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Abstract

In this paper, we propose a data-driven robust optimization for establishing reliable

itineraries through the use of GPS trajectories. The goal of the study is to provide a

robust solution that is able to maximize the probability of achieving the expected travel

time and minimize the delay. The designed framework can be viewed as an incremental

approach, where data-driven robust optimization cooperates with a learning procedure

such that both the uncertainty set and the objective function are incrementally adjusted

according to the current data analysis results. In fact, two types of training models are

designed in order to adapt the robust optimization model through analyzing GPS-data.

The first training model tries to generate the uncertainty set for establishing the model,

and the second one establishes the best parameter-settings allowing to converge towards a

robust solution. Finally, a data-based simulation framework is designed for analyzing the

robustness of the proposed method, where achieved solutions are tested on a simulated

traffic network by using real-world orders as the comparison targets.

Keywords: Data-driven; Learning; Optimization; Robustness; Uncertainty.

1. Introduction

Decision-making with uncertainty arises in several real-world applications, like man-

agement science, logistics and finance. Among the classic approaches for decision-making
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under uncertainty, stochastic programming is widely recognized as an effective model

tool to provide reliable solutions. The aforementioned performance depends also on the5

probabilistic characterization of randomness. However, on the one hand, the distribu-

tion’s probability of some information is often unavailable, like the route’s travel time

related to the next day or period. On the other hand, the ambiguity-based criteria is

not taken into account by stochastic models (cf., (Bertsimas et al., 2018b)) while the

robust optimization under uncertainty deals with the ambiguity, especially for combina-10

torial optimization problems (the reader can refer to (Caserta & Voβ, 2019; Su et al.,

2019) and to (Tirkolaee et al., 2020) for some standard studies on robust optimization

for combinatorial optimization).

Over the past decade, based on mathematical modeling and information technol-

ogy, data science has made substantial progress in solving existing management issues.15

Deep mining / learning can effectively assist managers to reduce uncertainty in decision-

making. As the size of data grow in all real-world applications, the development of

data-driven models become of great significance for the robust optimization (Bertsimas

& Thiele, 2006; Bertsimas et al., 2011; Hanks et al., 2019). Most studies tackling the

data-driven robust optimization focus on studying the “distributionally" robust optimiza-20

tion problems, where uncertainty is a probability distribution (Bertsimas et al., 2018a).

The principal strategy is based upon generating the uncertainty set from the observed

historical data through the use of statistical analysis (for more details, the reader can be

referred to Bertsimas & Sim (2004); Bertsimas & Brown (2009); Ben-Tal et al. (2009);

Delage & Ye (2010). More recently, Bansak et al. (2018) proposed a data-driven-based25

method for improving refugee integration problem. Unlike the robust distribution op-

timization, their method uses historical data to provide the best optimization value,

allowing for more orderly resettlement of refugees. Inspired from classical researches,

this paper attempts to design a data-driven robust optimization model, where both the

uncertainty set and the objective function can be dynamically (incrementally) adjusted30

according to the current data analysis results.

Travel time uncertainty is unpredictable in an urban transportation system. Es-
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Figure 1: An instance illustrating a sequence of GPS’ waypoints.

pecially in itinerary planning, travel time reliability has been considered an important

criterion. GPS trajectory data analytics has offered new opportunities for understand-

ing urban traffic networks (Xia et al., 2017). However, due to the limitations related to35

the satellite technology, the gap between GPS’ waypoints and real-position locations is

usually close to 10− 70 meters (Lee et al., 2016) (Figure 1 illustrates a sequence of GPS’

waypoints collected when a taxi completes an order: GPS’ waypoints fall within multiple

road segments). One can observe that GPS-data contains an intractable noise and, the

reliability of the probability distribution related to the travel time cannot be guaranteed.40

Thus, in order to make a reasonable use of data with high uncertainty, we propose a

model that is able (i) to derive the uncertainty set related to the travel time and (ii)

to deduce the robust decision preferences from the GPS-data. Indeed, a robust discrete

optimization-based approach is introduced for characterizing (i) the decision preferences,

and (ii) the travel time between two locations defined as a set of discrete scenarios (each45

scenario denotes a possible travel time for vehicles traveling from two different locations).

The objective now is to determine a solution, where a predefined decision preference is
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satisfied; that is, a decision preference satisfying a robust criterion (see, for instance,

Aissi et al., 2009; Goli et al., 2019; Gabrel et al., 2014; Roy, 2010; Tirkolaee et al., 2018).

Herein, the learning procedure combines (i) a data-mining procedure that achieves the50

uncertainty sets and (ii) a robust criterion used to systematically reacts with the decision

preferences regarding the results induced from the current data analysis. The proposed

incremental robust criterion is hereafter referred to as win-loss robustness, and its goal is

to balance between both the “winning rate" (maximization problem) and the “expected

loss" (minimization problem).55

In this paper, a Data-driven Robust Optimization (DRO) model is proposed for pro-

viding reliable itineraries based on real-world taxi GPS trajectories of Chengdu City.

The DRO framework is illustrated in Figure 2, where its objective is to enhance the ro-

bustness of the navigation system through the use of GPS-data, data-driven and robust

optimization. First, the robust optimization model can be distinguished by its compo-60

nents: (i) an uncertainty set, (ii) a robust criterion and (ii) an optimization procedure.

Second and last, DRO can be distinguished by two types of training models: the first

type is applied to generate the traffic network related to the GPS-data, while the second

one trains the robust optimization model used for providing the itineraries regarding the

trained traffic network.65

Figure 2: An overview of the data-driven robust optimization.
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2. Related Works

The urban transport is a highly complex system due to the variety of the trans-

portation modes, the large amount of traffic and unpredictable factors, such as the per-

turbations related to weather and breakdowns. In all cases, building a reliable traffic

network similar to the original road-topology remains the first step when tackling the70

urban transportation problem. A real-world road-topology includes two main compo-

nents: the structure of the network and the traffic information related to roads. The

used real-world network application is based upon the OpenStreetMap (a common tool

for analyzing road networks), where the travel time is preferred to the distance. There-

fore, in this paper extracting valuable information from GPS-data for measuring travel75

time becomes the first problem to solve. Because of the noise in GPS-data, it is often

impossible to match a GPS trajectory directly to road segments. In order to overcome

this point, the Hidden Markov Model (HMM) was proposed in Hummel (2006) for the

map matching, which was improved later (see, for instance, Newson & Krumm, 2009;

Chen et al., 2014; Yang & Gidofalvi, 2017; Wannes & Verbeke, 2018). In this study,80

HMM-based procedure is used for estimating road traffic information, which generates

the uncertainty set of the travel time.

Determining reliable itineraries under uncertainty is equivalent to solving the Stochas-

tic Shortest-Path Problem (SSPP) or the Robust Shortest-Path Problem (RSPP). SSPP’s

objective is to find a most reasonable itinerary considering the predefined travel time re-85

liability (see, for instance, Cheng et al., 2016; Chen et al., 2016; Shao et al., 2014; Wu,

2015; Zhang et al., 2016, 2017, 2018) (recent surveys on the stochastic version of reliable

itineraries can be found in Zhang et al. (2017) and Zhang et al. (2018)). Due to the

uncertain traffic network, the probability distribution related to the travel time (using

a stochastic optimization) cannot be evaluated to optimality. Unlike SSPP, RSPP was90

proposed to optimize itineraries under predefined robust criteria, especially with known

partial distribution (Yu & Yang, 1998). Most of the existing studies related to RSPP

are based on two phases: the construction phase providing the uncertainty sets, and the

enumeration phase determining all the potential scenarios, which should be used by the
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solution (more recent reviews on RSPP can be found in Goerigk & Schöbel (2016) and95

Kasperski & Zieliński (2016)).

In the literature, for either SSPP or RSPP, most results are obtained through the use

of random graphs or random instances based on real transportation networks (Stabler

et al., 2016). However, building an uncertainty set from real-world observations plays a

vital role in the robust optimization problem (Bertsimas et al., 2018a). Based on live100

traffic data from the city of Chicago, Chassein et al. (2019) conducted a comparative

study of six mainstream perspectives to model uncertainty sets for the worst-case crite-

rion. The data considered consists of 4363 available observations, where each data point

contains the traffic speed for 1257 road segments.

In addition to studying the mechanism used to build uncertainty sets for RSPP, an-105

other branch of robust optimization theory focuses on developing robust criteria based

on decision preferences, such as the worst-case criterion (Yu & Yang, 1998), the min-max

deviation criterion (Kouvelis & Yu, 1997) and the percentile robust criterion (Xing &

Zhou, 2013). Inspired by Roy (2010), Gabrel et al. (2013) proposed a robust model for

RSPP based on the expectations of the decision-maker: the bw-robust criterion. The110

paper has shown that, by adjusting the key parameters of the model, the bw-robust cri-

terion was able to represent different decision preferences, such as risk seeking (best-case

criterion), risk aversion (worst-case criterion) and min-max regret (min-max deviation

criterion). Therefore, this work aims to propose a flexible robust criterion that can be

driven by data.115

The main contributions of the paper can be summarized as follows:

• It proposes a tractable and scalable data-driven robust optimization framework,

which can drive both (i) the probability attributes from a data perspective and (ii)

the risk preference from a decision perspective.

• It establishes a framework for using large-scale GPS-data that provides an uncer-120

tainty set for travel time along a real-world traffic network.

• It designs a robust criterion whose objectives are to maximize the “winning rate"
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and to minimize the “expected loss", where the decision-maker can adjust the weight

between both objective functions according to their own risk preferences.

• An experimental protocole for evaluating the performance of the robust data-driven125

approach: a simulation-based robustness analysis based on a real-world traffic net-

work is presented. The considered GPS-data is divided into two sets −a training

set and a test set−, where the solutions provided by DRO through the use of the

training set will be tested on a "simulated traffic network" generated from the test

set.130

Network

N a set of nodes, N = {i | i = 1, . . . , n};
E a set of edges (road segments), E = {el | l = 1, . . . ,m} or {(i, j) | i 6= j ∈ N};
o, d an origin-destination pair (of nodes) in N ;

pod a path, a set of edges connecting a pair of nodes (o, d) in G.

Robust optimization

t̃ij a random variable describing the travel time of eij ;

t̂ij a set of scenarios used to simulate t̃ij ;

t̂kij the observed travel time of eij in the kth scenario of t̂ij ;

T̂ the uncertainty set used to simulate t̃ij , ∀ (i, j) ∈ E;

xij a binary variable that indicates whether eij is selected in the path;

b the best accepted value;

w the worst accepted value.

Learning model

cordut the GPS coordinates of the sample u at time t, cordut = {latitude, longitude, time};
cordu a sequence of GPS coordinates of the sample u, cordu = {cordut | t = 1, 2, . . .};
t̂u(o,d) the observed travel time of path pod for the sample u;

Strain the training set used to train the uncertainty set and the robust optimization model;

Stest the test set used to analyze the performance of DRO;

Gsim simulated traffic network used to analyze the performance of DRO;

ODreal an origin-destination pair (of nodes) generated from real GPS-data.

Table 1: Notations used for the rest of the paper.
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3. A New Robust Criterion for the RSPP

Let G = (N,E) be a network, where N represents a set of n nodes and E denotes

a set of m edges. Under the assumption that the travel time of each edge is uncertain,

the objective of RSPP is to determine a most reliable path linking a predefined origin-

destination (OD) of G (Table 1 reports the notations used for the rest of the paper).135

3.1. The Worst-Case Criterion

To simulate the uncertainty related to the travel time, the data-driven model applies

a discrete scenario-based optimization approach. Formally, for each edge eij , the travel

time from i to j is described as a random variable t̃ij whose probability distribution is

unknown. Let t̂ij be a set of S scenarios t̂kij , k = 1, . . . , S, where each scenario represents140

an available observation of the travel time t̃ij . t̂ij can be considered a set of samples used

to approximately represent t̃ij . Therefore, a feasible path pod connecting a pair of nodes

(o, d) in G is associated with S scenarios. We note that the kth scenario related to pod

depends only on t̂kij , for all edges eij ∈ pod.

A typical strategy available in the literature opts to minimize the worst observation

over all considered scenarios. The aforementioned strategy is usually referred as the

worst-case criterion, which is often used to find an absolute robust solution. Formally,

the standard linear program for RSPP (noted Pw), based on the worst-case criterion, can

be written as follows:

(Pw) min r (1)

s.t.
∑

(i,j)∈E

t̂kijxij ≤ r, k = 1, . . . , S,

∑
(i,j)∈E

xij −
∑

(j,i)∈E

xji =


1, i = o,

0, i ∈ N\{o, d},

−1, i = d,

(2)

r ≥ 0, xij ∈ {0, 1}, ∀ (i, j) ∈ E,
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where the objective function (equation 1) consists of minimizing the worst observation on145

pod over S scenarios. Such a solution may represent a solution preferred by the decision-

maker who is reluctant to take risks (Pw is an NP-hard optimization problem as proven

in Yu & Yang (1998)).

3.2. The bw-robust Criterion

In order to establish a more flexible decision recommendation mechanism, Gabrel

et al. (2013) considered the bw-robust criterion to achieve robust paths: b is the best

expected travel time and w is the travel times that decision-maker cannot accept. For-

mally, the linear program for RSPP (noted by Pbw), using the bw-robust criterion, can

be written as follows:

(Pbw) max
∑
k∈S

yk (3)

s.t. Constraints (2),∑
(i,j)∈E

t̂kijxij − (1− yk)w ≤ byk, k = 1, . . . , S, (4)

xij ∈ {0, 1},∀ (i, j) ∈ E, yk ∈ {0, 1}, k = 1, . . . , S.

In Pbw, the objective function (equation 3) maximizes the total number of scenarios that150

are better than the expected travel time b while ensuring that no considered scenarios

exceed the worst expectation w. The robustness of the solutions provided by Pbw depends

on both parameters b and w. However, choosing a reasonable assignment of the pair (b, w)

is inefficient, because constraints (inequalities 4) provide a solution respecting the worst

value of w for all scenarios. Hence, for some w the problem Pbw cannot be solved in155

reasonable runtime.

3.3. The win-loss Robust Criterion

The proposed win-loss robust criterion is inspired from the bw-robust criterion. The

new criterion allows the decision-maker to adjust the weight between both “win" and

“loss". In other words, its aim is to maximize the “winning rate" and minimize the
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“expected loss". A linear program related to the win-loss robust criterion, denoted by

Pnew, can be stated as follows:

(Pnew) max (1− α)×
∑
k∈S

yk − α× θ (5)

s.t. Constraints (2),∑
(i,j)∈E

t̂kijxij ≤ w + θ, k = 1, . . . , S, (6)

∑
(i,j)∈E

t̂kijxij − (1− yk)M ≤ b, k = 1, . . . , S, (7)

θ ≥ 0, xij ∈ {0, 1}, ∀ (i, j) ∈ E, yk ∈ {0, 1},∀ k = 1, . . . , S. (8)

In the objective function (equation 5), the term
∑

k∈S yk represents the total number

of scenarios, where the travel time meets the best expected value b, and θ measures the

delay related to the worst expected value w. Differently stated, the greater the value of160 ∑
k∈S yk, the higher the chance of winning, and the smaller the value of θ, the lower the

loss. The parameter α adjusts the weight between maximizing the win and minimizing

the loss. In our study, the value of w is reached by solving Pw, and that of b may be

estimated by using the empirical probability distribution of travel time related to each

segment in the network (see Section 5.2).165

We have already mentioned that Pw (and Pbw) is (are) NP-hard. One can observe

that by setting α = 1, and b and w to the optimal objective value of Pw, the optimal

solution of Pnew is the same as the optimal solution using the worst-case (its objective

value is equal to 0). Consequently, the win-loss criterion leads to an optimization problem

at least as difficult to solve as the problem induced by the worst-case criterion. Therefore,170

the robust shortest-path problem combined with the win-loss criterion is also NP-hard.

4. Lagrangian Relaxation-based Algorithm for the RSPP

As shown in Section 3.3, RSPP using the win-loss criterion remains NP-hard. Accord-

ing to the large number of vehicle to dispatch during critical hours, the computational

time remains a critical factor when using the win-loss criterion to path planning. Fur-175

ther, in the tailored learning model, a large number of Pbw values must be solved in

10



order to reach the best parameter settings. Based on the special structure of RSPP,

Lagrangian relaxation is widely used to design solution procedures for the shortest-path

problem under uncertainty (see, for instance, Xing & Zhou, 2011, 2013; Yang & Zhou,

2014; Zeng et al., 2015; Zhang et al., 2017). In what follows, we introduce the Lagrangian180

relaxation-based algorithm for the RSPP, where the win-loss criterion is considered.

Let λ = {λ1, . . . , λS} be a set of nonnegative Lagrangian multipliers associated to

constraints (7); the following Lagrangian relaxation is established:

Zd(λ) = max (1− α)×
S∑

k=1

yk − α× θ +

S∑
k=1

λk

b− ∑
(i,j)∈E

t̂kijxij + (1− yk)M

 (9)

s.t. (2), (6), (8),

λk ≥ 0, ∀ k = 1, . . . , S.

Zd(λ) is defined in the primary space of the solution (x, y, θ). For a given λ̄ ≥ 0, an

upper bound of Pnew can be computed by solving Zd(λ̄). By gathering all variables in

the objective function (equation 9), we deduce that

Zd(λ) = max
S∑

k=1

(1− α− λkM)yk −
S∑

k=1

∑
(i,j)∈E

λk t̂
k
ijxij − α× θ +

S∑
k=1

λk(b+M)

s.t. (2), (6), (8),

λk ≥ 0,∀ k ∈ S.

The dual function of Zd(λ), namely Zd, is solved through the use of the sub-gradient

method. Then, the optimal Lagrange multiplier vector is denoted by λ∗. Let Ω be the

finite set of feasible solutions of Zd(λ), where

Ω =
{

(xt, yt, θt) subject to (2), (6), (8), t = 1, . . . , T
}
.

Therefore, the Lagrangian dual problem can be written as follows:

(LRd) Zd = min u

s.t. u ≥ (1− α)

S∑
k=1

ytk − α× θt + λtgt, t = 1, . . . , T,
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where gt = (gt1, . . . , g
t
S) is an S-vector such that, ∀ k = 1, . . . , S,

gtk = b−
∑

(i,j)∈E

t̂kijx
t
ij + (1− yk)M.

The S-vector v is called a sub-gradient of LRd(λ) at λ′ when the following condition is

satisfied:

LRd(λ) ≥ LRd(λ′) + v(λ− λ′), ∀ λ ≥ 0.

The S-vector gt is a sub-gradient of xt at λ′, where xt is the optimal solution of Zd(λ′).

Finally, the value of λ is updated according to the solution procedure proposed in Guig-

nard (2003).

Algorithm 1 Lagrangian Relaxation-based Algorithm for Pnew (LRA)
Require: An instance of Pnew.

Ensure: A local optimal solution: p?od.

1: Initialization: Set t = 0, UB = +∞, LB = 0, λt = (0, . . . , 0);

2: while
(
t < Iterationmax

)
do

3: Compute the optimal solution ptod of Zd(λt) by using Dijkstra’s algorithm;

4: Update UB and p?od according to ptod, and set LB to the objective value of p?od;

5: if
(
LB<UB

)
then

6: Compute λt+1 by using the sub-gradient method, and set t = t+ 1;

7: else

8: Go to Step 11;

9: end if

10: end while

11: return p?od.

Algorithm 1 describes the main steps of LRA used to solve Pnew. The main loop185

(Steps from 2 to 11) always updates both current upper bound (UB) and lower bound

(LB). At each iteration of LRA, UB denotes the objective value of Pnew (related to a

feasible solution) while LB corresponds to the objective value of Zd(λ) for a given λ.

The main loop stops when the maximum number of iterations (noted Iterationmax) is

performed. For the tth iteration (∀ t = 0, . . . , Iterationmax), LRA applies Dijkstra’s190
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algorithm for solving Zd(λt) (Step 3). It is worth noting that if the worst observation

related to ptod exceeds w, the value of θ is then adjusted until the constraint (6) is satisfied.

According to the provided (feasible) solution ptod, LRA updates both current best upper

and lower bounds (Step 4). If the optimality is not proved, the Lagrangian multipliers

are computed by using the sub-gradient method (Step 6). Finally, the algorithm returns195

the best solution provided so far (Step 11).

5. Data-driven Robust Optimization Model

We have already mentioned that DRO is composed of two training models (see Fig-

ure 2) to derive itineraries according to GPS-data. Both training models serve to trans-

form GPS tracks as a direct input of the robust optimization model Pnew. In fact, the200

first model applies the hidden Markov model to generate the current traffic network in-

formation according to both GPS-data and the real-world transportation network. Based

on the provided traffic network, the second model is used for determining the best pa-

rameter settings of Pnew, i.e., the dimension of the uncertainty set T̂ , the estimation of

the maximum win b and the value related to the weight α.205

5.1. Traffic Network Training

The dataset used in this work was provided by DIDI Chuxing1, which contains

detailed tracks of the mobility of taxi vehicles for one month (from 01/11/2016 to

30/11/2016) in Chengdu City (see Section 6.1). Each taxi is characterized by its unique

identifier, namely TaxiID. Whenever a taxi receives an order, such an order is assigned210

to a unique order-number, namely OrderID. During the order, every 2 − 4 seconds, the

taxi records its current physical location / position (Longitude, Latitude) and time in-

formation (Unixtime). For instance, a sample in the data collection displayed in Table 2

expresses the order OrderID=OOOO, the taxi with its order-number TaxiID=TTTT,

which is located at position (Longitude, Latitude)=(104.07656, 30.69468) at time Unix-215

time=1480496360 (i.e., 30 November 2016 at 08:59:20).

1Data source: https://gaia.didichuxing.com.
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TaxiID OrderID Unixtime Longitude Latitude

TTTT OOOO 1480496360 104.07656 30.69468

Table 2: Illustration of the GPS coordinates of a taxi.

As mentioned in Section 2, the growth of GPS tracking devices and applications

has offered new opportunities for modeling traffic flow data. Herein, the transportation

network G studied is constructed from OpenStreetMap, where package OSMnx is used

(provided by Geoff (2017)). The network contains 4883 nodes and 13933 edges. Thus,220

the first step is to project the GPS tracks on the real network. Due to uncertain match

results caused by GPS sampling error, GPS tracks cannot be directly used to measure

the actual traffic. A common technique used for connecting GPS tracks to real road

segments is the hidden Markov model; that is a machine learning model designed to

regularly integrate noisy GPS’ coordinates and road segments.225

matched road segments

GPS waypoints

Figure 3: Result of matching road segments to a sequence of GPS’ waypoints.

Let cordu = {corduo , . . . , cordut , . . . , cordud} be a sequence of GPS’ waypoints collected
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by individual u when moving from the origin o to the destination d. Thus, the following

steps are followed:

1. HMM searches for the road segments that the vehicle traversed in real time for

all GPS’ coordinates belonging to cordu. Differently stated, the discrete states of230

HMM are represented by h road segments or edges, i.e., el, l = 1, . . . , h.

2. Given a GPS location cordut ∈ cordu, there is an emission probability for each edge

el, p(cordut |el), ∀ l = 1, . . . , h. It provides the probability that the measure cordut

will be observed if the individual u was actually on the route segment el. HMM’s

objective is to find the set of edges maximizing the total emission probability.235

3. In order to train traffic network, DRO applies the HMM-based map matching

algorithm proposed in Wannes & Verbeke (2018) to generate the most likely road

segments matched to a sequence of GPS tracks.

Figure 3 illustrates an available trajectory computed by HMM for a given sequence of

GPS waypoints.240

Based on the matching results reached by HMM, DRO uses a Hidden Markov Model-

based Generator (HMMG) to provide the uncertainty set for the robust optimization

model. Algorithm 2 describes the main steps of HMMG used for generating T̂ . HMMG

can be viewed as a two-stage procedure. The first stage (Steps from 2 to 7) converts the

GPS trajectories to the travel time, and creates a sample collection of the travel time for245

each edge. Indeed, for each edge, the travel time of a vehicle is equal to the length of the

edge divided by the average speed of the vehicle. The second stage (Steps from 8 to 11)

starts by determining the empirical distribution from the sample collection previously

determined and second a set of scenarios for each edge is generated. Finally, HMMG

returns the uncertainty set T̂ , which can be used to represent the traffic network.250

5.2. Model Training and its Evaluation

In order to evaluate the robustness of the proposed robust optimization model Pnew,

we use the simulation-based robustness analysis method (see Section 6.1). Differently
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Algorithm 2 Hidden Markov Model-based Generator (HMMG)
Require: A set of GPS tracks: O.

Ensure: An uncertainty set: T̂ .

1: Initialization: Affect each edge (i, j) ∈ E to a sample collection, noted samij ;

2: for each cordu in O do

3: Apply HMM to compute the most likely path pod associated with cordu;

4: Compute the average speed for traversing pod, noted v(o,d);

5: For each edge (i, j) ∈ pod, compute the corresponding travel time by using v(o,d);

6: For each edge (i, j) ∈ pod, update samij according to the provided travel time;

7: end for

8: for each (i, j) in E do

9: Compute the empirical distribution function of samij , noted EDFij ;

10: Generate the set of scenarios {t̂kij | ∀k = 1, . . . , S} according to the provided EDFij ;

11: end for

12: return T̂ = {t̂kij | ∀(i, j) ∈ E,∀k = 1, . . . , S}.

stated, the robustness of a solution pod (of Pnew) is measured using the estimated proba-

bility of winning and the estimated cost of loss, where both estimations can be computed255

by simulating pod on the traffic network. Therefore, the purpose of the model training

is to enable Pnew to provide the most robust itineraries for simulation experiments. In

DRO’s framework, the robustness of Pnew depends on the following parameters: (i) the

dimension of the uncertainty set T̂ , noted S (cf. Section 3.1), (ii) the weight between the

probability of winning and the cost of loss α (cf. Section 3.3), and (iii) the best expected260

travel time b (cf. Section 3.3).

On the one hand, one can observe that the dimension of the uncertainty set T̂ may

lead to results of variable quality. More its dimension is larger, more the robustness of the

model becomes larger, while the runtime effort becomes more significant. Additionally,

according to the risk preference of the decision-maker, the weight parameter α is used to265

give a nice balance between the most promising goal and the worst case. On the other
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hand, the estimation of b plays a crucial role for Pnew. Indeed, it is used to drive the

winning goal of Pnew. In this case, more the value of b is smaller, more the winning goal

is matchable, it becomes unattractive otherwise. Finally, with DRO, the estimation of b

is based on the empirical distribution associated to each road segment of the network.270

Given a network G = (N,E) and OD a pair (o, d) of nodes, let q be the percentile

rank and EDFij be the empirical distribution of edges eij , ∀ (i, j) ∈ E; the value of b

is equal to the travel time of the shortest path between o and d when the travel time

of all road segments is fixed to the q−th percentile value of their empirical distribution.

Formally, b can be computed by solving the following problem:

b = min
∑

(i,j)∈E

tqijxij

s.t. Constraints (2),

xij ∈ {0, 1}, ∀ (i, j) ∈ E,

where tqij is the q−th percentile value of EDFij for each edge (i, j) ∈ E.

6. Computational Part

The purpose of this section is two-fold: the first is to show how to determine a good

trade-off between the quality of the obtained solutions when varying the parameters used

by Pnew; the second is to analyze the robustness of the proposed DRO, where its achieved275

results are compared to those representing a case study that reflects the peak period’s

traffic in Chengdu City, China. We note that all proposed methods were coded in C++

combined with Python and run on the Intel Pentium Core i7-4790 with 3.6 GHz.

6.1. Experimental Design

The problem Pnew is NP-hard and solving it to optimality remains intractable. We280

then propose an alternative to solve it by using a simulation-based analysis method. For

all experimental results, a real traffic network is considered during the morning peak

period between 7 am and 9 am (a case study reflecting real data of Chengdu City, China
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− cf. Section 5)). The GPS’s dataset of the case study considered is divided into two

parts:285

• The first part: it is related to the training set, noted Strain. In this case, the data

reflect the period from 01/11/2016 to 29/11/2016.

• The second part: it is related to the training set, noted Stest, where the data related

to the day 30/11/2016 are considered. In this case, it represents the first day after

the data-period used for Strain.290

We note that Strain is used as an input of Algorithm 2 in order to generate the uncertainty

set T̂ whereas Stest is used to generate the simulated traffic network, namely Gsim.

Of course, Gsim is based on the empirical distribution function provided by applying

Algorithm 2 to the second set Stest.

For both sets Strain and Stest, in order to reduce the noise in the data, an order that295

matches one of the following conditions is canceled: (i) an order with a total travel time

smallest than 5 minutes2, (ii) an order whose final-point coincides with its starting-point,

and (iii) road segments that are not matched with those of 30/11/2016. In addition,

the road segment matched on 30/11/2016, but not for the period from 01/11/2016 to

29/11/2016, its travel time is fixed to the ratio between the length of the road per the300

maximum speed limit (i.e., 60 K/h). Note that T̂ covers 12718 edges and those related to

the simulated traffic network Gsim are equal to 11610 edges. In this case, Gsim has only

one new edge doesn’t belong to T̂ . Thus, only edges belonging to Gsim are considered;

differently stated, 11610 edges are considered for solving both Pw and Pnew.

The OD pairs required for the experimental design are generated from the real or-305

ders belonging to the morning peak period orders (between 7 am and 9 am) of the day

30/11/2016, namely ODsim (ODsim contains 20295 orders). For each available order,

HMM is first called for finding an available path, and then the starting (resp. final)

node of the path is setting equal to O (resp. D). Further, the order’s real-travel time,

2A customer can cancel an order unconditionally within 5 minutes.
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namely todreal, is used as a reference-point for analyzing the reliability of the robust opti-310

mization models used. Indeed, todreal is equal to the difference between the final-time and

the starting-time of the same order. Both Pw and Pnew are considered for computing

itineraries related to all pairs belonging to ODsim, where the set of itineraries provided

by Pw (resp. Pnew) is noted Solw (resp. Solnew). For each itinerary belonging to either

Solw or Solnew, 10000 random runs are performed on Gsim. Finally, the robustness of the315

solutions belonging to Solw and Solnew is measured by using the following two criteria:

• PrAv: the global average win probability over all OD pairs of ODsim;

• tsAv: the global average over all OD pairs of ODsim.

For each OD belonging to ODsim, the probability’s win related to a single path pod is

computed as follows:

Prwin(pod) = P
(
tsim ≤ todreal

)
=
NBbetter

10000
,

where tsim denotes the travel time provided by simulating pod on Gsim, and NBbetter is

the number of times that the simulation results outperforms todreal. Furthermore, during

the simulation, the minimum loss is measured by the average of the time saving, where

for a single path pod (noted tsodAv) is computed as follows:

tsodAv =

∑10000
k=1 (todreal − tksim)

10000
. (10)

6.2. Parameter Settings

It is well-known that when using approximate methods to solve hard problems, dif-320

ferent parameter settings lead to a variability in the quality of solutions. For the problem

Pnew, there are three parameters to be tested (cf. Section 5.2) such that for the training

model, the following tunings are considered:

• S: the dimension of the uncertainty set, S ∈ {10, 20, 40, 80, 160, 320, 640, 1280}.

• α: the weight between the probability of winning and losing, α ∈ [0.10, 0.95].325
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• q: the percentile rank used to calculate the best expected travel time b, where

q ∈ [0.50, 0.99].

For each combination regarding the values related to the three parameters used,

Pnew is performed on a training set composed of 100 OD pairs randomly generated

from ODsim. The achieved results are illustrated in Figure 4, where the x-axis (resp.330

y-axis) corresponds to the tsAv (resp. PrAv) related to the training set when varying

the combination of the three parameters. As shown in Figure 4, the following three

parameter-settings are chosen (namely parm1, parm2 and parm3, respectively):

− parm1: S = 160, α = 0.15, q = 0.5,

− parm2: S = 1280, α = 0.10, q = 0.53, and335

− parm3: S = 1280, α = 0.10, q = 0.58.
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Figure 4: Behavior of the training model with different tunings.

In what follows, we comment on the results reported in Figure 4:

1. First, by using the first parameter-setting parm1, one can observe that the solutions

provided by Pnew achieve the highest value for PrAv, i.e., PrAv = 0.8283 (the start

in blue-color represented on the left-hand and the right-hand of the figure).340

2. Second, with the second parameter-setting parm2, the solutions reached by Pnew

provides the largest value for tsAv, i.e., tsAv = 239.2301 (the triangle in red-color

represented on the left-hand and the right-hand of the figure).

20



3. Third, by applying the third parameter-setting parm3, the solutions achieved by

Pnew provides the best value for (PrAv+tsnormAv ), where tsnormAv denotes the normal-345

ized value of tsAv (the dot in green-color represented on the left-hand and the right-

hand of the figure). In this case, we obtain PrAv = 0.8277 and tsAv = 239.1967.

Because we seek to the settings highlighting solutions with good quality, then the three

settings will be used to solve Pnew for all orders belonging to ODsim.

6.3. Sensitivity analysis350
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(a) Sensitivity analysis of win probability.
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(b) Sensitivity analysis of time saving.

Figure 5: Sensitivity analysis of the main parameters of DRO.

One can observe that the parameter S (i.e., the dimension of the uncertainty set) used

by the designed framework may affect the robustness of DRO. In order to study the effect

of that parameter, we focussed on two indicators: the average and the variance of the

solutions provided by DRO according to different values of S. In this case, Figures 5a

and 5b show the effect of S on PrAv and tsAv respectively, through the use of the355

solutions reached by the training model (as shown in Figure 4). For both sub-figures,

both average “win probability" and “time saved" are represented on the y-axis while the

variances related to both “win probability" and “time saved" are represented in the x-axis.

According to the results displayed in Figures 5a and 5b, we observe what follows:

1. The larger the average values and the smaller the variance values, the more robust360

the results become.
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2. Using small number of scenarios to simulate the uncertainty generally induces low

quality solutions, i.e, whenever S varies in the discrete interval {10, 20, 40}. For

instance, with S = 10 (resp. S = 40), the corresponding average values (Figure 5a)

for PrAv and tsAv are respectively equal to 0.807 and 224 (resp. 0.804 and 227).365

While for S = 10 (resp. S = 40), the corresponding variance (Figure 5b) related

to PrAv and tsAv are equal to 0.00018 and 36.096 (resp. 0.00106 and 130.659)

respectively.

(a) On the one hand, in terms of win probability, the solutions reached with

S = 10 highlight the stability of the solutions when compared to those achieved370

by DRO with S = 40.

(b) On the other hand, in terms of time saved, with S = 40 the DRO is able to

provide less time consuming solutions than DRO with S = 10, while all the

provided solutions seem less stable.

3. Finally, with S = 160, DRO seems to work better since it is able to provide a better375

stability of solutions with interesting win probability and time saved.

6.4. Pw and its robustness

itinerary provided by the worst-case

matched road segments

Figure 6: Illustration of the itinerary provided by using the worst-case robust criterion.
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In this section, the robustness of the model is analyzed when introducing the worst-

criterion. We do it by adapting the solution procedure LRA (cf., Algorithm 1) for

approximately solving Pw. On the one hand, Figure 6 illustrates the trajectory matched380

by HMM and that provided by Pw when using the same order (cf. Figure 3). On the

other hand, Figure 7 shows PrAv and tsAv provided by using different scenarios S for

characterizing the travel time uncertainty.
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Figure 7: Robustness analysis for the worst-case robust criterion.

In what follows, we comment on the results provided:

1. One can observe that Pw tries to avoid a section of road segments that may be385

congested according to the worst observation encountered throughout the historical

data.

2. According to the simulation results observed in Figure 7, Pw achieves the most

robust itineraries with S = 40, where PrAv = 0.801 and tsAv = 189. In this case,

(a) for all orders belonging to ODsim, the travel time of the solutions provided by390

Pw (i.e., S = 40) has 80% of chance to be better than that related to the real

orders.

(b) Pw is able to save about 189 seconds on average. It is worthy to notice that the

number of scenarios used to build the uncertainty set has a direct impact on

the runtime required when solving Pw. Indeed, form Figure 7, one can observe395
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that for S ≥ 80, LRA’s performance decreases proportionally whenever the

number of scenarios S increases.

6.5. DRO and its Robustness

In order to analyze the robustness of DRO combined with the win-loss criterion, we

perform a comparative study based on the simulation results. Figure 8 displays the400

itineraries generated by Pnew when using the same order as Figure 3) and Figure 7).

From Figure 8a, one can observe that the win-loss criterion Pnew with S = 20, α = 0.78

and q = 0.1 tries to build a different itinerary than that achieved by Pw (i.e., for S = 20),

where the taxi has a greater chance of arriving at the expected time. On the one hand,

the win probability associated to the itinerary in blue-color provided by Pnew (i.e., 51%)405

is better than that provided by Pw (i.e., 14%). In detail, Pnew provide an itinerary such

that, the corresponding travel time is better than the real case in 51% of cases over 10000

random simulations, and the average of the travel time is equal to 415 seconds. However,

for the itinerary in red-color provided by Pw, the travel time is only better than the real

case in 14% of cases, and the average of the travel time rose to 450 seconds.410

Figure 8b displays the itineraries provided when solving Pnew, where two parameter-

settings are considered: (i) S = 20, α = 0.78 and q = 0.1, and (ii) S = 160, α = 0.50

and q = 0.15. According to the simulation results, the win probability of the itinerary

generated by the parameter-settings (i) (resp. (ii)) is equal to 51% (resp. 50%) and the

average travel time is equal to 415 seconds (resp. 413 seconds). This means that, Pnew415

with the first parameter-settings is able to find an itinerary with a higher win probability,

but when it fails, we will also face greater losses.

Based on the simulation results, Figure 9) displays the distribution of the travel time

related to Pw with S = 20, Pnew with parameter-settings (i) and (ii). We can observe

that, Pnew with parameter-settings (ii) can provide a better solution than the other420

two. Indeed, the travel time related to Pnew with parameter-settings (ii) is less than

500 seconds in most cases. Figure 9) shows that we can effectively drive the objective

function of Pnew from the GPS data in order to produce robust itineraries.
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(a) Itineraries provided both Pw and Pnew.
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(b) Itineraries provided by Pnew with different values for S.

Figure 8: Comparison of itineraries provided by different robust criteria.
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Figure 9: Distribution of the travel time provided by the simulation.

In terms of statistical analysis, using a large number of scenarios to describe the

uncertainty set can effectively improve the robustness of the solution. However, a large425

number of scenarios may significantly increase the average runtimes. Unlike Pw, the

proposed model Pnew can efficiently balance between robustness and runtime.

Figure 10 evaluates the behavior, in term of robustness, between both Pw and Pnew,

where the detailed values are displayed in Table 3. Table 3 displays the average value

(Average), the standard deviation (Std Dev), the first quartile (25%), the second quartile430

(50%) and the third quartile (75%) of both PrAv and tsAv related to the solutions

provided by both Pw and Pnew. In what follows, we comment on the results provided

when applying the DRO-based model:
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Figure 10: Robustness analysis of Pnew versus that of Pw: win-loss vs worst-case criteria.

1. First, from Figure 10, one can observe that the simulation results related to Pnew

with parm1, parm2 and parm3 outperforms Pw.435

2. Second, when using the same uncertainty set, the time required to calculate Pnew

is usually shorter than the time required to calculate Pw (see CPUm of Table 3).

3. Third, from the last line of Table 3, one can observe that Pnew with the third

parameter-setting parm3 achieves the best win probability and time saving.

Models Average Std. Dev 25% 50% 75% CPUm

Worst 10 (0.800, 188) (0.345, 275) (0.773, 36) (0.999, 159) (1, 306) 0.30

Worst 20 (0.800, 188) (0.348, 277) (0.779, 38) (0.999, 161) (1, 308) 0.37

Worst 40 (0.801, 189) (0.347, 276) (0.793, 38) (0.999, 161) (1, 307) 0.68

Worst 80 (0.798, 186) (0.350, 278) (0.780, 36) (0.999, 161) (1, 307) 1.38

Worst 160 (0.796, 186) (0.352, 278) (0.771, 34) (0.999, 161) (1, 306) 2.47

Worst 320 (0.790, 181) (0.357, 278) (0.748, 30) (0.999, 157) (1, 302) 4.05

Worst 640 (0.786, 178) (0.360, 280) (0.728, 27) (0.999, 155) (1, 302) 7.35

Worst 1280 (0.782, 177) (0.362, 279) (0.708, 25) (0.999, 152) (1, 299) 13.87

new parm1 (0.819, 202) (0.332, 276) (0.846, 51) (1, 172) (1, 320) 1.97

new parm2 (0.821, 204) (0.329, 275) (0.852, 52) (1, 174) (1, 321) 9.76

new parm3 (0.822, 204) (0.329, 275) (0.855, 53) (1, 174) (1, 322) 8.86

Table 3: Statistical analysis of computational results: Pw vs Pnew.
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7. Conclusion440

In this paper, a data-driven robust optimization was designed for solving the itinerary

planning problem, where the GPS-data, data-driven and robust optimization were com-

bined for highlighting the punctuality rate. First, a new win-loss robust criterion was

proposed, which was used for maximizing the probability of achieving the expected travel

time and minimizing the longest possible delay. Second, the data-driven robust model is445

based upon two types of training: (i) generating a traffic network related to the GPS-

data, and (ii) training the robust model by using the generated traffic network as an

input. Finally, the experimental part showed that the proposed simulation-based proto-

col, on real-world application, is able to provide high quality solutions. Due to the gap

between the GPS waypoints and the actual positions, the estimated travel time may vary450

from the actual traffic network. Therefore, we believe that Chengdu City may consider

installing speed measurement devices on some small forks to improve the estimation of

actual traffic.

Because of the flexibility of the new robust "win-lose" criterion, there are plenty pos-

sibilities for further investigation involving efficient methods for more complex problems.455

First, single and multi-objective combinatorial optimization problems with high uncer-

tainty may be potential candidates to explore. In general, we believe that the higher the

dimension of the uncertainty set, the more robust the results become. Second, the use of

high-dimensional uncertainty sets will generally increase the computational complexity

of the model, which may prevent us from designing solution methods capable of achiev-460

ing good solutions in a reasonable time. Third, in this work, the problem was addressed

without considering the correlation between travel times associated with different routes,

which is a more complex variant of the problem. Of course, as stated throughout the

paper, the objective of our study was related to the use of large-scale GPS data to solve

the real traffic problem. Finally, we highlight the literature study that relies on the use465

of the covariance matrix to simulate the correlation between travel times. In this case,

the use of the nonlinear model will make the proposed DRO more difficult to solve. We

hope for a future extension of this study to propose a linear model that can be used to
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simulate the correlation by applying scenario-based optimization.

470

Acknowledgment

This work was supported by the General Program of National Natural Science Foun-

dation of China (No. 72071211) and the Special Project of Education and Teaching

Reform in Central Universities (No. 31412012201). We also thank DiDi for the data

source: Chuxing GAIA Open Data Initiative, and the Innovation and Talent Base for475

Income Distribution and Public Finance (B20084).

References

Aissi, H., Bazgan, C., & Vanderpooten, D. (2009). Min-max and min-max regret versions

of combinatorial optimization problems: A survey. European Journal of Operational

Research, 197 , 427–438.480

Bansak, K., Ferwerda, J., Hainmueller, J., Dillon, A., Hangartner, D., Lawrence, D., &

Weinstein, J. (2018). Improving refugee integration through data-driven algorithmic

assignment. Science, 359 , 325–329.

Ben-Tal, A., El Ghaoui, L., & Nemirovski, A. (2009). Robust Optimization. Princeton

series in applied mathematics. Princeton: Princeton University Press.485

Bertsimas, D., Brown, D., & Caramanis, C. (2011). Theory and applications of robust

optimization. SIAM Review , 53 , 464–501.

Bertsimas, D., & Brown, D. B. (2009). Constructing uncertainty sets for robust linear

optimization. Operations Research, 57 , 1483–1495.

Bertsimas, D., Gupta, V., & Kallus, N. (2018a). Data-driven robust optimization. Math-490

ematical Programming , 167 , 235–292.

28



Bertsimas, D., & Sim, M. (2004). The price of robustness. Operations Research, 52 ,

35–53.

Bertsimas, D., Sim, M., & Zhang, M. (2018b). Adaptive distributionally robust opti-

mization. Management Science, 65 , 604–618.495

Bertsimas, D., & Thiele, A. (2006). Robust and data-driven optimization: Modern

decision making under uncertainty. In Models, Methods, and Applications for Innova-

tive Decision Making INFORMS TutORials in Operations Research chapter Models,

Methods, and Applications for Innovative Decision Making. (pp. 95–122). INFORMS.

Caserta, M., & Voβ, S. (2019). The robust multiple-choice multidimensional knapsack500

problem. Omega, 86 , 16–27.

Chassein, A., Dokka, T., & Goerigk, M. (2019). Algorithms and uncertainty sets for data-

driven robust shortest path problems. European Journal of Operational Research, 274 ,

671–686.

Chen, B. Y., Li, Q., & Lam, W. H. (2016). Finding the k reliable shortest paths under505

travel time uncertainty. Transportation Research Part B: Methodological , 94 , 189 –

203.

Chen, B. Y., Yuan, H., Li, Q., Lam, W. H., Shaw, S.-L., & Yan, K. (2014). Map-matching

algorithm for large-scale low-frequency floating car data. International Journal of

Geographical Information Science, 28 , 22–38.510

Cheng, J., Leung, J., & Lisser, A. (2016). New reformulations of distributionally robust

shortest path problem. Computers & Operations Research, 74 , 196–204.

Delage, E., & Ye, Y. (2010). Distributionally robust optimization under moment uncer-

tainty with application to data-driven problems. Operations Research, 58 , 595–612.

Gabrel, V., Murat, C., & Thièle, A. (2014). Recent advances in robust optimization and515

robustness: an overview. European Journal of Operational Research, 235 , 471–483.

29



Gabrel, V., Murat, C., & Wu, L. (2013). New models for the robust shortest path

problem: complexity, resolution and generalization. Annals of Operations Research,

207 , 97–120.

Geoff, B. (2017). Osmnx: New methods for acquiring, constructing, analyzing, and520

visualizing complex street networks. Computers, Environment and Urban Systems,

65 , 126–139.

Goerigk, M., & Schöbel, A. (2016). Algorithm engineering in robust optimization. In

L. Kliemann, & P. Sanders (Eds.), Algorithm Engineering . Springer, Cham volume

9220 of Lecture Notes in Computer Science.525

Goli, A., Tirkolaee, E. B., Malmir, B., Bian, G.-B., & Sangaiah, A. K. (2019). A multi-

objective invasive weed optimization algorithm for robust aggregate production plan-

ning under uncertain seasonal demand. Computing , 101 , 499–529.

Guignard, M. (2003). Lagrangian relaxation. Sociedad de Estadistica e Investigacion

Operativa Top, 11 , 151–228.530

Hanks, R. W., Lunday, B. J., & Weir, J. D. (2019). Robust goal programming for

multi-objective optimization of data-driven problems: A use case for the united states

transportation command’s liner rate setting problem. Omega, 90 .

Hummel, B. (2006). Map matching for vehicle guidance. In R. Billen, E. Joao, &

D. Forrest (Eds.), Dynamic and Mobile GIS: Investigating Space and Time chapter 10.535

(pp. 1–12). CRC Press: Florida. (1st ed.).

Kasperski, A., & Zieliński, P. (2016). Robust discrete optimization under discrete and

interval uncertainty: a survey. In M. Doumpos, C. Zopounidis, & E. Grigoroudis

(Eds.), Robustness Analysis in Decision Aiding, Optimization, and Analytics (pp. 113–

143). Springer, Cham volume 241 of International Series in Operations Research &540

Management Science.

30



Kouvelis, P., & Yu, G. (1997). Robust discrete optimization and its applications. Boston:

Kluwer Academic.

Lee, L., Jones, M., Ridenour, G. S., Bennett, S. J., Majors, A. C., Melito, B. L., &Wilson,

M. J. (2016). Comparison of accuracy and precision of gps-enabled mobile devices. In545

2016 IEEE International Conference on Computer and Information Technology (CIT)

(pp. 73–82).

Newson, P., & Krumm, J. (2009). Hidden markov map matching through noise and

sparseness. In 17th ACM SIGSPATIAL International Conference on Advances in Ge-

ographic Information Systems (ACM SIGSPATIAL GIS 2009), November 4-6, Seattle,550

WA (pp. 336–343).

Roy, B. (2010). Robustness in operational research and decision aiding: A multi-faceted

issue. European Journal of Operational Research, 200 , 629–638.

Shao, H., Lam, W. H. K., Sumalee, A., Chen, A., & Hazelton, M. L. (2014). Estimation of

mean and covariance of peak hour origin–destination demands from day-to-day traffic555

counts. Transportation Research Part B: Methodological , 68 , 52–75.

Stabler, B., Bar-Gera, H., & Sall, E. (2016). Transportation networks for research. URL:

https://github.com/bstabler/TransportationNetworks.

Su, H., Yang, J., & Yang, C. (2019). A robust optimization approach to multi-interval

location-inventory and recharging planning for electric vehicles. Omega, 86 , 59–75.560

Tirkolaee, E. B., Aydin, N. S., Ranjbar-Bourani, M., & Weber, G.-W. (2020). A robust

bi-objective mathematical model for disaster rescue units allocation and scheduling

with learning effect. Computers & Industrial Engineering , 149 .

Tirkolaee, E. B., Mahdavi, I., & Esfahani, M. M. S. (2018). A robust periodic capacitated

arc routing problem for urban waste collection considering drivers and crew’s working565

time. Waste Management , 76 , 138–146.

31



Wannes, M., & Verbeke, M. (2018). Hmm with non-emitting states for map macthing.

In European Conference on Data Analysis (ECDA). Paderborn, Germany.

Wu, X. (2015). Study on mean-standard deviation shortest path problem in stochastic

and time-dependent networks: A stochastic dominance based approach. Transportation570

Research Part B: Methodological , 80 , 275–290.

Xia, F., Rahim, A., Kong, X., Wang, M., Cai, Y., & Wang, J. (2017). Modeling and

analysis of large-scale urban mobility for green transportation. IEEE Transactions on

Industrial Informatics, 14 , 1469–1481.

Xing, T., & Zhou, X. (2011). Finding the most reliable path with and without link travel575

time correlation: A lagrangian substitution based approach. Transportation Research

Part B: Methodological , 45 , 1660–1679.

Xing, T., & Zhou, X. (2013). Reformulation and solution algorithms for absolute and

percentile robust shortest path problems. IEEE Transactions on Intelligent Trans-

portation Systems, 14 , 943–954.580

Yang, C., & Gidofalvi, G. (2017). Fast map matching, an algorithm integrating hidden

markov model with precomputation. International Journal of Geographical Informa-

tion Science, 32 , 547–570.

Yang, L., & Zhou, X. (2014). Constraint reformulation and a lagrangian relaxation-based

solution algorithm for a least expected time path problem. Transportation Research585

Part B: Methodological , 59 , 22–44.

Yu, G., & Yang, J. (1998). On the robust shortest path problem. Computers & Operations

Research, 25 , 457–468.

Zeng, W., Miwa, T., Wakita, Y., & Morikawa, T. (2015). Application of lagrangian

relaxation approach to α-reliable path finding in stochastic networks with correlated590

link travel times. Transportation Research Part C: Emerging Technologies, 56 , 309–

334.

32



Zhang, Y., Max Shen, Z.-J., & Song, S. (2017). Lagrangian relaxation for the reliable

shortest path problem with correlated link travel times. Transportation Research Part

B: Methodological , 104 , 501–521.595

Zhang, Y., Shen, Z.-J. M., & Song, S. (2016). Parametric search for the bi-attribute

concave shortest path problem. Transportation Research Part B: Methodological , 94 ,

150–168.

Zhang, Y., Song, S., Shen, Z. M., & Wu, C. (2018). Robust shortest path problem with

distributional uncertainty. IEEE Transactions on Intelligent Transportation Systems,600

19 , 1080–1090.

33




