized powerful mono-objective algorithm is used. From both reference

solutions, a starting population is built by using a series of perturbations around the solutions.

Next, the so-called non-sorting genetic process is combined with a new drop/rebuild operator for

generating a series of populations till converging toward an approximate Pareto front with high

density. The performance of the hybrid population based algorithm (namely HBPA) is evalu-

ated on a set of benchmark instances of the literature containing both medium and large-scale

instances. Its provided results are compared to those achieved by the best methods available in

the literature. Encouraging results have been obtained.

Keywords. Bi-objective, evolutionary, hybrid, knapsack, optimization.

1 Introduction

The knapsack problem arises in several real-world applications, like cutting and packing (Hifi,

2004), cryptography (Merkle & Hellman, 1978), logistics (Perboli et al., 2014), multimedia (Ak-

bar et al., 2006), telecommunications and other themes (Plata-Gonzalez et al., 2019). Such a

problem plays, on the one hand, a central role in modeling more higher NP-hard combinatorial

optimization problems, where the used models serve as a guide to design effective exact and

efficient approximate methods. On the other hand, it is often important to tackle large-scale

instances, especially when several optimization objectives are needed for evaluating the perfor-

mance of methods applied to solving it. Often, simple deterministic / stochastic approximate

solution procedures may be used for solving some knapsack-type problems, it has often been

remarked that the used methods may converge slowly and in some cases towards to solutions

with poor quality.

The problem considered in this paper is a more complex variant of the classical knapsack

problem: Bi-Objective Quadratic Multiple Knapsack Problem (BO-QMKP). As described in

Chen & Hao (2016), such a problem occurs whenever a company leader tries to allocate staff to

form a set of personnels to drive different available products. In addition to the total strength of

overall personnel, a balance between the personnels in the interest of fairness and sustainability

should be established. Another situation may occur in the portfolio investments, where an

investor is often interested with maximizing the global long-term return on the mix of assets

invested, and tries to ensure an expected return on the least profitable asset. Such a problem can

be viewed as a combination of two well-known NP-hard combinatorial optimization problems

with two different objective functions: Quadratic Knapsack Problem−QKP (Billionnet & Soutif,
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2004) and, Multiple Knapsack Problem−MKP (Hung & Fisk, 1978). The proposed hybrid

population-based method combines several operators incorporated into the non-sorting genetic

algorithm for tackling large-scale instances. It is based upon the following features:

• To build two reference solutions according two both objective functions by using an adap-

tation of the algorithm designed in Aı̈der et al. (2020a), tailored for BO-QMKP.

• To use a perturbation operator for providing a starting population containing a set of

diversified solutions.

• To use an iterative non-sorting genetic procedure combined with a drop and rebuild operator

for achieving the final approximate Pareto set of solutions.

The proposed method is a tailored hybrid framework, where several operators are combined.

As observed in the literature, hybridization of different strategies often leads to efficient methods.

Moreover, a tailored hybridization using multiple operators can induce benefits from each of the

operators used; as a result, the method built can be more powerful. Although there are different

forms of hybridization, we investigate the use of a hybrid evolutionary algorithm that combines

an iterative non-sorting genetic algorithm with a drop and complete operator to generate the

final approximate Pareto front.

The outline of the paper is as follows. In Section 2 we provide the related work addressing

the bi-objective quadratic knapsack problem and variants related to the mono-objective version

of the problem. Section 2 discusses the main contribution of the paper: a hybrid method for

providing a set of approximate Pareto front. The first two reference solutions, related to both

objective functions, are detailed in Sections 3.5.2 and 3.5.3. The starting diverse population is

presented in section 3.6. The new fusion operator is detailed in Sections 3.7 while Section 3.8

presents the mutation operator replaced by a new drop and rebuild operator. Section 4 evaluates

the performance of the proposed method on reference instances taken from the literature. The

results provided by the proposed method are compared to those achieved by recent methods of

the literature. Finally, section 5 concludes the content of the paper.

2 Related work

The knapsack problems family contains a large variety of problems as underlined in Martello &

Toth (1990) and in Kellerer et al. (2004). In addition to the classic binary knapsack problem,

which received considerable attention (Feng et al., 2019, 2017, 2018a, 2016), the discounted

binary knapsack problem (Feng et al., 2018c), the knapsack problem with setups (Boukhari et al.,

2022), and the time-varying random knapsack problem (Feng et al., 2018b) can be considered

as more complex variants.

The BO-QMKP can be viewed as a combination of two NP-hard knapsack problems: the

quadratic knapsack problem (Billionnet & Soutif, 2004) and the multiple knapsack problem
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(Hung & Fisk, 1978), where two different objective functions are incorporated to both problems.

Due to its NP-hardness, there are few papers in the literature, which tackle BO-QMKP either

exactly or approximately. Most published methods have been tailored for solving the combined

problem separately, i.e., the two single-objective versions of the problem, where, in some cases,

the quadratic objective function is coupled with multiple knapsack constraints.

Hiley & Julstrom (2006) are among the first authors who studied the single-objective version

of the problem, where several nice heuristics have been designed. The first approach is based on

selecting items with the highest density. A more complete solution procedure has been developed;

that is based upon a genetic algorithm, such that both classical crossover and mutation operators

were introduced. Finally, a random destruction and reconstruction operator was added for

exploring the search space by maintaining the diversity of the solutions. In the experimental

part, the behavior of all proposed algorithms was evaluated on a set of benchmark instances of

various sizes.

Saraç & Sipahioglu (2007) designed another genetic algorithm, where the starting population

is built by using a tournament selection operator combined with a specific mutation operator

(in this case, two versions of the solution procedure were developed). The authors performed

an extensive experimentation on a set of instances and showed that their method remains com-

petitive.

Chen & Hao (2015) proposed a hybrid method, where several strategies were combined to

design an iterated reactive threshold search procedure. First, the method applies the well-known

greedy density procedure proposed by Hiley & Julstrom (2006) to start the method. Then,

both the threshold exploration phase and descent improvement phase are iterated, the former

combining a variety of neighborhoods in an attempt to diversify/intensify the search process

and the latter mimicking a descent procedure by implementing complementary neighborhoods.

In the experimental part, the performance of the method was evaluated on a set of large-scale

instances from the literature, including instances ranging from 100 to 200 items.

Aı̈der et al. (2020a) designed a branch and solve strategy-based algorithm for the single-

objective version of the problem. A starting solution was built by calling a special fix and solve

solution procedure. A flexible memory structure based on a short memory coupled with a hashing

function is added for enhancing the fix and solve procedure. The goal of the aforementioned

strategy is to forbid already visited local optima. The provided solution procedure is embedded

into a local branching-based method, where two branches are considered: a first branch that

is used for intensifying the search process while a second branch tries to diversify the search

process. Finally, the proposed method was computationally analyzed on a set of benchmark

instances taken from Chen & Hao (2015).

For BO-QMKP, the studied problem, Chen et al. (2016) proposed a population-based method,

where the path relinking strategy is used as the core of the scattered method. Their method

combines (i) a construction procedure that ensures the creation of the initial reference set con-
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taining the elite solutions, (ii) a path relinking strategy that generates a set of intermediate

solutions provided from a set of initial solutions to the guiding solutions, (iii) a threshold search

for enhancing the quality of the solution; that is based upon Chen & Hao (2015) algorithm

used as a black-box solver and (iv) a pool updating strategy for maintaining the diversity of the

reference set. In their experimental study, the authors underlined the competitiveness of their

method, in this case by observing that their method was able to match the solutions provided by

the methods tailored for the single-objective version of the problem and confirms the success of

their method for achieving non-dominated solutions on instances tested in Chen & Hao (2015).

Table 1: Illustration of some published papers addressing tailored and general purpose algo-
rithms

Algorithms

References QMKP BO-QMKP

Hiley & Julstrom (2006) Three heuristic approaches −
Saraç & Sipahioglu (2007) A genetic algorithm −

Chen & Hao (2015) An iterated responsive threshold −
Chen, Hao and Glover (2016) An evolutionary path relinking −

Chen & Hao (2016) − A hybrid two stage algorithm

Aider, Gacem and Hifi (2020a) Branch and solve algorithm −
Aider, Gacem and Hifi (2020b) − A two stage ε−constraint

Finally, Aı̈der et al. (2020b) designed a two-stage method for the BO-QMKP. The main

principle of the method is based upon an iterative search, where (i) a starting solution is provided

by applying a basic knapsack’s greedy procedure, (ii) the current provided optimization problem

is solved using a specialized reactive search and, (iii) a new restricting problem is built; that

is a problem containing a new ε-constraint. The aforementioned steps were embedded into

an iterative search till converging to a satisfactory set of approximate Pareto solutions. The

behavior of the proposed method was evaluated on several benchmark instances of the literature

and its provided results were compared to those achieved by the best available methods. The

experimental part showed that their method was able to reach new dominating solutions when

compared to those published in Chen et al. (2016). Table 1 illustrates a tentative resume of

some algorithms tackling both QMKP and BO-QMKP.

In this work, we propose a hybrid method for solving BO-QMKP, where the following strate-

gies are combined:

• To build two reference solutions, according to both objective functions, by using an adap-

tation of the powerful branch and solve approach (Aı̈der et al., 2020a). It is called once for

solving PBO−QMKP favoring the first objective function (neglecting the second one), and

recalled once again for solving the same problem by favoring the second objective function.

• To build a starting population of solutions generated according to the two reference solu-
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tions. It is provided by using a perturbation operator which is based upon the drop and

rebuild procedure: for each reference solution, (i) a drop strategy is applied for removing a

subset of items; thus, a partial solution is induced, and (ii) a rebuild strategy for reaching

a complete solution.

• To use an iterative non-dominating sorting strategy in order to generate a final approximate

Pareto set. Each step of the iterative search uses (i) a tournament selection on the current

population, (ii) a new fusion operator replacing the classical crossover operator, and (iii) a

reactive local search which replaces the mutation operator, as used in memetic algorithms.

3 Tackling BO-QMKP with a hybrid method

This section starts by describing the formal model related to BO-QMKP (Section 3.1). Second,

the principle of the generic approach in presented in Section 3.3 and the proposed method is

discussed in Section 3.4. Third, the process used for generating the first diversified population

of solutions is detailed in Section 3.5 and, the first approximate set of Pareto front is presented

in Section 3.6, where a two-stage procedure is applied: generating a couple of non-dominated

solutions and the first starting population. Fourth and last, the hybrid process is presented in

Section 3.9, where the modified selection, crossover and mutation operators are introduced.

3.1 The model

An instance of BO-QMKP is characterized by a set M = {1, . . . ,m} of m knapsacks of fixed

capacity each, i.e., c = (c1, . . . , cm), and a set N = {1, . . . , n} of n items. Each item i, ∀ i ∈ N,
is characterized by a profit pi and a weight wi and each pair of distinct items (i, j) belonging to

N ×N (i 6= j) has an augmented profit pij if both items belong to the same knapsack k, k ∈M .

The goal of the problem is to assign each item to at most one knapsack such that the total

weight of the items in each knapsack k, k ∈ M, does not exceed its capacity ck and both (i)

the total profit of all the items included into the knapsacks and (ii) the makespan related to the

knapsack with the lowest gain, are maximized.

Let xik be the decision variable set equal to 1 if the item i, i ∈ I, is assigned to the knapsack

k, k ∈ M , 0 otherwise. The formal description of BO-QMKP (noted PBO−QMKP) is given as

follows:

PBO−QMKP :

z1(x) = max
∑
i∈N

∑
k∈M

pi xik +
∑
i∈N

∑
j∈N
i<j

∑
k∈M

pij xik xjk (1)

z2(x) = max min
k∈M

∑
i∈N

pi xik +
∑
i∈N

∑
j∈N
i<j

pij xik xjk (2)
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s.t.
∑
i∈N

wi xik ≤ ck , ∀k ∈M, (3)

∑
k∈M

xik ≤ 1, ∀i ∈ N, (4)

xik ∈ {0, 1},∀i ∈ N, ∀k ∈M, (5)

where inequalities of type (3) represent the knapsack constraints of capacity ck , k ∈ M, and

inequality of type (4) means that each item can be assigned to at most one knapsack (when such

an item belongs to the solution). Finally, the objective function z1(x) (Eq. (1)) is composed

of a linear term (on the left-hand) and a quadratic term (on the right hand) while the second

objective function (Eq. (2)) is also composed of two terms such that its worst component is to

be maximized.

Figure 1: Illustration of the conflictual objective values of z1 and z2 for the instance 300-25-10-4

3.2 The conflicting objectives z1 and z2

Often real-world problems are multi-objective by nature, where several contradictory objectives

involve the optimization. As described by the original model of Section 3.1, there are two

objectives including the total profit to maximize (Eq. (1)), and the optimization of the best

knapsack realizing the minimum value (Eq. (2)) over all knapsacks (or maximizing the gain of

the least profit knapsack). According to Chen et al. (2016), these objectives may be conflicting.

Indeed, as illustrated in Fig. 1, the behavior of both objective functions, especially for the

instance 300-25-10-4 (belonging to the benchmark instances of the literature), the solution

A realizes a profit of 185787 (z1(A)) with the best knapsack gain of 16225 (z2(A)) whereas

the solution B has a greatest total profit of 231923 (z1(B)) but achieves a worse overall gain

(z1(B) = 8646).

One can observe that augmenting the total profit may provide the reduction on the gain
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of the least profit (and vice versa). Hence, a hybrid multi-objective evolutionary algorithm

becomes a good candidate for tackling PBO−QMKP.

3.3 A standard multi-objective approach

Often each evolutionary method (Wang et al., 2020) starts with a randomly generated population

of solutions P0, using a uniform generator for covering the search space of the related problem.

At each step t, t ≥ 1, of the search process, a set of offspring Ot is provided regarding the

current parent population Pt, where both selection and several operators are applied. In this

case, for the current iteration t, the parental selection considers a randomly picking operator of

two parents from Pt. A variety of crossover operators may be applied to the aforementioned

parents with a certain probability to create two offsprings while the variety of mutation operators

may be applied to each offspring with a given probability in order to reach the final offspring.

Hence, the new population of solutions at step t+ 1, i.e., Pt+1, is then updated by considering

a given survival selection of the mixed population of both parents and both two offsprings.

In order to adapt such a process to a problem with many objective functions, the multi-objective

optimization uses the Pareto dominance rule related to the following definition.

Definition. Dominance rule

For a given maximization problem with m objective functions: z1, z2, . . . , zm, a solution S(1)

dominates another solution S(2) (S(1) � S(2)), if and only if the following conditions hold:

1. ∀k ∈ {1, . . . ,m} : zk(S
(1)) ≥ zk(S(2)),

2. ∃k ∈ {1, . . . ,m} : zk(S
(1)) > zk(S

(2)).

According to the dominance rule, the set of Pareto optimal solutions can be represented by the

set of points among the set of solutions P, which are not dominated by any solution belonging

to P.

Among the optimization-based populations that have been designed for tackling multi-

objective problems (Zhang et al., 2020; Gu & Wang, 2020); NSGA-II (Deb et al., 2002) remains

one of the best methods to provide a balance between the Pareto front’s density and the runtime

required to converge. Such a method successfully used for solving various optimization problems

(Bederina & Hifi, 2018; Haghighia et al., 2021; Che et al., 2021). In this paper, PBO−QMKP is

solved by NSGA-II combined with a drop and rebuild procedure is investigated, where two start-

ing reference points are provided by using a special branch and solve method. Of course, the goal

of the combined operator is to prevent premature convergence of the method and stagnation in

local optima.
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Figure 2: Representation (a) of reference points (on an instance of the literature 200-75-5-2)
and, (b) the target space-set of Pareto points

3.4 Illustration of the principle of the hybrid method

The main principle of the hybrid method can be summarized by the following steps:

1. To generate two reference solutions, which are related to both objective functions z1 and

z2 (cf. Sections 3.5.2 and 3.5.3).

2. From both reference solutions, a starting population, that mimics an approximate Pareto

front, is built (Section 3.6).

3. Selection, crossover and mutation-based modified operators are introduced for updating

the current population with high degree of diversification (Sections 3.7.1, 3.7.2 and 3.8).

4. Steps (2) and (3) are iterated till converging to an approximate Pareto front of solutions.

First, Figure 2(a) mimics the first step of the proposed method (Step (2) above) for providing

two reference solutions (reached by the algorithm ABSM, as discussed in Sections 3.5.2 and

3.5.3), especially for the instance 200-75-5-2 belonging to the second set of benchmark instances

of the literature: (i) the first solution in the grey-color represents the first solution with objective

value z1 = 174836 (and z2 = 14220) while (ii) the second one in the black-color denotes the

second point with z2 = 30686 (and z1 = 153695).

Second, Figure 2(b) illustrates two potential (sub)sets A and B that an approach could target

in order to iteratively create a(n) (approximate) Pareto front; i.e. a set of (non-)dominated

points which can be obtained (or at least some parts of the shown (sub)sets) by an eventual

optimization solution procedure. The set A can be provided by calling an optimization process

when decreasing either z1 or z2, while the set B can be obtained by increasing either z1 or z2.

Third, from the two reference solutions, one can observe that a “guided search” can provide

solutions belonging to either A, B, or A and B. Indeed, as illustrated in Figure 3(a), the
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Figure 3: Illustration of the hybrid NSGA-II’s behavior on an instance of the literature
200-75-5-2: (a) a starting population and, (b) the final population (with its Pareto front)

initial population is provided using a “drop and rebuild” solution procedure (as described in

sections 3.6 and 3.7).

Fourth and last, Figure 3(b) shows an eventual final population containing an approximate

Pareto front of non-dominated points; that is the role of the search process proposed in Sec-

tion 3.9.

The three steps shown in the figures above (Figures 2 and 3), which represent the main steps

of the proposed hybrid genetic algorithm without sorting, are detailed in the rest of the paper.

We note that in order to make the paper self-containing, some parts already described in Aı̈der

et al. (2020a) are repeated in what follows.

3.5 Generating a starting diversified population

3.5.1 Solutions representation

For an instance of PBO−QMKP, a standard binary representation scheme is an obvious choice

since it represents the underlying assignment related to binary decision variables (Figure 4 shows

a simple representation of PBO−QMKP’s solution).

1 2 3 4 5 . . . 1 2 3 4 5
1 0 1 0 0 . . . 0 0 0 1 1

k = 1 . . . k ≥ 2

Figure 4: A binary representation of PBO−QMKP’s solution S related to knapsacks k, k ≤ m.

Herein, a feasible solution S = (~sk, . . . , ~sm) is such that both inequalities (3) and (4) hold while

fitness functions are directly computed by using equalities (1) and (2), respectively.

Because PBO−QMKP is more complex to solve, where its goal is to reach the best front

containing a set of Pareto optimal solutions that optimizing both objective functions, we then

try to adapt a quick variant of the branch and solve method (Aı̈der et al., 2020a). Herein,
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the diversity of the starting population needs two extreme solutions S(1) = (~s
(1)
1 , . . . , ~s (1)

m ) and

S(2) = (~s
(2)
1 , . . . , ~s (2)

m ) such that the first solution must be based on a better value related to z1

while the second one must be constructed by favoring z2. Indeed, the three key features of the

branch and solve method follow:

1. Generating an initial solution S? by applying a standard bin-packing procedure.

2. Enhancing the above solution by applying a tabu search.

3. Applying the local branching for providing a final solution S?.

Aı̈der et al.’s (2020a) local branching (namely LB) is used, as explained in Section 3.5.3, for

generating two reference solutions. We recall that LB is a specialized mono-objective algorithm

tailored for efficiently solving the mono-objective QMKP. The purpose of its use is to build two

opposite solutions hoping for a better diversification of the solutions belonging to the future

populations.

3.5.2 The first stage

This stage is used for providing a starting solution with a greedy optimization procedure by try-

ing to solve the original problem step by step till examining all items of the problem. Therefore,

the standard bin packing solution procedure is applied as follows:

• Let S = (~s1, . . . , ~sm) be a feasible solution of PBO−QMKP (according either to the objective

function z1 or z2) and N1(S) (resp. N0(S)) be the subset of items with 1 (resp. 0) in each

component ~sj , j ∈M, of S.

• The contribution of item i, i ∈ N, of the objective function according to the solution S is

given as follows:

ci(S, k) = pi +
∑
j∈N,
i 6=j

pij ∗ xik ∗ xjk , (6)

and the density of item i, i ∈ N, of the objective function according to both the solution

S and the knapsack k, k ∈M, is given as follows:

di(S, k) =
ci(S, k)

wi
. (7)

Algorithm 1 describes the principle of the greedy Constructive Procedure (CP) that uses

the criterion (7): it selects items who should be included (excluded) into (from) the current

solution. Of course, we initially suppose that all items are set to free (no assignment is specified

for all decision variables). According to the current residual capacity c related to c of the current

knapsack (that is c minus all the weights related to the already assigned items in the current

solution according to the current knapsack), all items are sorted in decreasing order of their
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Algorithm 1 − A constructive procedure (CP) for PBO−QMKP

Input. An instance of PBO−QMKP.

Output. A solution S? with objective values z1 and z2.

1: Set J ′ = N and c = c := (c1, . . . , cm);
2: Sort the indices of N in decreasing order of their densities, i.e., d1 ≥ d2 ≥ . . . ≥ dn;
3: Sort all knapsacks in decreasing order of their capacities, i.e., c1 ≥ c2, . . . ,≥ cm;
4: Set ` = 0; // (`+ 1) is the first item to pack into the first bin/knapsack

5: repeat
6: Increment(`);
7: if (∃ρ | cρ ≥ w`) then
8: Set s?`k = 1 and ∀k ∈M \ {ρ}, s?`k = 0;
9: Set cρ = cρ − w`;

10: else
11: Set s?`k = 0,∀k ∈M ;

12: Set J ′ = J ′ \ {`};
13: until (J ′ = ∅)
14: return S?

densities (as underlined above) and, all capacities in decreasing order (whenever these capacities

are different). At each step of CP, an unassigned item ` with highest density d` is selected and

added to the (current) partial solution. The `-th item is packed into an open knapsack (bin),

namely ρ, whenever its weight w` is smallest than or equal to its residual capacity cρ or, assigned

to a new knapsack / bin or, fixed to zero otherwise (for all knapsacks / bins). Such a process is

iterated till visiting all items and thus, CP stops with the best solution S?.

Algorithm 2 − CP with the first swapping operator for PBO−QMKP: CP1.

1: Let Ŝ be the solution at hand (initially provided by the first call of CP).
2: Let (i, j), i 6= j (belonging to N) denote a couple of items assigned to a couple of knapsacks

(ki, kj) belonging to the set M (i.e., ŝiki = ŝjkj = 1).

3: Let Ŝ′ be a configuration built by swapping both indices i and j, i.e., setting ŝikj = ŝjki = 1
in the new configuration.

4: Set the inverse-move (j, i) tabu, by creating a tabu list (Ltabu) following a FIFO ranking.
5: Call Algorithm 1 for making Ŝ′ feasible (in case where Ŝ′ is infeasible), and improving the

quality of the solution at hand.

We note that CP can also be used as a repairing procedure of any infeasible solution. Indeed,

on the one hand, CP proceeds by inverting the fixing process, i.e., CP removes items from the

current (in)feasible solution step by step according to the smallest density related to the items

to remove. On the other hand, CP is recalled for completing the provided partial solution.

Because CP is a deterministic greedy procedure, it directly converges to a local optimum. In

order to enhance the quality of the starting solution, a 2-opt operator with a tabu list is used for

swapping two elements either (i) belonging to the same backpack (bin) or (ii) belonging to two
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different backpacks (bins). Algorithm 2 (CP1) describes the process using the first swapping

operator.

Algorithm 3 − A Repairing Procedure using the second swapping operator (RP).

1: Let Ŝ? be an infeasible solution at hand.
2: Apply the inverse CP to Ŝ? by removing step by step items with the smallest densities till

reaching a partial feasible solution Ŝ′.
3: Call Algorithm 1 for completing Ŝ′ and let Ŝ? the final improved solution.

The second swapping operator follows the same principle as described above except that two

different items ŝik and ŝjk (of a solution S) belonging to the same knapsack k, where one of the

decision variables is fixed to 1 and 0 for the second one. Of course, that permutation may also

induce the infeasibility of the solution and so, a simple repairing and improving process inspired

from CP may be applied by using the main steps of Algorithm 3.

Algorithm 4 − Adaptation of the Branch and Solve Method (ABSM) for PBO−QMKP.

Input. An instance of PBO−QMKP.

Output. A solution S(1).

1: Initialization phase:
2: Call Algorithm 1 for generating a starting solution S?.
3: Iterative phase.
4: repeat

5: Add the local branch
∑
j∈S?

(1− s?j ) ≤ k to the subtree according to S?.

6: Call Algorithm 2 (or Algorithm 3, if the solution is infeasible) for solving the provided
problem, i.e., the (original / current) problem with the local constraint.

7: Let S′ be the new achieved solution.
8: if (z(S?) < z(S′)) // z = z1 or z = z2 then
9: Update S? with S′ and create a new local tree.

10: else
11: Branch on the complementary subtree of the right-branch and remove the latest added

constraints.
12: until (satisfying the stopping condition.)
13: Exit with S?.

3.5.3 The second stage

The second step consists in adapting the Local Branching (LB) for improving the quality of the

solutions. In this case, a series of branches are introduced throughout a special branch and solve

procedure, where LB supposes a starting reference solution that is used for the first local tree.

Next, an iterative search is considered for enhancing the solution at hand. In this case, two

cases can be distinguished: (i) the activated search that is able to improve the current solution
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and so, the process is repeated and, (ii) the solution stagnates; in this case the search process is

recalled with a new search space. The main principle of LB can be described as follows:

1. Suppose the existence of a starting solution.

2. Initialize the first local tree with the starting solution.

3. Iterative Step:

(a) Solve completely the local tree.

(b) When the local search terminates,

i. if a better solution is provided, then create (from this local tree) a new local tree

with the new solution (reference solution);

ii. otherwise, improvement is reached; therefore, abort the local branching.

(c) Solve the rest of the search tree.

(d) Return the best solution found up to now.

Because two reference solutions are needed for generating the starting diversified population,

we then call the above LB twice, where the first call generates the first reference solution opti-

mizing the first objective function z1 while the second call provides the second solution according

to the second objective function z2.

Algorithm 4 summarizes the main principle of the Adaptation of the Branch-and-Solve

Method (noted ABSM), comprising two phases. The first phase (line 2) starts the first sub-

tree by applying the procedure described in Section 3.5.2 (Algorithms from 1 to 3). The second

phase is composed of three cases. For the first case, a local-branch (line 5) is injected and

Algorithm 2 (line 7) is called as an optimizer-tool to the local subtree trying to provide a new

solution. The second case (lines from 8 to 11) checks if the new provided bound enhances the

incumbent solution, then it generates a new local tree for a new branching. The third case

(line 11) branches on the right-branch of the tree and calls the optimizer-tool till satisfying the

final stopping condition. This process is iterated till matching the stopping criterion.

3.6 The first approximate Pareto set with two reference solutions

3.6.1 Generating two reference solutions

As underlined above, ABSM (Algorithm 4) is applied for reaching the two reference solutions

which could, on the one hand, be candidates to be contained in the starting population and, to

generate members of that population, on the other hand. Indeed, a quick version of ABSM is

called once on the instance of PBO−QMKP favoring the first objective function z1 (neglecting the

second one) and, to recall it on the same instance by favoring the second function z2, ABSM is

initialized with the best solution obtained for z1. We recall that s∗k = (s∗ik, . . . , s
∗
nk) denotes the

decision variables of the knapsack k according to the solution S∗.
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3.6.2 The first population

From the two referent points achieved by ABSM, the starting population is generated by the

adaptation of an iterated greedy methodology to deal with bi-objective optimization problems.

We do it by adapting the so-called drop and rebuild strategy to the bi-objective context, where-

from a reference solution, the strategy is applied in order to generate the closest point while

optimizing on the least objective. In this case, a random reference (or another created point) is

selected by adding the following constraint to the original problem:

max{z1, z2} − ε ≥ 0, (8)

where ε is randomly generated in the interval {1, ρ × 500}n with ρ = max{z1,z2}
min{z1,z2} and, the op-

timization procedure (described below) is called for providing a new solution. Note that the

parameter ρ is used to balance the two objective functions because often the two values can be

concurrent and the amplitude between these two values becomes important. Of course, one can

observe that the quality of that solution may depend on the power of the used optimizer, and

the constraint “ ≥ 0′′ means that each time the optimization may provide a solution either with

better z1 or z2.

Now, we are going to discuss the “guided solution procedure” used for generating the starting

points when adding a series of constraints of type (8). As mentioned above, we introduce the

so-called drop and rebuild operator for providing a series of solutions.

1. - Let S(1) and S(2) be the reference solutions and α be a random parameter generated

from the interval [20%, 50%].

- Set the population P = {S(1), S(2)}.

2. Repeat

(a) Let S be a solution randomly taken from P.

i. Drop phase.

Remove α random items from S and let SPartial be the partial solution reached.

ii. Rebuild phase.

Let N ′ = N\{indices of items belonging to SPartial}.

- Call Algorithm 1 for solving the sub-instance with indices N ′ and, let SCom

be the resulting complementary solution.

- Let S′ = SPartial ∪ SCom be the new provided solution.

(b) Set P = P ∪ S′.

3. Until providing a satisfactory set of solutions.
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Generally, when using population-based metaheuristics to solve combinatorial optimization

problems, it is well-known that different parameter settings (like the population size for the pro-

posed method) lead to a variability in the quality of the final solutions. Limited computational

results showed that the population size of 500 (among values tested from 100 to 1000) provided

a satisfactory set of Pareto points with a reasonable runtime.

3.7 Selection and crossover operators

3.7.1 Selection

From the current population, a simple tournament selection operator is used to select pairs of

individuals. Each individual (parent) may be a candidate for the crossover. In order to select

each parent, two individuals are randomly taken from the current population, and then the best

one between both individuals is chosen. Since a bi-objective optimization problem is considered,

we then select the so-called best individual by considering a random choice to maintain the

diversity of the population. Indeed, one of the following cases is considered, where if the current

case holds, then all others are neglected. Let SA and SB be two different solutions randomly

taken from the current population, then:

1. The solution SA (resp. SB) is selected whenever SA � SB (resp. SB � SA).

2. Let α be a randomly generated binary variable, where:

(a) with α = 1, SA (resp. SB) is selected if z1(SA) ≥ z1(SB) (resp. z1(SB) ≥ z1(SA));

(b) with α = 0, SA (resp. SB) is selected if z2(SA) ≥ z2(SB) (resp. z2(SB) ≥ z2(SA)).

3.7.2 Crossover: fusion operator

The crossover operator is one of the main ingredients used in population-based methods (Yi

et al., 2020). In our study, from the best selected solution, namely SA, the crossover operator

is replaced with the fusion operator, which tries to build a set of diversified solutions. In this

case, it tries to provide a new trial solution by building a series of new solutions according to a

series of pairs of solutions (SA, SB), SA 6= SB, where SB belongs to the population at hand.

For knapsack type problems, it has been observed that the selection of some items belonging

to diversified solutions leads to good partial solutions. It is therefore interesting to select these

items and then to complete the current solution by a deep search, where specialized procedures

for knapsack problems may be applied. In order to mimic such a process, we propose to use

the so-called greedy random operator, called a Fusion Operator (FO). More precisely, let S(1)

and S(2) be the solutions (belonging to the population P) being combined and Snew be the new

resulting solution that is built as follows:

1. Set SPartial = S(1) ∩ S(2), where only items fixed to one in both solutions are stored.
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2. For each item fixed to one either in S(1) and not in S(2) or in S(2) and not in S(1), let

α = random{0; 1} and for each α, add to Spartial the index representing α whenever α = 1.

3. If SPartial is unfeasible, then order all items according to their densities and, remove all

items from the first item of SPartial until satisfying all constraints related to inequalities

(3) and (4).

4. Call Algorithm 2 (and Algorithm 3) to optimize the reduced problem Pred obtained as

follows: let C be all indices out of SPartial, i.e., C = I \ SPartial and

5. Let S(new) be the new complete solution SPartial and .

6. Return S(new).

3.8 Drop and complete as a mutation operator

In this part, we propose an adaptation of the reactive local search, as used in Hifi & Michrafy

(2006) for tackling PBO−QMKP. Such a principle is based upon the drop and complete solution

that combines two strategies: dropping strategy and greedy assignment strategy used for com-

pleting the solution at hand. Indeed, let S be a feasible solution at hand and, S1 and S0 be

two subsets related to S such that |S1 ∪ S0| = n and S1 ∩ S0 = ∅, where S1 denotes a subset

containing the already fixed variables and S0 is a subset of unfixed (free) variables.

Algorithm 5 − Adaptation of the drop and complete solution procedure for PBO−QMKP.

Input. A feasible solution S of PBO−QMKP with a parameter αmax.

Output. A better solution S?.
1: Set S? = S and let αmin ∈ ]0%, 50%[;
2: repeat
3: Set α = αmin;
4: repeat
5: Let S1 be the set with (1−α)|S(1)| variables fixed to 1 in S and, Sol1 its corresponding

partial solution;
6: Let Sfree = N \S1 and Solfree be a complementary solution reached by Algorithm 1

when applied to the set of free items Sfree.

7: Set Ŝ = Sol1 ∪ Solfree as the new resulting solution.

8: Improve Ŝ with Algorithm 2 and, Algorithm 3;
9: if (z1(S?) ≤ z1(Ŝ)) or (z2(S?) ≤ z2(Ŝ)) then

10: Set S? = Ŝ and α = αmin;
11: else
12: Increment(α);

13: until (α ≥ αmax)
14: until (satisfying the stopping condition)
15: return S?.

On the one hand, both S1 and S0 of (un)assigned variables can be generated as follows:

17



1. Suppose that S be a feasible solution at hand;

2. Let α be a percentage generated in the interval ]0%, 50%[;

3. Let S1 be a copy of S, where α × |S1| variables are randomly dropped from S; that

represents (1−α)|S| variables fixed to 1 in S (|S1| means the number of component of the

solution S fixed to one).

4. Set Sfree = N \ S1, apply Algorithm 2 to Sfree, and let S′ be the resulting solution

containing items either fixed to 1 or 0.

5. Set Ŝ = S1 ∪ S′ as the new solution built.

On the other hand, one can observe that the above process can be added to a descent method,

where the percentage α can be initially fixed to a minimum value αmin that can be incremented

till matching a maximum value αmax.

Of course, in case of the current solution is improved, the algorithm restarts the search

process with αmin, choosing the greatest value for αmin (increment where the new value belongs

to the interval) otherwise. Because the used process mimics a heuristic, we then add a stopping

criterion. We note that the drop and complete procedure with its used parameters are analyzed

in Section 4.2 (Computational Results).

Algorithm 6 − A Hybrid Population-Based Algorithm for PBO−QMKP.

Input. An instance of PBO−QMKP.
Output. A population P of Pareto solutions for PBO−QMKP.

1: Set Iter= 0 and generate both reference solutions S(1) (with z1) and S(2) with (z2) (cf. Section 3.6).
2: Build a starting population P0 according to both S(1) and S(2) (cf. Section 3.6.2).
3: repeat
4: Apply the tournament selection to PIter for selecting the best individual Sbest (cf. Section 3.7.1)
5: Apply the fusion operator for generating a temporary expanded population QIter (without
6: solutions of PIter), when combining Sbest with all other solutions of PIter (cf. Section 3.7.2).
7: For each solution of QIter, make the mutation operator; set QIter = QIter ∪PIter (cf. Section 3.8).
8: Make the Pareto ranking on the solutions of QIter.
9: Let PIter+1 be the new population containing Npop best solutions of QIter.

10: Increment(Iter).
11: until (Iter = Itermax)
12: return P := PItermax

3.9 An overview of the proposed hybrid method

Algorithm 6 summarizes the general principle of the Hybrid NSGA-II (HNSGA) adapted to the

context of bi-objective quadratic multiple knapsack problem. The algorithm begins by building

two reference solutions provided by using the adaptation of the branch and solve (Algorithm 4).

Next, the starting population of solutions P0 is created by calling the “guided procedure” (as
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described in Section 3.6.2). At each iteration, a tournament selection is applied in order to ex-

pand the search space (as detailed in Section 3.7.1). Of course, for each generation, namely Iter,

a new population of solutions QIter is generated by applying the fusion operator (as described in

Section 3.7.2) and the so-called mutation operator (as described in Section 3.8) to the current

population PIter. Then, the intensification strategy, which is based-upon descent method (cf.

Algorithm 5) is applied for each generation.

Thereafter, at iteration Iter, both the parent population PIter and the resulting population

QIter are merged to create a global population RIter of size 2.|P|, and NSGA-IIs’ ranking opera-

tors are performed to classify the individuals: such a process follows the standard ranking used

for clustering all solutions according to the scores related to their objective functions. The best

NP solutions of the whole population RIter are then selected to form the next parent popula-

tion, namely PIter+1. Such a process is iterated till matching the maximum number of iterations

Itermax; thus, a final approximative Pareto front is reached. As considered for multi-objective

optimization problems (Chergui et al., 2008; Ecker & Kouada, 1978; Kantour et al., 2019), the

density of the provided Pareto front will be compared to those achieved by available methods

of the literature.

4 Computational Results

The objective of this part is to assess the performance of the proposed Hybrid Population-Based

Algorithm (namely HPBA) by comparing the results it provides with those obtained by the best

available methods published in the literature. Note that all proposed solution procedures were

coded in C++ and performed on a computer with an Intel Pentium Core i5 with 2.10 GHz.

Two subparts are considered: (i) a first subpart is devoted to the qualitative study, where only

a single objective (related to the first function) is considered and, (ii) a second subpart which

is related to the quantitative study, where both objective functions are considered and in which

the density of the Pareto Front (PF) is analyzed.

Table 2: Characteristics of the benchmark instances
Set x ∈ {3; 5; 10} and 1 ≤ y ≤ 5

Set I 100-25 x y, 100-75 x y
200-25 x y, 200-75 x y

Set II 300-25 x y, 300-75 x y

Set III 400-25 x y, 400-75 x y
500-25 x y, 500-75 x y
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4.1 Benchmark instances and parameter settings

In order to evaluate the behavior of HPBA, we used a set of benchmark instances taken

from (Aı̈der et al., 2020a; Chen et al., 2016). These instances are composed of three sets (noted

Set I, Set II and Set III), representing a total of 180 instances:

• Set I: It contains sixty instances such that each instance was provided by using Hiley &

Julstrom (2006)’s generator, where m knapsacks are considered, and the overall capacity

is divided by m. It is composed of two types of instances: there are thirty instances for

each group, with the number of items n fixed to 100 for the first group and 200 for the

second one. The density of each instance varies in the interval {0.25, 0.75} (according to

the coefficients of the objective function), and the number of knapsacks m varies in the

discrete interval {3, 5, 10} for each group. The capacity of each knapsack is fixed to 80%

of the total weights of each knapsack over the number of available knapsacks.

• Set II: It contains thirty large instances (extracted from Chen et al. (2016)), where the

number of items n is fixed to 300 and the rest of the information has the same character-

istics as considered for Set I.

• Set III: It is composed of sixty more largest instances (extracted from Aı̈der et al.

(2020b)), where thirty instances are characterized with their number of items n = 400 and

the other thirty instances with n = 500 (the other parameters have the same characteristics

as for the previous two sets).

As illustrated in Table 2, the labels of the instances are of the form n-d x y, where n denotes

the number of items, d is the density of the instance, x denotes the number of the knapsack

constraints while y represents the variation of the knapsack capacity.

4.2 Effect of the drop and complete operator

The Adaptation of the Drop and Rebuild Procedure (Algorithm 5 − ADRP) is used for gener-

ating the starting population, which will be used by the proposed hybrid algorithm.

On the one hand, ADRP needs two decision parameters: (i) the criterion used to stop the

procedure, and (ii) the number of elements to drop. Its stopping condition is limited to five

seconds (retuned after several tunings) while right value for the second parameter α is analyzed

in what follows. The algorithm was run by varying the parameter α in the discrete interval

[3, 5, 10, 30, 50]%, and by considering other values in [1, 3[%∪]30, 100[%.

On the other hand, ADRP is a stochastic procedure, where each run can obtain a different

result. Thus, for each instance, ten trials (runs) are considered. Table 3 reports the global

average bounds achieved by ADRP when varying the value of α over the ten trials. Column 1

displays the instance’s information, columns from 2 to 7, under the value assigned to α, refer
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Table 3: Behavior of ADRP on the instances of Set I: variation of α.
The Enhancing Drop and Complete Solution (EFCS) over ten trials

#Inst 3% 5% 10% 30% 50% Others

100-25-3-1 28401.00 28383.05 28375.10 27792.50 27685.75 28194.80

100-25-3-2 27180.00 27312.20 26856.90 26897.00 26605.50 26970.00

100-25-3-3 25893.25 26618.10 25881.00 25764.70 24918.02 26709.00

100-25-3-4 27202.50 26851.30 28171.35 27304.00 27059.40 27776.88

100-25-3-5 26254.00 26611.10 26809.70 25529.18 25542.42 27126.50

100-25-5-1 21144.00 22029.50 21722.15 21478.60 20930.70 21710.02

100-25-5-2 21033.00 21199.01 20316.45 19996.18 19783.90 21692.80

100-25-5-3 21045.00 20908.50 20897.15 20712.35 20475.70 20817.20

100-25-5-4 21449.00 21789.05 20335.80 19985.60 19643.75 20451.09

100-25-5-5 20280.80 20654.10 19370.15 18929.75 18457.60 19251.80

100-25-10-1 14844.75 15232.05 13784.80 13871.78 13715.19 14253.30

100-25-10-2 14694.70 14741.30 13586.35 13466.90 13261.92 14705.70

100-25-10-3 13987.40 13844.87 12645.45 12777.80 12456.00 13480.47

100-25-10-4 14517.65 15425.28 12972.80 13529.00 13539.79 14741.60

100-25-10-5 14097.17 14121.05 12964.75 12391.64 12355.72 13051.00

100-75-3-1 69330.00 69816.00 69752.20 69074.00 69074.00 69708.62

100-75-3-2 68694.00 69192.85 68859.00 68147.00 68056.00 68601.30

100-75-3-3 68330.00 68073.00 68689.50 67628.00 67449.85 68650.05

100-75-3-4 69634.00 69634.00 69628.00 68999.00 68800.00 69535.17

100-75-3-5 68990.00 69224.60 69381.00 68554.00 68304.00 69158.98

100-75-5-1 48978.18 48821.25 48740.74 47990.02 47541.25 48463.60

100-75-5-2 48480.19 48637.90 48537.62 47843.50 47622.84 48441.02

100-75-5-3 47579.40 47635.00 47388.48 46882.25 46765.00 46994.60

100-75-5-4 49883.00 49484.17 49609.02 49139.60 48737.80 48961.18

100-75-5-5 47987.00 47722.95 47501.73 46852.20 46568.00 47638.80

100-75-10-1 28841.41 28851.80 28564.35 27414.17 27570.00 28484.50

100-75-10-2 29912.05 29818.10 29744.00 29113.17 29175.74 29813.00

100-75-10-3 27901.50 27958.25 28608.60 26962.05 27816.00 27685.80

100-75-10-4 30912.68 31012.90 30445.02 29684.27 29357.45 30675.50

100-75-10-5 28114.50 28464.03 28635.80 27967.84 28558.68 28575.18

200-25-3-1 99987.00 99306.17 99132.00 97843.00 98012.87 98606.05

200-25-3-2 106430.18 106385.64 106061.20 105321.00 105564.60 106031.07

200-25-3-3 103240.02 103495.00 103360.90 102875.42 102745.65 103266.16

200-25-3-4 99222.12 99316.00 99150.50 98396.20 98749.85 98820.25

200-25-3-5 101722.46 102026.61 101276.80 99835.40 99814.07 100512.64

200-25-5-1 74312.80 74565.97 74521.50 73765.04 73682.80 74488.90

200-25-5-2 79180.71 79124.36 78504.25 78098.80 78414.18 79113.95

200-25-5-3 76478.70 77088.65 76547.08 76001.85 76128.72 76845.40

200-25-5-4 73009.47 73260.08 73274.26 72581.84 72268.70 73395.43

200-25-5-5 75571.72 75802.90 75212.07 73478.46 73911.27 74767.67

200-25-10-1 51375.46 51001.19 51211.54 50312.60 50304.40 51094.91

200-25-10-2 53054.28 53387.40 52846.05 51945.15 52487.27 53021.94

200-25-10-3 52714.72 52141.26 52241.18 51625.03 51214.95 52514.67

200-25-10-4 50874.40 50462.86 50512.30 49746.10 49932.64 49945.39

200-25-10-5 52251.27 52511.83 52902.46 51894.80 51762.80 52843.50

200-75-3-1 269654.00 269427.00 268543.50 268212.08 268304.60 269401.15

200-75-3-2 256264.17 256444.00 255911.80 255147.00 255467.70 256437.65

200-75-3-3 268797.25 269103.51 268425.27 267815.52 267764.80 268588.19

200-75-3-4 245310.60 246054.10 246065.08 245377.74 244879.64 245697.29

200-75-3-5 278441.76 278697.19 278054.26 277328.37 276891.11 278041.84

200-75-5-1 184507.50 184287.60 184451.17 183863.90 183156.05 184343.40

200-75-5-2 173579.88 173278.90 173814.04 172807.85 172441.43 173337.30

200-75-5-3 185264.03 185414.40 185397.15 185012.43 184545.91 184845.44

200-75-5-4 166064.37 166076.27 166002.02 165742.46 165365.66 166111.10

200-75-5-5 192442.44 191995.82 192131.07 191510.12 191137.70 191867.19

200-75-10-1 112117.05 112628.42 112544.70 111437.60 111323.34 112587.50

200-75-10-2 104012.60 104521.19 104745.27 104031.80 104078.44 104743.25

200-75-10-3 112534.47 113002.08 112678.67 111731.18 111694.70 112398.50

200-75-10-4 97843.00 97912.80 97624.21 96931.50 96329.70 97527.60

200-75-10-5 116311.88 116617.08 116086.50 115371.61 115037.12 116657.80

AV. 82636.04 82756.73 82466.73 81812.00 81687.34 82502.88

to the bounds reached, and the last line (Av.) tallies the global average value over all tested

instances (Set I).

From Table 3, we observe that the proposed algorithm seems more efficient with α = 5%,

especially when comparing its provided results to the results reached with the other values of α.

Indeed, for α = 5%, the global average solution value is equal to 82756.73 (last line, column 3

of Table 3), which represents a greatest global average bound among all reported values.
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Table 4: Results with population size fixed either to 100, 500 or 1000 individuals on instances
of Set I

PopSize: best bound

#Inst. 100 500 1000

z1 z2 z1 z2 z1 z2

I100 25 3 1 29286 6293 29286 6293 29286 6293

I100 25 3 2 28491 7446 28491 7446 28491 7446

I100 25 3 3 27179 8640 27179 8640 27179 8640

I100 25 3 4 28593 7551 28593 7551 28593 7551

I100 25 3 5 27892 8303 27892 8303 27892 8303

I100 25 5 1 22581 2896 22581 2896 22581 2896

I100 25 5 2 21622 3623 21704 3621 21622 3623

I100 25 5 3 21239 3256 21239 3256 21239 3256

I100 25 5 4 22181 73379 22181 3379 22181 3379

I100 25 5 5 21669 2904 21669 2904 21669 2904

I100 25 10 1 16095 953 16221 942 16026 978

I100 25 10 2 15645 797 15645 797 15700 714

I100 25 10 3 14654 971 14927 838 14846 964

I100 25 10 4 15988 1017 16181 1000 16085 1013

I100 25 10 5 15326 701 15326 701 15326 701

I100 75 3 1 69977 7823 69977 7823 69977 7823

I100 75 3 2 69504 8970 69504 8970 69504 8970

I100 75 3 3 68832 10614 68832 10614 68832 10614

I100 75 3 4 70028 8499 70028 8499 70028 8499

I100 75 3 5 69692 9373 69692 9373 69692 9373

I100 75 5 1 49110 3706 49421 3582 49231 3647

I100 75 5 2 49400 3452 49400 3452 49400 3452

I100 75 5 3 21622 3623 21622 3623 21704 3621

I100 75 5 4 50246 3692 50246 3692 50246 3692

I100 75 5 5 48753 4170 48753 4170 48753 4170

I100 75 10 1 29857 1112 30296 1052 30096 1070

I100 75 10 2 31207 1070 31207 1070 31207 1070

I100 75 10 3 29591 987 29908 926 29775 965

I100 75 10 4 31762 1057 31762 1057 31762 1057

I100 75 10 5 48230 4611 48495 3816 48272 4590

Average 35541.73 4382.96 35608.60 4342.86 35573.16 4375.80

4.3 Parameter settings

In order to evaluate the behavior of HPBA, we first focused the preliminary study on the

quality of the provided bounds, especially by favoring the first objective function, consisting of

maximizing the total profit. Of course, such a choice is not insignificant, because the algorithms

designed in the literature are often interested in the aforementioned objective, excepting HTS

(Chen & Hao, 2016), while we propose herein a double experimental study: (i) using a single

objective function (z1) and, (ii) considering both objective functions (z1 and z2). Further,

HPBA uses several parameters, such as population size, probabilities of selection, mutation, and

crossover operators. As discussed in Sections 3.7.1 and 3.8, the proposed method applies the

following operators:

• Selection: A random binary variable is generated for selecting which objective value is

selected for guiding the population generation.

• Crossover: It is replaced with a fusion operator, where a partial solution is built and

completed by calling both Algorithm 2 and Algorithm 3.

• Mutation: It is replaced with drop and rebuild operator (discussed in Section 4.2).
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With the above tunings, we studied the impact of the population size on the results achieved

by HPBA. In this case, three values representing the population size (noted PopSize) have been

considered for instances of Set 1 (this choice is not trivial, because most of the algorithms in

the literature have intensively tested the aforementioned instances, where most of the provided

bounds are very close). Table 4 shows the provided results for the instances of Set I. The

first version of the algorithm related to PopSize=100 is noted HPBAa, the second one (with

PopSize=500) is noted HPBAb and the third one (with PopSize=1000) is noted HPBAb. Ac-

cording to the variation of PopSize, we also fixed the runtime limit of each version to 500 seconds,

700 seconds and 1000 seconds, respectively. From Table 4, we observe what follows:

1. HPBAa (with the population size fixed to 100) can match 73.33% of the best bounds

(solution values reached by the three versions of HPBA) and it fails on 8 occasions to

reach the best bounds.

2. The percentage of the best bounds achieved by HPBAb becomes more significant. Indeed,

on the one hand, HPBAb can provide 8 better solutions when compared to both HPBAa

and HPBAc. On the other hand, it achieves all best bounds. In this case, its global average

bound is equal to 35608.60, which is greater than that provided by HPBAa, i.e., 35541.73.

3. The results reached by HPBAc seem also interesting even if the global average bound

becomes less than that provided by HPBAc (and slightly higher than that obtained by

HPBAa). In this case, HPBAc reaches two better solutions and matches the rest of the

instances (a total of 93.33%).

Figure 5: Illustration of the three starting populations and the final approximate Pareto front
with varying the population size.

Figure 5 illustrates the variation of the starting population and its resulting Pareto front

related to the three versions of the method. Therefore, we can conclude that a larger population

size allows us to obtain better solutions thanks to a better exploration of the search space, but the
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average runtime becomes more important. With the smallest population size, the percentage

of better-achieved bounds remain smaller than that realized with the population size of 500

individuals. In this case, the average runtime remains acceptable for the intermediate value;

hence, for the rest of the paper, the population size will be fixed to 500 individuals.

Table 5: Behavior of the five considered methods: HTS, EPR, BS and ε-CSBH and HPBA on
instances of Set I.

HTS EPR BS ε-CSBH HPBA
#Inst z1 z2 z1 z2 z1 z2 z1 z2 z1 z2
I100 25 3 1 29286 6293 29286 6293 29286 6293 29286 6293 29286 6293
I100 25 3 2 28491 7446 28491 7446 28491 7446 28491 7446 28491 7446
I100 25 3 3 27179 8640 27179 8640 27179 8640 27179 8640 27179 8640
I100 25 3 4 28593 9302 28593 7551 28593 7551 28593 7551 28593 7551
I100 25 3 5 27892 8303 27892 8303 27892 8303 27892 8303 27892 8303
I100 25 5 1 22581 2896 22581 2896 22581 2896 22581 2896 22581 2896
I100 25 5 2 21678 2744 21704 3621 21704 3621 21704 3621 21704 3621
I100 25 5 3 21239 3256 21239 3256 21239 3256 21239 3256 21239 3256
I100 25 5 4 22181 3379 22181 3379 22181 3379 22181 3379 22181 3379
I100 25 5 5 21669 2904 21669 2904 21669 2904 21669 2904 21669 2904
I100 25 10 1 16221 942 16221 942 16221 942 16221 942 16221 942
I100 25 10 2 15700 714 15700 714 15700 714 15700 714 15700 714
I100 25 10 3 14927 838 14927 838 14927 838 14927 838 14846 964
I100 25 10 4 16181 1000 16181 1000 16181 1000 16181 1000 16181 1000
I100 25 10 5 15326 701 15326 701 15326 701 15326 701 15276 925
I200 25 3 1 101465 18416 101471 19253 101471 19253 101471 19253 101471 19253
I200 25 3 2 107958 12870 107958 12870 107958 12870 107958 12870 107698 13422
I200 25 3 3 104567 15811 104589 16510 104589 16510 107698 13422 104321 17148
I200 25 3 4 100098 18553 100136 18149 100136 18149 99812 19132 99812 19132
I200 25 3 5 102311 18096 102311 18036 102311 18036 102139 18522 102139 18522
I200 25 5 1 75567 9131 75623 8435 75623 8435 75623 8435 75243 9485
I200 25 5 2 80033 6230 80033 6230 80033 6230 80033 6230 80033 6230
I200 25 5 3 78043 7293 78043 7293 78043 7293 78043 7293 77914 7702
I200 25 5 4 74073 8688 74140 8226 74140 8226 73906 8527 73906 8527
I200 25 5 5 76610 7811 76610 7811 76610 7811 76377 8198 76377 8198
I200 25 10 1 52259 2277 52293 2331 52293 2331 52010 2643 52010 2643
I200 25 10 2 54830 2169 54830 2169 54830 2169 54830 2169 54830 2169
I200 25 10 3 53586 2575 53678 2289 53678 2289 53678 2289 53470 2414
I200 25 10 4 51135 2458 51302 2985 51302 2985 51205 3049 51205 3049
I200 25 10 5 53598 2839 53621 2383 53621 2383 53611 2456 53611 2456
I100 75 3 1 69977 7823 69977 7823 69977 7823 69977 7823 69977 7823
I100 75 3 2 69504 8970 69504 8970 69504 8970 69504 8970 69504 8970
I100 75 3 3 68832 10614 68832 10614 68832 10614 68832 10614 68832 10614
I100 75 3 4 70028 8499 70028 8499 70028 8499 70028 8499 70028 8499
I100 75 3 5 69692 9373 69692 9373 69692 9373 69692 9373 69692 9373
I100 75 5 1 49421 3582 49421 3582 49421 3582 49421 3582 49421 3582
I100 75 5 2 49365 3858 49400 3452 49400 3452 49400 3452 49400 3452
I100 75 5 3 48495 3816 48495 3816 48495 3816 48495 3816 48495 3816
I100 75 5 4 50246 3692 50246 3692 50246 3692 50246 3692 50246 3692
I100 75 5 5 48753 4170 48753 4170 48753 4170 48753 4170 48753 4170
I100 75 10 1 30296 1052 30296 1052 30296 1052 30296 1052 30296 1052
I100 75 10 2 31129 1184 31207 1070 31207 1070 31207 1070 31207 1070
I100 75 10 3 29908 926 29908 926 29908 926 29908 926 29908 926
I100 75 10 4 31762 1057 31762 1057 31762 1057 31762 1057 31762 1057
I100 75 10 5 30465 958 30507 1049 30507 1049 30507 1049 30507 1049
I200 75 3 1 270718 29712 270718 29712 270718 29712 270718 29712 270199 31052
I200 75 3 2 257156 38420 257288 38726 257288 38726 257288 38726 257288 38726
I200 75 3 3 270069 31536 270069 31536 270069 31536 269657 33204 269657 33204
I200 75 3 4 246961 38794 246993 38734 246993 38734 246252 39824 246252 39824
I200 75 3 5 279598 31892 279598 31892 279598 31892 279458 32381 279458 32381
I200 75 5 1 185076 13671 185493 14372 185493 14372 185493 14372 185493 14372
I200 75 5 2 174836 14220 174836 14220 174836 14220 174836 14220 174835 14575
I200 75 5 3 186745 12999 186782 12692 186782 12692 186782 12692 186782 12692
I200 75 5 4 166815 14126 167142 14986 167142 14986 167142 14986 167142 14986
I200 75 5 5 193240 13558 193310 13852 193310 13852 193310 13852 193310 13852
I200 75 10 1 113140 4598 113324 4013 113324 4013 113324 4013 113175 4173
I200 75 10 2 105597 4849 105966 4028 105966 4028 105966 4028 105876 4101
I200 75 10 3 114551 4079 114860 3780 114860 3780 114860 3780 114496 4211
I200 75 10 4 99017 5490 99422 5224 99422 5224 99422 5224 99357 5318
I200 75 10 5 117026 3415 117309 3426 117309 3426 117309 3426 117309 3426
Nb./#inst. 40/60 60/60 60/60 59/60 60/60
Av. 83728,25 8758,46 83782,43 8729,86 83782,43 8729,86 83790,15 8775,95 83695,61 8920,36

4.4 Qualitative study

This section discusses the behavior of HPBA when compared to the best available method of

the literature, especially by focusing on the first objective function. There are three parts,

where each of them is related to the set of instances considered: Section 4.4.1 for the Set I,

Section 4.4.2 for the Set II while Section 4.4.3 analyzes the performance of HPBA on the third
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set of instances Set III. Because the proposed method needs to fix the runtime limit, we just

limited the number of iterations to 25 000 for all sets. In this case, the observed average runtime

varies from 150 seconds to 1700 seconds, depending on the complexity of the instance tested.

4.4.1 Behavior of HPBA versus four methods of the literature: Set I

In this part, the performance of HPBA is evaluated and analyzed on the first set (Set I)

containing sixty instances (divided into two groups). HPBAs’ results are compared to those

achieved by the four published methods:

• Hybrid Two-Stage (Chen & Hao (2016) − noted HTS),

• Evolutionary-Path Relinking (Chen et al. (2016) − noted EPR),

• Branch and Solve (Aı̈der et al. (2020a) − noted BS), and

• ε-Constraint Strategy Based Heuristic (Aı̈der et al. (2020b) − noted ε-CSBH).

We note that all results are extracted from (Aı̈der et al., 2020b).

Table 5 reports the provided results of all compared algorithms on the set of instances Set I;

in this case, for each tested algorithm, both objective values (z1, z2) are reported. Column 1

presents the instance label (including the number of items n, the density d, and the number of

knapsacks m). Columns 2 and 3 display HTS’ bounds while columns 4 and 5 (resp. 6 and 7

and, 8 and 9) display those achieved by EPR (resp. BS and, ε-CSBH). Columns 10 and 11

report the bounds achieved by the proposed method HPBA while the last two lines report the

number of times that the current method matches the best bounds and its global average bounds,

respectively.

Because of the random aspect of HPBA, we then considered ten trials. We note that the

value in “bold-face” means that the best solution value has been reached by the considered

algorithm. From Table 5, we observe what follows:

• HPBA versus HTS method: HPBA dominates HTS on 10 occasions and it matches the

rest of the bounds.

• HPBA versus EPR, BS and ε-CSBH: the four methods remain competitive since globally

all methods can match the same bounds, except for the instance 200-75-5-2 for which

HPBA provides a new bound (a new non-dominated point) for the second objective value

(z2).

4.4.2 Behavior of HPBA versus four methods of the literature: Set II

The second set of instances (Set II) was used (tested) by the following three algorithms of the

literature: EPR, BS, and ε-CSBH. We then compare their provided results to those achieved by

HPBA on all instances of that set.
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Table 6 reports the results obtained by HPBA and the other three algorithms (as used in

section 4.4.1). The columns of the table 6 have the same meaning as in the previous table. From

this table, we observe what follows:

• ε-CSBH versus EPR and BS: For the objective function z1, ε-CSBH dominates both EPR

and BS on several occasions. Indeed, it dominates BS on 18 occasions and on 25 occasions

when compared to the results achieved by EPR. For the objective function z2, the ε-CSBH

achieves a better average bound, i.e., 27355.43, compared to 27045.26 (resp. 27044.40)

achieved by EPR (resp. BS).

• HPBA versus ε-CSBH: HPBA performs better than ε-CSBH. It is able to reach 4 new

points (Pareto solutions) with both objective functions (z1, z2): instances I300-25 10 3,

I300-75 5 2, I300-75 10 2 and I300-75 10 4 (as shown in Table 6)

Table 6: Performance of HPBA versus both BS and ε-CSTBH on the first group of Set III.
BS ε-CSTBH HPBA

#Inst z1 z1 z2 z1 z2
400-25-3-1 325978 326185 49254 326185 49254
400-25-3-2 315186 315393 54210 315277 54724
400-25-3-3 305532 306059 58098 306096 56369
400-25-3-4 324030 324775 57645 325032 57352
400-25-3-5 307315 315805* 53079* 315692 52788
400-25-5-1 242946 242084 20850 242373 22494
400-25-5-2 227374 228153 25447 228405 25440
400-25-5-3 226144 225017 22926 225161 22736
400-25-5-4 230912 231241 23648 231350 22400
400-25-5-5 229338 229645 21195 229795 20533
400-25-10-1 158601 156792 6386 157079 6753
400-25-10-2 147474 147410 6966 147555 6481
400-25-10-3 148183 145945 6335 146525 5614
400-25-10-4 153410 152527 6968 152922 6968
400-25-10-5 150742 149886 6976 151088* 7191*
400-75-3-1 895360 896240 121247 896460* 121465*
400-75-3-2 982436 981731 110181 981731 110014
400-75-3-3 913992 913934 117526 914000 116908
400-75-3-4 874363 874443 118885 874539* 120054*
400-75-3-5 940763 939655 124413 940364 120063
400-75-5-1 627864 627649 44850 628931* 45108*
400-75-5-2 684177 684192 44345 683897 44603
400-75-5-3 635732 636061 39632 635758 42219
400-75-5-4 616307 617575* 50897* 616909 49102
400-75-5-5 648835 649992* 51676* 649657 49350
400-75-10-1 372751 378812* 10149* 377008 9987
400-75-10-2 403730 408482 10274 410695* 11534*
400-75-10-3 369465 370956 8818 372247* 11995*
400-75-10-4 357526 361592 11393 362680* 11507*
400-75-10-5 376407 384445 10850 384456* 11429*
Av. 439762.43 440755.86 43170.63 440995.56 43081.16
ND./#inst. 18/30 22/30 26/30

4.4.3 Performance of HPBA on more complex instances: Set III

In this section, we studied the behavior of HPBA on the more complex instances of Set III,

which contains sixty instances. As discussed above, Set III is composed of two groups: (i) a

first group containing thirty instances with n = 400 and the second group containing the rest of

the instances with n = 500.
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Table 7: Performance of HPBA versus both BS and ε-CSTBH on the second group of Set III.
BS (Aı̈der et al., 2020a) ε-CSTBH (Aı̈der et al., 2020b) HPBA (This work)

#Inst z1 z1 z2 z1 z2
500-25-3-1 487014 487114 57477 487200 56270
500-25-3-2 486271 486262 64583 486496 64040
500-25-3-3 482382 482889* 67383* 482814 65949
500-25-3-4 484119 484920 61904 485001* 63605*
500-25-3-5 478455 478727 63168 478859* 63589*
500-25-5-1 347263 347226 30905 347623 29284
500-25-5-2 344622 345523 25768 346202 25340
500-25-5-3 341223 342173 30432 342186* 30432*
500-25-5-4 342482 343385 34071 343733* 35312*
500-25-5-5 341624 341850 30667 342878* 31541*
500-25-10-1 219343 221121 8850 221924* 9159*
500-25-10-2 223344 223987 8755 224724* 10097*
500-25-10-3 219401 222575 9779 223384* 10192*
500-25-10-4 217238 219308 10328 220058 10079
500-25-10-5 220552 221920 9518 221920 9518
500-75-3-1 1391636 1390073 151730 1391467 147973
500-75-3-2 1441764 1441256 133560 1441310 134359
500-75-3-3 1406773 1406251 141065 1406701 146034
500-75-3-4 1356161 1356036 163115 1354988 169391
500-75-3-5 1437572 1437652 147308 1438384 142433
500-75-5-1 949075 950005 59856 950045 59725
500-75-5-2 994837 993441 62180 993649 64003
500-75-5-3 958707 958728* 66058* 958389 65912
500-75-5-4 918690 918194 71390 918278 74806
500-75-5-5 987326 985113 60122 986991 57709
500-75-10-1 568311 566975 21304 569325 18341
500-75-10-2 592648 594022 18974 595119 18549
500-75-10-3 565467 566152 18917 566959* 19978*
500-75-10-4 537670 538005 23721 539152 21782
500-75-10-5 582972 582685 17146 583543* 177331*
Av. 664164.73 651111.93 55667.8 621940.86 61091.10
ND./#inst. 18/30 20/30 28/30

In what follows, we comment on Tables 6 and 7 which report the results achieved by HPBA and

both BS and ε-CSTBH:

• HPBA versus BS: HPBA is very competitive when compared to BS. Indeed, it can reach

44 new bounds according to the first objective function (z1) which represents, in this case,

a percentage of 73% of improved bounds over the sixty instances tested.

• HPBA versus ε-CSBH: HPBA remains competitive when compared to ε-CSBH. Indeed,

HPBA achieves 19 new bounds, matches 35 bounds, and fails on 6 occasions. Globally,

HPBA realizes 31.67% of new upper bounds when compared to those achieved by ε-CSBH

(10%), and its matches 58.33% (the rest) of the instances of Set III.

Table 8: Performance of HPBA versus both BS and ε-CSTBH on the more complex instances
of Set III.

BS (Aı̈der et al., 2020a) ε-CSTBH (Aı̈der et al., 2020b) HPBA (This work)
Set III z1 z1 z2 z1 z2
Av. 551963.58 545933.90 49419.21 531468.21 52086.13
ND | #inst. / 39 | 60 54 | 60

Finally, Table 8 summarizes the number of times that each tested method (HPBA, BS and
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ε-CSTBH) is able to reach the better bound (line 1: Av.) and the global average bound over

all the sixty instances of Set III. On the one hand, from the first line (according to the global

average bound) there is no-dominance between both HPBA and ε-CSTBH. On the other hand,

because we are seeking for a maximum number of the best bounds reached by the used algorithm,

one can observe that HPBA can match 90% of the best bounds whereas ε-CSTBH matches 65%

of the bounds. Moreover, HPBA can reach 19 new dominated solutions and it fails in 6 occasions

to match the solutions reached by ε-CSTBH.

4.4.4 Statistical analysis: HPBA versus BS and ε-CSTBH

Furthermore, in order to evaluate the behavior of the proposed HPBA (when compared to

other algorithms), we propose a statistical analysis where both the sign test and the Wilcoxon

signed-rank test statistics are considered. We then use the following hypothesis:

H0: Algo1 - Algo2 = µ,

to express that algorithm Algo1 performs better than Algo2 and, the hypothesis H0: algorithm

Algo2 is better than Algo1 to express the rejection of the hypothesis H0. Herein, the greatest

the average bound and the greater the number of better bounds, the better the corresponding

version of Algo.

Table 9: p-values for both Sign test and Wilcoxon rank-test on all instances (Set I, Set II and
Set III) with the significance level θ = 0.05.

BS vs ε-CSTBH BS vs HPBA ε-CSTBH vs HPBA
p-value (Sign test) 0.999 0.829 0.745
N+ 32 39 23
N− 39 44 47
N= 49 37 50
p-value (Wilcoxon) 0.999 0.954 0.995

From Table 9 one can observe what follows:

• For BS vs ε-CSTBH: the p-value related to the sign test (resp. Wilcoxon test) is greatest

to the significance level β = 0.05, indicating that ε-CSTBH performs better than BS

(rejecting the hypothesis H0). The number of times that BS provide best bounds for z1

(the values related to N+ for BS) is equal to 32 while that related to ε-CSTBH is equal

to 39.

• BS vs HPBA: HPBA dominates BS since the p-value related to the sign test (resp.

Wilcoxon test) is equal to 0.829 (resp. 0.954); that is greatest to the significance level
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β = 0.05 (rejecting the hypothesis H0). I this case, HPBA matches better number of best

solution (44) than that of BS (39).

• ε-CSTBH vs HPBA: HPBA outperforms ε-CSTBH, since the sign test (resp. Wilcoxon

test) is equal to 0.745 (resp. 0.995), which induces the rejection of the hypothesis H0.

Further, HPBA provides 47 best solutions when compared to the 23 realized by ε-CSTBH.

Therefore, although the HPBA method is not specialized for the single-objective version of the

problem, it remains competitive with recent methods in the literature.

4.5 Quantitative study

In this section, a comparative study between ε-CSTBH and HPBA is proposed by using a

performance indicator related to the bi-objective optimization problems. Although there are

several performance indicators dedicated to analyzing the behavior of a given method, often

the majority of studies focus on two types of indicators: (i) the Hypervolume Indicator (Cao

et al., 2015) and, (Zitzler & Thiele, 1999), the Epsilon-Indicator (Zhao et al., 2003), the binary

coverage indicator (Farmani et al., 2002) and the net-front contribution indicator (Garćıa-León

et al., 2019).

4.5.1 The density of the Pareto front

Herein, in order to assess the performance of both HPBA and ε-CSTBH, we first use the Hyper-

volume Indicator, because it allows us to measure the density of the Pareto front (as a relative

quality) in terms of both convergence and diversity of the final solutions. In this case, the

normalized hypervolume performance indicator is computed according to their Pareto fronts

obtained for both ε-CSTBH and HPBA.

Of course, for both computed measures, a unique “reference point” was used; that is the

origin point (0, 0) representing the two worst objective values for z1 and z2. Whenever the

hypervolume related to each method is calculated, each of them is normalized by dividing each

of them by the greatest value among both values. Table 10 shows the values related to the

normalized hypervolume indicator for both versions of the algorithm. Column 1 of Table 10

reports the instance’s label, column 2 tallies the normalized hypervolume indicator related to ε-

CSTBH (denoted I
(1)
NH) whereas column 3 displays the hypervolume indicator related to HPBA

(denoted I
(2)
NH).

From Table 10, we observe what follows.

• I
(2)
NH value (related to the proposed method HPBA) is better than that I

(1)
NH (related to

ε-CSTBH) in 25 occasions over the thirty instances of Set II and it fails in 5 occasions

to match the same normalized hypervolume measures.
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Table 10: Hypervolume indicator values (normalized) of both ε-CSTBH and HPBA on instances
of Set II.

Normalized Hypervolume

#Inst. I
(1)
NH I

(2)
NH

I300 25 3 1 1 0.999898097
I300 25 3 2 0.998105203 1
I300 25 3 3 0.999865547 1
I300 25 3 4 0.998048473 1
I300 25 3 5 0.996629612 1
I300 25 5 1 1 0.983738565
I300 25 5 2 0.996914384 1
I300 25 5 3 0.995211207 1
I300 25 5 4 1 0.99963126
I300 25 5 5 0.99737228 1
I300 25 10 1 0.997548289 1
I300 25 10 2 0.998019678 1
I300 25 10 3 0.995506044 1
I300 25 10 4 0.993843728 1
I300 25 10 5 0.992423294 1
I300 75 3 1 0.99978488 1
I300 75 3 2 0.99993991 1
I300 75 3 3 1 0.9885468
I300 75 3 4 0.999744294 1
I300 75 3 5 0.999697785 1
I300 75 5 1 0.99063368 1
I300 75 5 2 0.997004272 1
I300 75 5 3 1 0.998818002
I300 75 5 4 0.98888497 1
I300 75 5 5 0.984031502 1
I300 75 10 1 0.977488808 1
I300 75 10 2 0.991828015 1
I300 75 10 3 0.99571554 1
I300 75 10 4 0.994973732 1
I300 75 10 5 0.997372127 1
Average 0.995886242 0.999021091

• Globally, ε-CSTBH’s global average (normalized) hypervolume indicator is equal to 0.995886242

while HPBA realizes a greater global average hypervolume indicator of 0.999021091 (in the

bold-space). As both indicators are normalized, one can easily compute the gap between

both hypervolumes: in this case, the average hypervolume is equal to 0.997453666 and so,

the average normalized gap between both methods is equal to 0.003134849.

• In terms of percentage, HPBA can provide 83.33% of best-normalized indicators, which

can be considered as significant, especially for large-scale instances.

Finally, Figure 6 shows the variation of the (normalized) hypervolume indicator, related

to the (normalized) density of Pareto front, achieved by both compared methods (ε-CSTBH

−black plot− and HPBA −gray plot−), on the instances of Set II while Figure 7 illustrates the
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Figure 6: Variation of the normalized hypervolume for both ε-CSTBH and HPBA on instances
of Set II.

starting population and the approximate Pareto front on two large-scale instances of Set III:

instances “inst-300-25-10-2” (on the left-hand of the figure) and “inst-300-25-10-3” (on

the right-hand of the figure).

Figure 7: Illustration of the final approximate Pareto front achieved by both ε-CSTBH and
HPBA on two instances “inst-300-25-10-3” and “inst-300-25-10-2” of Set II.

4.5.2 Other indicators on some instances of Set II

In addition to the indicator studied in Section 4.5, we propose to study the behavior of both

ε-CSTBH and HPBA on some instances of Set II. In this case, such a comparison is related to

both (i) the binary coverage indicator and, (ii) the net-front contribution indicator.

The binary coverage indicator For a given instance I, let SA(I) (resp. SB(I)) be the set

of solutions representing the Pareto front when applying algorithm A (resp. B). The binary

coverage measure indicator between methods A and B may be represented by the number of

solutions reached by B which dominate those provided by A.

Herein, we are looking (i) for the number of solutions achieved by ε-CSTBH dominating
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those provided by HPBA and, (ii) those achieved by HPBA that dominate those of ε-CSTBH.

Moreover, because both approximate Pareto fronts are available, we then also compare the

cardinalities related to the non-dominated solutions achieved by both ε-CSTBH and HPBA.

Table 11: Variation of the binary coverage measure and the cardinality of the non-dominated

solutions achieved by ε-CSTBH and HPBA.
ε-CSBH HPBA

#Inst. I
(1)
BCM C(1) I

(2)
BCM C(2)

inst-300-25-10-3 116 41 27 49
inst-300-25-10-2 96 47 56 45
inst-300-75-10-2 523 44 512 53
inst-300-75-10-4 649 45 557 52

Table 11 reports the comparative study between both methods, where column 1 shows the

instance’s label, columns 2 and 3 tally the binary coverage indicator (I
(1)
BCM ) and the number

of non-dominated solutions of the approximate Pareto front (C(1)) related to ε-CSTBH whereas

columns 4 and 5 display the binary coverage indicator (I
(2)
BCM ) and the number of non-dominated

solutions of the approximate Pareto front (C(2)) related to HPBA.

From Table 11, one can observe that HPBA has a better behavior than that ε-CSTBH.

On the one hand, HPBA is able to provide a better indicator coverage since for all instances

C(2) > C(1). On the other hand, according to the cardinality of the approximate Pareto front,

HPBA dominates in four occasions ε-CSTBH, except for the instance inst-300-25-10-2 for

which both I
(1)
BCM and I

(2)
BCM are closest. We note that, in this case, HPBA provides a better

final solution.

The net front contribution indicator Let I be an instance of the problem and, SA(I)

(resp. SB(I)) be the set of no-dominated solutions achieved by algorithm A (resp. B). The

Net Front Contribution NFC(SA, SA) denotes the subset of SA belonging to SA ∪ SB and,

NFC(expI , expJ) denotes the average value of NFC(SexpI , SexpJ ) according to all considered

instances. In this case, greater the value of Sexpi , more the algorithm becomes interesting.

Table 12: Variation of the net contribution measure on the non-dominated solutions achieved

by ε-CSTBH and HPBA.
Net front contribution

#Inst. I
(1)
NFC I

(2)
NFC

inst-300-25-10-3 0.45 0.54
inst-300-25-10-2 0.51 0.50
inst-300-75-10-2 0.45 0.54
inst-300-75-10-4 0.46 0.57
Av. 0.47 0.54

Table 12 shows the comparative study between both ε-CSBH and HPBA, where column 1
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displays the instance’s label, column 2 (resp. column 3) reports the net front contribution

indicator I
(1)
NFC (resp. I

(2)
NFC) related to ε-CSTBH (resp. HPBA).

We observe from Table 12 that HPBA performs better than ε-CSTBH. Indeed, HPBA can

provide the best average net-front contribution indicator (0.54) when compared to that provided

by ε-CSTBH (0.47). In this case, HPBA dominates ε-CSTBH on 3 occasions and, fails for the

instance inst-300-25-10-2 for which both related indicators are closest.

5 Conclusion

In this paper, we investigated the use of a hybrid multi-objective evolutionary algorithm for

solving the bi-objective quadratic multiple knapsack problem. The proposed algorithm is based

upon the so-called non-dominated sorting operator, where both the general profit and the min-

max criterion on the second objective function are optimized. A starting population of solutions

were provided by combining two starting solutions: a fist solution provided by a special ε-

constraint heuristic and, (ii) a second solution achieved by an adaptive local-branching-based

heuristic. However, in order to highlight the quality of the solutions reached, a drop/rebuild

strategy was incorporated into the search process. Computational results showed that the pro-

posed method remains competitive (in term of quality of the achieved bounds), especially when

comparing its provided bounds to those reached by the more recent methods published in the

literature. Its performance was also analyzed by using several indicators employed for evaluating

multi-objective methods, where it demonstrated its effectiveness on the majority of considered

instances. The knapsack problem and its variants are gaining renewed interest in recent years,

especially (multi-)knapsacks with setups, and multi-objective versions. In this case, there are

plenty of possibilities for further investigation involving powerful and efficient algorithms: (i)

tailored heuristics and general purpose evolutionary algorithms. A first research direction, for

the studied problem, can be focused on adding successive valid constraints to the original prob-

lem,where its goal is to drive the search process toward specific regions for a deep exploration.

Second, there are several evolutionary algorithms which can be investigated for tackling the

studied problem, like monarch butterfly optimization (MBO), earthworm optimization algo-

rithm (EWA), elephant herding optimization (EHO) and others. Finally, almost of using simple

adaptations, we are also interested in hybridization of evolutionary algorithms with tailored pro-

cedures, where its goal is to introduce these procedures as a learning strategy for augmenting

the quality of the solutions and / or enhancing the density of the final approximate Pareto front.
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