
HAL Id: hal-03617882
https://u-picardie.hal.science/hal-03617882

Submitted on 13 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

A look-ahead strategy-based method for scheduling
multiprocessor tasks on two dedicated processors

Meziane Aider, Fatma Zohra Baatout, Mhand Hifi

To cite this version:
Meziane Aider, Fatma Zohra Baatout, Mhand Hifi. A look-ahead strategy-based method for scheduling
multiprocessor tasks on two dedicated processors. Computers & Industrial Engineering, 2021, 158,
�10.1016/j.cie.2021.107388�. �hal-03617882�

https://u-picardie.hal.science/hal-03617882
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

A Look-Ahead Strategy-Based Method for Scheduling

Multiprocessor Tasks on Two Dedicated Processors

Méziane Aider†, Fatma Zohra Baatout† and Mhand Hifi‡,?.

All authors are listed in alphabetical order.

†Méziane Aider

LaROMaD, USTHB BP 32 El Alia 16111 Bab Ezzouar, Algiers, Algeria

E-mail: meziane.aider@gmail.com

†Fatma Zohra Baatout

LaROMaD, USTHB BP 32 El Alia 16111 Bab Ezzouar, Algiers, Algeria

E-mail: baatout.fz@gmail.com

‡Mhand Hifi

?Corresponding author.

EPROAD EA 4669, UPJV, 7 rue du Moulin Neuf, 80000 Amiens, France

E-mail: hifi@u-picardie.fr

Declarations of interest.

The authors do not have any possible conflicts of interest.

© 2021 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0360835221002928
Manuscript_6143859bbd7ab839c51397509c22f140

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0360835221002928
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0360835221002928

A Look-Ahead Strategy-Based Method for Scheduling

Multiprocessor Tasks on Two Dedicated Processors

Abstract

In this paper, we investigate the use of a look-ahead strategy combined with path-

relinking for tackling the problem of scheduling multiprocessor tasks on two dedicated

processors. An instance of the problem is composed of a set of tasks divided into three

subsets and two processors, where some tasks can be executed either on one processor or

two processors. The goal of the problem is to schedule all tasks such that the execution

of the last assigned task is minimized. First, the proposed method starts with a greedy

feasible solution built by applying a knapsack rule related to a predefined sequence.

Second, a series of local operators are added in order to drive the search process around

a series of neighborhoods. Third, a first diversification strategy based upon drop and re-

build operators is employed. The second diversification/intensification strategy is used

for highlighting the performance of the method; it incorporates a look-ahead strategy

combined with the path-relinking. Finally, the performance of the proposed method

is experimentally analyzed on a set of benchmark instances of the literature, where its

provided results are compared to those achieved by more recent methods available in

the literature. Its behavior is also evaluated by providing a statistical analysis using

both the Sign test and the Wilcoxon signed-rank test.

Keywords. Heuristics, Look-Ahead, Optimization, Scheduling.

1 Introduction

The problem of Scheduling multiprocessor Tasks on Two dedicated Processors (noted ST2P)

is an NP-hard combinatorial optimization problem (Hoogeveen, van de Velde, & Velt-

man, 1994), where its goal is to affect all available tasks to either a single processor or

two different processors. Generally, for scheduling problems, the measures of performance

are often categorized as follows (Brucker, 2007): (i) criteria based upon completion times,

1

https://www.editorialmanager.com/caie/viewRCResults.aspx?pdf=1&docID=56915&rev=2&fileID=906623&msid=915dbb6e-685a-4128-ad95-45a0437a156d
https://www.editorialmanager.com/caie/viewRCResults.aspx?pdf=1&docID=56915&rev=2&fileID=906623&msid=915dbb6e-685a-4128-ad95-45a0437a156d

(ii) criteria based on due dates and, (iii) criteria based on inventory cost and use.

In this paper, the studied problem can be viewed as a special case belonging to the

family of scheduling problems (Drozdowski, 1996; Priya & Sahana, 2019; Bukchin, Raviv,

& Zaides, 2020), where the set of tasks is divided into three groups:

1. the first group contains the tasks that need to be performed on the first processor,

2. the second group includes those executed on the second processor and,

3. the third group contains the tasks which must be performed simultaneously on both

processors.

One can observe that, on the one hand, several scheduling problems may consider different

objective functions: (a) minimizing the makespan that corresponds to minimize the com-

pletion time of the last executed task, (b) to minimize the summation of the delays of all

tasks, (c) to minimize both delays and makespan, etc. On the other hand, several versions

of the scheduling problem can be accessed (a) on the number of available processors, (b)

how tasks are assigned on certain processors, etc.

In this paper, ST2P is tackled where its goal is to minimize the completion time of the

last executed task (makespan). Such a problem can be encountered in several real-world

applications, like production and data transfer (Manna & Chu, 2010). More precisely, an

instance of ST2P is defined as follows: let N denote the set containing n tasks to schedule

on two dedicated processors (namely P1 and P2) such that a task j is released at time rj

and has to be processed without preemption during its processing time pj and, Cj is the

completion time of task j while Cmax denotes the makespan of the schedule to minimize.

As described in Graham et al. (1979), such a problem is defined as P2|fixj , rj |Cmax, where:

P2: represents two processors on which all tasks must be executed.

fixj: means that each task j is assigned and its assignment is fixed (either to a single

processor or to both processors).

rj: denotes the release date of the task j.

pj: is the processing time of the task j when executed on the processors.

Cmax: denotes the makespan (completion time) of the last assigned/executed task.

2

The remainder of the paper is organized as follows. Section 2 reviews the relevant

literature related to some scheduling problems. Section 3 discusses a formal description

of ST2P (Section 3.1) and its tight lower bound (Section 3.2), proposed by Manna and

Chu (2010). The aforementioned lower bound is used for analyzing the quality of the results

provided by all methods. Section 4 describes the look-ahead strategy-based algorithm for

approximately solving ST2P. A starting solution, using a knapsack greedy rule, is presented

in Section 4.1. The intensification operators, combined with a tabu list, are described in

Section 4.2. The diversification strategy, using the drop and rebuild operator, is discussed in

Section 4.3. The look-ahead strategy incorporated into the core of the algorithm is detailed

in section 4.4. Section 5 exposes the performance of the proposed method that is evaluated

on a set of benchmark instances of the literature. Its achieved results are compared to

those provided by the best and more available methods in the literature. Finally, Section 6

concludes the paper.

Because the proposed method can be viewed as an augmented version of the method

proposed in Aïder, Baatout, and Hifi, (2020) and, in order to make the paper self-containing,

some parts of the aforementioned paper are repeated in what follows.

2 Literature review

The scheduling can be viewed as one of the old problems belonging to the combinatorial

optimization family that can be encountered in both real-world applications and academic

studies. Such a problem can model several real-world situations, where its formalism fits well

with the most complex problems while the academic studies considered practical situations

as references. However, the problems belonging to the scheduling family (Drozdowski, 1996)

are often NP-hard in the strong sense, where searching for optimal solutions (single objective

function) or Pareto optimal points (more than one objective function) remains intractable.

In the aforementioned paper, the author described the first principal variants related to

both scheduling multiprocessor tasks on parallel processors and scheduling multiprocessor

tasks on dedicated processors, where their complexity analysis was underlined.

Because of the NP-hardness of the majority of problems belonging to the scheduling

family, any exact method may be used for tackling some small-sized instances and so,

the availability of effective heuristics and meta-heuristics are of paramount importance.

These methods include an evolutionary technique-based approach, as described in Priya

3

and Sahana (2019), where some effective strategies employed into multi-population meta-

heuristics were underlined. In the same paper, an extended version using useful strategies

was designed for efficiently tackling job scheduling in a multiprocessor environment. In

addition to the previous work, Lei and Cai (2020) provided an extensive review on solving

production scheduling problems that are based upon multi-population meta-heuristics while

designing a classification for linking several versions. We note also that in Priya and Sahana

(2019), the authors presented a systematic literature review for the directed acyclic graph

scheduling; that is the scheduling problem modeled through a directed acyclic graph. Based

on the survey of more than fifty references, the authors provided an overview of the last

three decades of research on the scheduling domain.

Other studies have tackled several versions of the problems belonging to the scheduling

family, like Bianco, Blazewicz, Dell’Olmo, and Drozdowski (1997) who studied the prob-

lem of scheduling tasks on two dedicated processors with preemptive constraints (noted

P2|fixj , rj , pmtn|Cmax), where tasks can be interrupted and finished later. The authors

designed an optimal solution procedure that is based on two steps polynomial time com-

plexity.

Blazewicz, Dell’Olmo, and Drozdowski (2002) tackled a special case of scheduling mul-

tiprocessor tasks on two identical parallel processors. The authors discussed the complexity

analysis for special cases, like considering (i) the scheduling with unit execution time, (ii)

the preemptable tasks with ready times and, due-dates and, (iii) precedence constraints. For

these cases, the goal of the problem is to minimize the schedule length and the maximum

lateness.

Thesen (1998) designed a tabu search-based algorithm for approximately solving mul-

tiprocessor scheduling problems. The proposed algorithm combines tabu strategy, local

search operator, and how to manage the lists used. Several strategies have been consid-

ered, like random blocking related to the size of the tabu list, frequency-based penalties for

diversifying the search process, and the hashing operator for stocking high solutions. The

experimental part showed that some combinations have better behavior than others; in this

case, the achieved results, on benchmark instances, are better than those reached by several

algorithms of the literature.

Blazewicz, Dell’Olmo, Drozdowski, and Speranza (1992) tackled the problem of schedul-

ing multiprocessor tasks on three dedicated processors. The authors made a complexity

analysis of the problem and studied different cases related to this problem for which they

4

proposed optimal solutions in polynomial time complexity.

Buffet, Cucu, Idoumghar, and Schott (2010), developed two tabu search-based algo-

rithms for solving the multiprocessor scheduling problem using m processors. The authors

followed the standard principle of the tabu search, where a starting solution is built by

respecting a legal schedule, the intensification strategy that checks possible permutations

between tasks for improving the quality of the solutions, the diversification strategy using

a local search for exploring unvisited subspaces. The resulting algorithm was evaluated on

thirty randomly generated instances and showed that the method was able to outperform

one of the best methods of the literature.

Zhang, Li, and Wang (2016) solved the single batch-processing machine scheduling prob-

lem, where different job sizes and arbitrary job arrivals are considered. Their proposed

method is a hybrid one, where the local search is combined with path-relinking. In fact,

three kinds of local searches were implemented in order to enhance their method for provid-

ing efficient diversified solutions. Further, the path-relinking was incorporated to explore

solutions with high quality through links between the highest solution at hand and target

initial solutions belonging to the elite set. In their experimental part, the authors underlined

the high effect of the path-relinking when incorporated into the local search-based method.

Concerning the problem studied in this paper, scheduling tasks on two dedicated pro-

cessors, Manaa and Chu (2010) proposed an exact algorithm to solve it. The algorithm is

based upon the classical branch and bound procedure, where the internal nodes are bounded

with special lower and upper bounds. The experimental part showed the performance of

such a method, where it was able to solve instances up to thirty tasks within fifty minutes.

Kacem and Dammak (2014) tailored an effective genetic algorithm for approximately

solving the scheduling of a set of tasks on two dedicated processors. The principle of

the algorithm is based upon the classical genetic principle reinforced with a constructive

procedure able to provide feasible solutions for the problem. The resulting algorithm was

evaluated on random instances generated following Manaa and Chu (2010)’s generator,

where the experimental part showed that the method was able to achieve solution values

closest to those provided by the tight lower bound proposed by Manaa and Chu (2010).

Aïder, Baatout, and Hifi (2020) designed a reactive search-based method for solving

the scheduling of a set of tasks on two dedicated processors. Their method starts with a

greedy solution provided by a knapsack procedure, where the problem is considered as an

ordering of a set of items into knapsacks. The method incorporates both intensification

5

and diversification strategies hoping for the improvement of the final solutions. Indeed, the

intensification strategy is based upon the classical 2-opt and 3-opt local searches reinforced

with a tabu list for avoiding cycling. The diversification strategy combines the so-called

drop and rebuild strategy, for jumping from one search space to another and thus trying

to explore more unvisited subspaces. Finally, the computational part was conducted on a

set of benchmark instances of the literature, and its provided results were compared to the

best bounds achieved by the method available in the literature; the authors underlined the

efficiency of their method for all tested instances.

More recently, several case studies have been investigated in the literature, like the

problem related to the relay satellite system mission scheduling (Song, Xing, Wang, Yi,

Xiang, & Zhang, 2020), a variant of the multiprocessor task scheduling problem, motivated

by a real problem arising in the semiconductor industry (Bukchin, Raviv, & Zaides, 2020),

the multiprocessor task scheduling problem with dedicated processors such that each task

requires a given and fixed set of processors while processors are the vertices of a given initial

graph and the required set of processors must induce a connected subgraph of the initial

graph (Kononova, Kononovaa, & Gordeev, 2020) and, the special distributed assembly no-

idle flow-shop scheduling problem (Zhao, Zhang, Cao, & Tang, 2021) related to the modern

supply chains and manufacturing systems.

3 Modeling and bounding ST2P

This section is divided into two parts. First, a mathematical model of ST2P is presented

in Section 3.1. Second and last, Section 3.2 describes a tight lower bound already proposed

by Manna and Chu (2010).

3.1 A formal description of the problem

Because ST2P is NP-hard in the strong sense (Hoogeveen, van de Velde, & Veltman, 1994),

we first propose a mathematical model to formulate this problem. We recall that an instance

of ST2P is characterized by a set of tasks to be processed on two dedicated processors. Each

task has its release time and its processing time and, all tasks are categorized according to

their processing. Some tasks need to be assigned only to the first processor and some others

to the second one while the remaining tasks, however, need both processors simultaneously.

The goal of the problem is to find a schedule that assigns, without preemption, each task

6

according to its category, where the length of the final schedule (makespan) should be

minimized.

For the rest of the paper, the following assumptions are considered: (i) all the numerical

numbers are integer, (ii) any task cannot be interrupted once a processor starts processing

it, (iii) each processor can process only one task at a time, for the tasks being processed

by one processor at a time and, (iv) the processors do not breakdown, no maintenance

operations are considered between the production operations. Further, according to the

previous notations, we use the additional ones given as follows:
N : set of tasks to be processed.

n : number of tasks to be processed.

P1 : the set of tasks requiring the first processor.

P2 : the set of tasks requiring the second processor.

P12 : the set of tasks requiring both processors simultaneously.

pj : processing time of the task j, j ∈ N .

rj : release date of the task j, j ∈ N .

M : a non-negative constant penalty, greater than any number to which it will be

compared.

Finally, the formal description of ST2P can be stated as follows:

Minimize Cmax (1)

Cj ≥ Ci + pj + (xij − 1).M, ∀ (i, j) ∈(P1 ∪ P12)2 (2)

Cj ≥ Ci + pj + (xij − 1).M, ∀ (i, j) ∈(P2 ∪ P12)2 (3)

xij + xji = 1, ∀ (i, j) ∈(P1 ∪ P12)2 (4)

xij + xji = 1, ∀ (i, j) ∈(P2 ∪ P12)2 (5)

Cmax ≥ Ci, ∀ i ∈(P1 ∪ P2 ∪ P12) (6)

Ci ≥ ri + pi, ∀ i ∈(P1 ∪ P2 ∪ P12) (7)

xij ∈ {0, 1}, ∀ (i, j) ∈(P1 ∪ P12)2 ∪ (P2 ∪ P12)2, (8)

where xij = 0, (i, j ∈ N2), if the task j completes before the task i, starts, 1 otherwise. The

first line (1) of the model refers to the objective function, where the makespan Cmax should

be minimized. Constraints (2) and (3) express that if the task j is sequenced after the task

i is completed, the completion time of the task j is greater than or equal to the sum of

7

the completion time and the processing time of that task i. Constraints (4) and (5) mean

that for any pair {i, j} of sequenced tasks on the same processor, one has to be completed

before the other starts. The constraint (6) ensures that the makespan is greater than or

equal to the completion time for each task j. The constraints (7) mean that the completion

time of task j is greater than or equal to its release date plus its processing time. Finally,

constraints (8) are related to the domain of all decision variables.

3.2 ST2P’s lower bound

Manaa and Chu (2010) proposed a nice lower bound for ST2P that is based on relax-

ing the original problem into two subproblems to solve. They also proved that the pro-

posed bound provides an optimal solution for the preemptive case of the problem, i.e.,

P2|fixj , rj , pmtn|Cmax. The calculation of such a bound is explained in what follows.

A task j ∈ N is called a P1 − task (resp. P2 − task) if it is allocated to the processor

P1 (resp. P2) while it is called P12− task whenever the task j requires simultaneously both

processors P1 and P2; that is a biprocessor task. Then, the lower bound can be computed by

splitting ST2P into two subproblems, where all bi-processor tasks are divided into two sets

of mono-processor tasks each. In this case, the first (resp. second) set, noted P 1
12 − tasks

(resp. P 2
12 − tasks) is separately scheduled on each processor. Thus,

• P1 − tasks and P 1
12 − tasks should be scheduled on processor P1.

• P2 − tasks and P 2
12 − tasks should be scheduled on processor P2.

Finally, the optimal solution for each subproblem can be provided by processing tasks

in nondecreasing order of their release dates rj on each processor. Positioning step by step

the tasks affected to each processor induces an optimal solution for each subproblem, an

optimal solution Copt
1 for the first subproblem with processor P1 and, Copt

2 for the second

one with processor P2. Hence, ST2P’s lower bound corresponds to

max(Copt
1 , Copt

2).

Note that the solution procedure used for computing the aforementioned bound is a polynomial-

time algorithm with an order time complexity of O(n log n).

8

4 A look-ahead strategy-based method

This section exposes the main principle of the proposed look-ahead strategy-based method

for scheduling tasks on two dedicated processors problems. Indeed, the following steps may

summarize the key features of the method:

1. Starting the search process with a greedy solution provided by applying the so-called

basic knapsack procedure (cf. Section 4.1).

2. Making a series of moves on the current solution for achieving an improved solution

(cf. Section 4.2).

3. Perturbing the search process by using both drop and rebuild strategy for reaching a

new current solution, according to a new order on tasks (cf. Section 4.3).

4. Using a look-ahead strategy for linking a series of a couple of solutions aiming the

enhancement of the solutions at hand (cf. Section 4.4).

5. Steps (1)-(4) are repeated until a satisfactory solution is reached.

4.1 A knapsack procedure

One can observe that building any solution for the studied problem is equivalent to provide

a sequence of positions related to the tasks on the processors. In this case, an initial greedy

solution can be built by applying a standard scheduling’s greedy procedure adapted for

ST2P. The procedure uses two main steps: (i) reordering the tasks (items) according to a

given criterion and, (ii) selecting step by step a non-affected task (item) and assigning it to

a processor (knapsack). The second step is iterated until positioning all tasks (items) on

their corresponding processor(s) (knapsack).

The following steps describe the main steps of the standard scheduling’s greedy proce-

dure. Suppose that rj denotes the release date of the task j, and pj its processing time.

Then,

1. Determine all ratios related to the processing time per release date, i.e., the value
pj
rj
, j ∈ N .

2. Rank all tasks according to the non-increasing order of ratios; that is p1
r1
≥ . . . ≥ pj

rj
≥

. . . ≥ pn
rn
.

9

By using the above steps to each task, according to the current order, an initial solution

may be built for ST2P. This solution represents a sequence of tasks assigned to either the

first processor, or the second processor, or both processors.

4.2 Intensification strategy

Determining a new sequence (solution) with higher quality is equivalent to force the assign-

ment of some tasks to processors (providing a partial solution) and, to solve the rest of the

problem for completing the partial solution. Indeed, introducing some moves between tasks

is equivalent to fix some of them and reassigning the rest of the tasks to their corresponding

processors(s).

4.2.1 A 2-opt Operator

A 2-opt operator is a quick local search procedure that is able to improve solutions even

if it is based upon simple local modifications of the current solution. Generally, from a

given (current) feasible solution, the 2-opt operator repeatedly makes some swaps/shakes

as long as the quality of the induced solution is improved. Whenever the search process

stagnates around the same objective value, then the 2-opt operator reaches its limits; that

is a situation where the method is trapped into a local optimum. In this paper, we propose

a standard 2-opt operator that consists of swapping two randomly chosen positions of the

current sequence. The series related to these swaps induced the current neighborhood

around the solution at hand.

Π1 Π2 Π1 Π2

Before −→ 1 4 3 5 7 2 6 After −→ 1 4 6 5 7 2 3

Figure 1: A swapping operator between positions Π1 and Π2 related to two assigned tasks

Figure 1 illustrates the swapping operator applied by the intensification search. Of

course, making a swap between two tasks (as illustrated in Figure 1) may induce either a

feasible solution or an unfeasible one. In the case of an unfeasible solution, the following

greedy repairing operator is used for making it feasible. The procedure is composed of two

steps as described in what follows.

Let i and j, i 6= j, denote two assigned tasks (after making a swap), such that i is positioned

before j. Then the following two-steps procedure is applied to the provided configuration.

10

The first-step. It can be applied as follows:

1. According to the position of the task i, move all tasks from the left to the right

till removing all overlapping.

2. According to the position of the task j (with its new position), move all tasks

from the left to the right till removing all overlapping.

The second-step. Because the swapping operator produces a new sequence, we then apply

the knapsack greedy procedure to that order.

Hence, by applying the above steps to the current solution, one can observe that a series

of solutions can be built and so, these solutions form the current 2-opt neighborhood.

4.2.2 A 3-opt operator

In this section, we propose a local search based upon the 3-opt operator. As observed above

(Section 4.2.1), a current solution may be locally improved by using a simple 2-opt operator

that is based on small moves. We then propose to introduce a neighborhood operator with

higher freedom, which can mix two consecutive neighbors around the current solution. The

main idea of such a strategy is to iterate a series of small moves around the current solution.

At a certain internal iteration, consider an alternative search operator with higher moves

and continue the search by applying small moves. Such a search is iterated until matching

predefined stopping criterion.

Π1 Π2 Π1 Π2

Sequence → 1 4 3 5 7 2 6 First-swap → 1 4 6 5 7 2 3
(a)

Π3 Π2 Π3 Π2

Before → 1 4 6 5 7 2 3 Second-swap → 3 4 6 5 7 2 1
(b) .

Figure 2: A 3-opt operator related to two couples of swapping: (a) the first couple of
positions (Π1,Π2) and, (b) the second couple of positions (Π2,Π3).

Each step of the higher move-based operator can be summarized as follows (in what

follows, we consider Ŝ as the solution at hand):

1. Select two random tasks from the solution Ŝ, permute both tasks for forming a new

configuration Ŝ′.

11

2. Select two new random tasks from Ŝ′ (different from the already swapped tasks),

permute these tasks for forming a new configuration Ŝ′′.

3. Call the 2-opt operator on Ŝ′′ for improving the quality of the solution and, let S? be

the new achieved solution (according to Ŝ).

Figure 2 illustrates the steps used when applying the 3-opt operator that is applied to

the current feasible solution.

4.2.3 Introducing a standard tabu list

The goal of both 2-opt and 3-opt operators is to provide a series of solutions iteratively

reached throughout searching on several neighborhoods. The principle of the tabu list is

to store some moves instead of storing all visited solutions. Indeed, because storing these

solutions may induce the saturation of the memory-space, the tabu list is then limited to

storing some inverse-moves (inverse-swaps) to avoid cycling and stagnation of solutions.

In order to prevent the research process to lead toward the same local optima and so,

the method can be trapped in these solutions, the tabu search is introduced. Also, the

intensification strategy tries to find solutions throughout a series of neighborhoods provided

with both 2-opt and 3-opt operators. Despite the improvements issued from these operators,

it is interesting to propose a manner able to drive the search process through other unvisited

neighborhoods.

In this study, because both 2-opt and 3-opt use swaps between tasks for iteratively

generating a series of neighbors, we then add a tabu list that stores a list of temporarily

inverse-swaps; that are the moves trying to avoid return to the solutions already visited.

4.3 Diversification strategy

Other operators, like local search using diversifications, can also be applied for improving the

quality of the solutions. As used in Hifi and Michrafy (2006), a reactive search was proposed,

where two complementary strategies are combined trying to jump from the current search

space to a new one. Both (i) dropping strategy and (ii) rebuilding strategy are incorporated

in order to favor some fixed object and to optimize the rest of the problem with free variables

for completing the solution at hand.

Herein, such a strategy may be described as follows:

12

1. Construct a partial solution by removing some objects from the current solution.

Hence, a partial (feasible) solution is built.

2. Complete the current partial solution reached at the first step by solving the subprob-

lem with the free objects.

In this study, we adapt such a process which consists of dropping a subset of assigned

tasks from the current sequence (i.e. the current solution). The dropping strategy tries

to diversify the search process by degrading the quality of the current solution with the

aim of avoiding stagnation. The partial solution is built and completed by applying the

knapsack procedure, according to the new order associated with the free tasks. Indeed, the

diversification strategy can be applied by using the Drop and Rebuild Operator (DRO),

which can be summarized in what follows. Let Ŝ be the current solution, the DRO strategy

is then applied in order to reduce the problem, by randomly fixing a subset of already

assigned tasks of Ŝ, as follows:

Algorithm 1 - Drop and Rebuild operator (DRO)

Input. An instance of ST2P with a solution Ŝ.
Output. A perturbed (improved) solution S?, a best solution of ST2P.

1: From the solution Ŝ, drop β%, β ∈]0, 100[, of the tasks according to the current order of the
sequence and, let Ŝ1 be the first partial solution built with the rest of the tasks

2: Solve the reduced problem with the knapsack procedure (cf., Section 4.1) and let S? be the
complete achieved solution

3: Improve the current solution S? by calling the intensification phase (cf., Section 4.2), including
the already removed tasks

4: return S?

4.4 A look-ahead strategy

Combining path-relinking with a greedy procedure was initially proposed by Laguna and

Marti (1999). Its goal is to intensify the search space of each given local solution. On the one

hand, Resende, Marti, Gallegoc, and Duarte (2010) discussed different strategies that can be

employed in order to build the path that should be created between an initial solution and

the target solution. Among these strategies, creating randomness on the generated solutions

through the path can also be reached by applying a greedy permutation between an element

of the starting solution and another one randomly taken from the target solution. Truncated

search and evolutionary strategies can also be used either for making a quick convergence

13

or for improving solutions. Generally, the path-relinking may start with x and iteratively

modifies it to provide the guiding solution y. One way toward y is similar to build a series of

neighbors that can take different directions. In fact, finding the neighbor solutions leading

y can be stated as follows:

1. Set k = 0 and let x = Pathk(x, y) be the starting solution and y = Pathr(x, y) be the

guiding solution, where r ≥ 1.

2. Determine an intermediate solution Pathk+1(x, y), increment k with one unit and set

x = Pathk(x, y).

3. Repeat step (2) till performing r neighbor-solutions, where the latest one is closest

to y.

Algorithm 2 - A Look-Ahead (LA)

Input. Two solutions x and y, where f(x) ≥ f(y).
Output. An internal solution yBest for ST2P.

1: Set yBest = argmin
{
x, y
}
.

2: Set k = 0, x = Pathk(x, y) and y = Pathr(x, y), where 1 ≤ r ≤ n (n denotes the size of the
Hamming distance between both x and y).
Let Ox (resp. Oy) be a sequence representing tasks assigned to processors according to a given
order related to x (resp. y).

3: repeat
4: Let O(p) = Ox ∩ Oy and O(Rest) = I \ O(p), where O(Rest) denotes the set of different

components between Ox and Oy (|O(Rest)| representing the standard Hamming distance).
Initialization of the new neighbor (namely y′): ∀` ∈ O(p), set y′` = x`.

5: For each task ` ∈ O(Rest), do

(a) Set y′` = x` and let s be the s-th position of y such that y(s) = x`: set y′s = x`.

(b) Apply the knapsack procedure to complete/repair the partial solution y′ (containing all
ordered tasks of O(p)).

(c) Update the best solution, namely ybest, by comparing the provided solution to the best
one related to the current neighborhood, i.e., according to O(p).

6: Let y be the best solution reached in step (5):

(a) Improve the solution quality of y by calling the intensification strategy (cf., Section 4.2)
and update the best solution, namely ybest,

(b) Increment k and set x = Pathk(x, y).

7: until either k = n or the stoping criteria is matched
8: return yBest

On the other hand, another strategy based upon a look-ahead has been discussed in

Al-douri, Hifi, and Zissimopoulos (2019), where instead of generating a single solution at

14

the current level, a set of neighbors is created and so, only one solution among the afore-

mentioned solutions is chosen for continuing the construction of the best path. Indeed,

because each neighbor has an objective value, then we choose the one who achieved the best

objective value.

Sbest = 797
Iteration 1
Position → 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
(a) Starting → 11 10 7 5 14 23 6 16 22 13 15 1 2 19 20 24 17 8 4 12 21 18 25 3 9

(b) Target → 11 7 6 16 14 17 23 19 22 5 15 1 20 2 3 8 13 18 4 12 10 25 24 21 9

(c) First neighbor → 11 10 6 16 14 17 23 19 22 5 15 1 20 2 3 8 13 18 4 12 7 25 24 21 9

(d) Look-ahead → 16 5 6 11 10 23 7 17 9 19 22 1 12 25 24 2 14 13 21 18 15 8 3 4 21

Sbest = 752
Iteration 2
Target → 11 10 6 16 14 17 23 19 22 5 15 1 20 2 3 8 13 18 4 12 7 25 24 21 9

Second neighbor → 11 10 7 16 14 17 23 19 22 5 15 1 20 2 3 8 13 18 4 12 6 25 24 21 9

Look-ahead → 23 6 7 16 11 5 10 17 4 25 22 9 12 14 1 19 3 24 21 20 18 13 8 2 15

Sbest = 747
. .
. .
. .
Last Iteration
Best neighbor → 11 10 7 5 14 17 23 19 22 16 15 1 20 2 3 8 13 18 4 12 6 25 24 21 9

Look-ahead → 5 10 6 23 7 17 9 16 13 4 19 22 11 1 14 20 24 21 12 8 25 15 2 18 3

Sbest = 746

Figure 3: Illustration of the standard look-ahead strategy on an instance of SP2P containing
25 tasks: (a) denotes a starting solution, (b) denotes the (first best) target solution, (c) is
the first configuration achieved, (d) the internal solution at one level and, (d) the final best
solution.

In this work, we adapt the principle of the look-ahead strategy for simulating the path

between the starting solution and the target one. The principle of the method follows:

Let x and y be two solutions representing two sequences with their orders Ox and Oy,

respectively. In order to mimic steps from (1) to (3) above, we propose to build each

intermediate solution (at level k) by using a look-ahead strategy. The look-ahead-based

search investigates the outcomes of potential future levels in order to evaluate the quality

of some search directions. The used look-ahead strategy is based upon the best objective

function and it works as follows:

One can observe, on the one hand, that the above procedure evaluates a set of paths,

where only the one realizing the best bound is chosen (cf., Step (d)); that is the path

realizing an internal and intermediate solution at level (iteration) k. This manner is called

a look-ahead strategy because, at each level, several neighbors (complete solutions) are built

while only the favored solution with minimum objective value is chosen, in this case. On

15

the other hand, because the average runtime of the algorithm may grow, we then limit

the exploration by introducing a beam parameter ρ, which serves to reduce the number of

neighbors to explore.

Figure 3 shows the iterative search process, when using the look-ahead strategy, on an

instance of Set 1 (a set of small instances belonging to the benchmark instance in the

experimental part − Section 5):

Iteration 1. Both (a) starting and (b) target solutions were provided by the first phase

of the method. The index of the task is marked in bold-space whenever that task

has the same order in both solutions, in black (standard color) otherwise. By using

the first neighbor with ρ = 1 (tasks marked in italic represent a part of the global

neighborhood: indexes 2 and 21), the look-ahead provides a new solution with an

objective value equal to 752; that is better than the starting one (797).

Iteration 2. The solution related to the first neighbor is now considered as the target

solution and the second neighborhood (tasks marked in italic denote a part of the

global neighborhood: indexes 3 and 21) achieves a solution with an objective value

equal to 747. It improves the quality of the upper bound provided up to now.

Internal iteration. After several iterations, the search process generates the last neigh-

borhood which reaches a final solution whose objective value is further improved (746),

as illustrated in the last iteration.

4.5 An overview of the look-ahead-based method

Algorithm 3 illustrates the main steps of the proposed Look-Ahead strategy-Based Method

(noted LA-BM). The input of LA-BM is an instance of ST2P and its output is a near-

optimal solution S?ST2P . The method starts by generating an initial solution So provided

following the knapsack order, assigns that solution to the best one (S?ST2P) and improves

it by applying both intensification (Section 4.2) and diversification strategies (Section 4.3).

The main loop of LA-BM are represented by lines from 5 to 17. It repeats the selection of a

couple of solutions (x, y) (line 6) while line 7 applies the path-relinking using a look-ahead

(Algorithm 2) for generating an intermediate solution (line 8). Next, a diversification proce-

dure is applied to the current solution (line 14), where the destroying stage is combined with

both repairing and exploring stages. The iterated process alternates between improvement,

16

Algorithm 3 - Look-Ahead strategy-Based Method (LA-BM)
Input. An instance of ST2P.
Output. S?ST2P , the best solution of ST2P.

1: Call the greedy knapsack procedure (cf., Section 4.1) for generating the starting solution S0 =
{o(1), . . . , o(s), . . . , o(Apha)} related to the achieved order.

2: Set S?ST2P ←− S0

3: Improve S?ST2P with intensification and diversification strategies (cf. Sections 4.2 and 4.3)
4: Set SST2P ←− S?ST2P and iter ← 1
5: repeat
6: Set y ← SST2P and x = S0

7: Apply the Look-Ahead(x, y) (cf., Algorithm 2) and let y′Best be the best solution found
8: Set SST2P ← y′Best be the new solution
9: if (f(SST2P) < f(S?ST2P)) then

10: Set S?ST2P ← SST2P

11: iter ← 1
12: else
13: Set iter = iter + 1
14: Apply the diversification phase (cf., Algorithm 1) to SST2P and let y′ST2P be the achieved

solution
15: Set S0 = argmax

{
S?ST2P , y

′
ST2P

}
and SST2P = argmin

{
S?ST2P , y

′
ST2P

}
16: end if
17: until

(
iter ≥ Itermax or the time limit is performed

)
18: return S?ST2P .

look-ahead, and diversification strategies, till matching the maximum number of iterations

or performing the second stopping criteria related to the runtime limit. Finally (line 18),

LA-BM returns S?ST2P , the best solution found so far.

5 Computational results

The objective of the computational investigation is to assess the performance of the Look-

Ahead strategy-based Method (noted LA-BM) by comparing its provided upper bounds

(objective values: minimization problem) to the best-known upper bounds available in the

literature. Indeed, its provided results are compared to those achieved by both Genetic

Algorithm (noted GA) proposed in Kacem and Dammak (2014)(1), the Reactive Search-

Based Algorithm (noted RSBA) proposed in Aïder, Baatout, and Hifi (2020) and, the

tight Lower Bound (noted LB) designed by Manaa and Chu (2010), as used in Kacem and

Dammak (2014).

In this part, two sets of instances are considered: each set is composed of five groups,
1The code was provided by the first author for generating and testing the behavior of all methods on the

same instances (using the same computer).

17

where each group is related to the type of instances considered (as suggested in Manaa and

Chu (2010)). We note that the proposed method was coded in C++ and run on an Intel

Pentium Core i7-8550U with 1.99 GHz and 16 Gb of RAM (all methods were tested on

the same computer).

Type of task Type 1 Type 2 Type 3 Type 4 Type 5
n1 n n n n [n/2]

n2 [n/2] n [n/2] n [n/2]

n12 [n/2] [n/2] n n n

Table 1: Characteristics of the used instances

As mentioned above, the used instances were generated by using Manaa and Chu’s (2010)

generator, where five types of instances are considered(2), according to the number of tasks

n to use and the tasks assigned to both processors P1 and P2 and, the bi-processor (tasks

simultaneously assigned to both P1 and P2):

• For small instances, the number of tasks n is fixed to 10, to 20 for medium instances

and, to 100, 500 and 1000 for large-scale instances: for each value, thirty instances

are considered.

• The number n1 (resp. n2 and n12) denotes tasks assigned to P1 (resp. P2 and P12)

that is generated following the values displayed in Table 1 such that [x] denotes the

integral value of x.

• The processing time related to the duration of the task j, noted pj , is randomly

generated in the discrete interval {1, . . . , 50}.

• The release date rj , related to task j, is randomly generated in the discrete interval

{1, . . . , k}, with k = α × (s12+(s1+s2))
2 and α ∈ {0.5, 1, 1.5} (denoting the density of

the instance) and, s1 (resp. s2 and s12) denotes the overall duration related to tasks

assigned to P1 (resp. P2 and P12).

5.1 Parameter settings

Often, the behavior of a designed heuristic depends on adjustments used on all of its param-

eters. This means that some adjustments can degrade the quality of the solutions achieved

and therefore, in this part, we try to find experimentally the fine values to assign. The
2All tested instances are publicly available for other researchers in the domain

(https://www.u-picardie.fr/eproad/)

18

proposed LA-BM uses four main parameters/operators: (i) the 2-Opt and 3-Opt operators,

(ii) the dropping parameter β used by the dropping procedure and, (iii) the size ρ related

to the Hamming distance (path) used by the look-ahead strategy.

Instances V2 V3 V4
n = 20 LB V1 Best Avg Best Avg Best Avg

Type 1 α=0.5 354.50 395.80 369.40 378.70 368.00 370.50 362.10 367.80
α=1 411.60 491.90 459.20 478.00 454.90 464.30 436.40 455.60
α=1.5 536.30 600.30 569.20 588.10 563.80 569.60 551.80 567.30

Type 2 α=0.5 318.60 377.20 346.30 359.50 338.50 345.90 332.90 342.70
α=1 471.10 554.70 509.60 535.10 516.80 524.70 494.30 512.70
α=1.5 703.50 776.70 743.60 762.60 731.40 739.40 721.10 740.60

Type 3 α=0.5 392.80 440.40 412.50 427.80 409.20 413.20 403.20 410.20
α=1 491.80 585.50 555.30 574.30 535.70 548.40 538.10 551.60
α=1.5 670.70 775.50 740.40 760.20 717.50 734.70 716.70 733.50

Type 4 α=0.5 443.40 514.60 487.60 500.50 475.90 483.40 468.60 478.60
α=1 568.50 681.00 635.50 663.90 628.00 637.90 608.50 635.20
α=1.5 843.30 971.90 918.70 951.40 898.80 911.00 893.20 917.50

Type 5 α=0.5 287.10 329.30 307.80 318.50 306.80 310.40 299.50 307.20
α=1 395.10 476.80 455.20 466.90 439.30 446.50 436.00 449.10
α=1.5 643.00 731.00 686.80 711.30 681.90 692.60 661.80 682.50

Average 502.087 580.173 546.473 565.120 537.767 546.167 528.280 543.473

Table 2: Behavior of the standard version of LA-BM with and without using 2-opt and/or
3-opt operators, on instances with n = 20 (medium instances).

5.1.1 Effect of 2-opt and 3-opt operators

In order to analyze the behavior of LA-BM when using the intensification strategy, four

versions of the method are considered. These versions are tested on the small and medium

instances. The first version (noted V1) denotes the versions without operators, the second

version (V2) uses only the 2-opt operator (without a look-ahead), the third version (noted

V3) designs the version using the 3-opt operator while the fourth one (noted V4) is the

version using both the 2-opt and 3-opt operators. Moreover, because all tested versions

(except V1) are stochastic algorithms, then ten trials were considered for each of them. The

achieved results, for the four versions, are reported in Table 2, where the runtime of each

version is very small (less than 0.005 seconds). Also, in order to make a more complete

comparison between the four versions of the algorithm, we fix β to 10% (regarding the

good behavior of the method with this value as discussed later in Section 5.1.2). Table 2

shows both best and global average upper bounds provided by the four versions V1, V2, V3

and V4 and, Manaa and Chu’s tight lower bound. Columns 1 and 2 of the table display

19

the instance information: the number n of tasks and the value α representing the density

of each instance. Column 3 tallies the lower bound and column 4 the best average upper

bounds provided by V1. Columns 5 and 6 report the average best bounds and the global

average bounds of all instances achieved by V2. Columns 7 and 8 (resp. columns 9 and 10)

tally the same values for V3 (resp. V4).

A thorough discussion of the provided results, for the four versions on the small and

medium instances, displayed in Table 2, follows:

1. V1 vs V2: V2 outperforms V1, since V2 is able to provide a better global average upper

bound. On the one hand, V2’s average best upper bound is equal to 546.473 while V1

realizes an average best upper bound of 580.173. On the other hand, V2’s experimental

approximation ratio (EA(A(I))= A(I)
LB(I)), where A(I) denotes the objective value (upper

bound) provided by algorithm A for an instance I and, LB denotes the lower bound

related to the same instance I, equal to 1.15 which is no better than that achieved by

V2; that is equal to 1.09. This means that the 2-opt operator has a good behavior,

especially when the random aspect is integrated in the operator.

2. V2 vs V3: V3 performs better than V2. In this case, V3 dominates V1 since its average

best global upper bound is equal to 537.767, which is better than that achieved by V2

(i.e., 546.473). The experimental approximation ratio EA(V3) is now equal to 1.07,

which becomes better than EA(V3) (that is equal to 1.09). In this case, the 3-opt

operator becomes more efficient since it is based upon using the double calls of the

2-opt operator.

3. V4 versus V3: V4 remains very competitive when comparing its provided results with

those achieved by the best of the three versions (V3 instead of V1 and V2). Indeed,

on the one hand, combining both the 2-opt and 3-opt operators is able to enhance all

the average (global) bounds (it becomes now equal to 528.280 when compared to V3’s

value of 537.767). On the other hand, EA(V4) is equal to 1.05 while EA(V3) provides

an average value of 1.07.

Figure 4 illustrates the variation of the experimental approximation ratios reached by

the four versions: V1, V2, V3 and, V4. One can observe that by combining both the 2-opt

and 3-opt operators, the experimental approximation ratio decreases: it varies from 1.15 to

1.05.

20

Figure 4: Variation of the experimental approximation ratios for the four versions of LA-BM:
EA(V1), EA(V2), EA(V3) and EA(V4).

Hence, based on this first analysis, we can expect the good behavior of the proposed

LA-BM when combining the specific k-opt operators with the look-ahead phase.

5.1.2 Effect of the drop / rebuild operator

In order to evaluate the behavior of LA-BM according to the parameter β, we introduced

a variation on the number of removing items in the discrete interval {10, 20, 30, 40, 50},

which represents an interval varying from soft dropping to hard dropping. Table 3 reports

the average upper bounds achieved by LA-BM when varying the parameter β for the same

instances tested in Section 5.1.1. Columns 1 and 2 of the table report the instance informa-

tion: the number n of tasks and the value α related to the instances represented in Table 3.

Columns 3 and 4 show the average bounds of all instances of each group and the average

runtime consumed when setting β to 10%. Columns 5 and 6 display the average bounds

and the average runtime for β = 20%, while columns 7 and 8 (resp columns 9 and 10 and,

columns 11 and 12) report the average bounds and its average runtime when fixing β to

30% (resp β to 40% and, β to 50%).

From Table 3, one can observe what follows:

1. LA-BM achieves better average bounds for β = 10% (last line, column 3 in bold-space).

2. When the value of β increases (i.e., β varies from 20% to 50%), the used perturbation

21

is unable to reach better average bounds. We believe that for these largest values of

β, LA-BM may explore a largest space and so, the search process is not able to locate

good directions for improving the quality of some visited solutions.

Variation of β
Instances 10% 20% 30% 40% 50%

n = 20 Av cpu Av cpu Av cpu Av cpu Av cpu
Type 1 α = 0.5 359.10 0.0049 359.40 0.0148 359.20 0.0192 359.10 0.0248 360.10 0.0284

α = 1 423.80 0.0063 433.80 0.0225 432.30 0.028 435.00 0.0314 430.40 0.0395
α = 1.5 543.30 0.0054 549.20 0.0157 550.70 0.0187 546.60 0.0238 549.30 0.0318

Type 2 α = 0.5 325.00 0.0055 328.70 0.0218 328.90 0.0267 326.80 0.0329 328.00 0.0391
α = 1 486.50 0.0053 493.80 0.0183 491.50 0.0244 488.10 0.0294 488.30 0.0346
α = 1.5 712.90 0.0063 718.50 0.0266 720.70 0.0368 719.30 0.0434 719.50 0.0503

Type 3 α = 0.5 397.20 0.0082 401.50 0.0316 399.70 0.0362 402.50 0.0439 399.50 0.0549
α = 1 517.90 0.0064 529.70 0.03 523.90 0.0428 527.70 0.0482 525.70 0.0597
α = 1.5 690.90 0.007 700.00 0.0298 700.60 0.0374 703.90 0.0449 700.40 0.0554

Type 4 α = 0.5 457.10 0.0081 463.30 0.0387 461.60 0.047 463.40 0.0608 464.20 0.0827
α = 1 595.80 0.0085 608.50 0.0416 601.70 0.0545 603.70 0.0559 603.40 0.0687
α = 1.5 870.00 0.0124 883.80 0.0523 884.80 0.0638 880.10 0.0703 881.30 0.0747

Type 5 α = 0.5 295.80 0.005 297.50 0.016 297.30 0.0208 297.60 0.025 296.40 0.0292
α = 1 419.00 0.003 429.60 0.0075 429.10 0.009 427.40 0.0116 428.00 0.0141
α = 1.5 652.50 0.0054 657.50 0.0146 656.00 0.0202 654.60 0.0235 657.70 0.0276

Average 516.45 0.0065 523.65 0.0255 522.53 0.0324 522.39 0.0380 522.15 0.0460

Table 3: Effect of the dropping parameter β.

Moreover, before fixing the final value of β, for extending the experimental part, we

introduce a statistical analysis on the average bounds achieved by the five versions of the

algorithm following the variation of β’s value. In the comparative study, both the Sign

test and the Wilcoxon signed-rank test statistics are considered. Of course, the Wilcoxon

signed-rank test is an alternative study employing the p-value for indicating how the version

performs better than another one. We then use the following hypothesis: H0: Algoβ1 -

Algoβ2 = µ, where β1 6= β2, to express that algorithm Algoβ1 performs better than Algoβ2
and, the hypothesis H0: algorithm Algoβ2 is better than Algoβ1 to express the rejection of

the hypothesis H0. In this work, the smallest the average bound and the greater the number

of better bounds, the better the corresponding version of Algo.

Table 4 reports, by varying β1 and β2 (β1 6= β2), the statistical study on all instances

with n = 20 by using the sign rank test (the detailed results containing the average bounds

are those illustrated in Table 3). The different values related to µ represent what follows:

µ
(k)
1 = V10% vs V(k), k = 1, . . . , 4 and V (k) denotes the versions V20%, . . .V50% and, µ2 =

V20% vs V30%, µ3 = V30% vs V40% and, µ4 = V40% vs V50%. Columns from 1 to 4 display the

22

µ
(1)
1 µ

(2)
1 µ

(3)
1 µ

(4)
1 µ2 µ3 µ4

p-value (Sign test) <0.0001 <0.0001 <0.0001 <0.0001 0.941 0.696 0.304
N+ 15 15 14 15 5 7 9
N− 0 0 0 0 10 8 6
N= 0 0 1 0 0 0 0
p-value (Wilcoxon) <0.0001 <0.0001 <0.00005 <0.0001 0.938 0.555 0.577

Table 4: p-values for both sign and Wilcoxon rank tests on the instances with n = 20 with
the significance level θ = 0.05.

statistical results of LA-BM (without using the look-ahead strategy which will be discussed

in Section 5.1.3) when varying β: line 1 displays the p-value corresponding to the sign test,

line 2 tallies the number of times that the first version of the algorithm dominates the second

version (resp. line 3 reports the number of times that the first version is dominated by the

second one and, line 4 shows the number of times that both versions match the same values)

and line 5 tallies the p-value related to the rank sign test. From Table 4, we observe what

follows:

• For µ(1)
1 the p-value related to the sign test (resp. Wilcoxon rank-test) is smallest

to the significance level θ = 0.05, indicating that V10% performs better than V20%

(accepting the hypothesis H0). Increasing the value of β doesn’t improve the quality

of the average bounds: p-values related to µ(k)
1 , k ≥ 2, varies from 0.00005 to 0.0001,

which means that V10% evolves better than the other versions.

• Regarding the comparative study between the four other versions (i.e., V20%, . . . ,

V50%), V30% performs better than V20% according to Wilcoxon’s p-value related to

µ2 (equals to 0.938), V40% performs better than V30% according to Wilcoxon’s p-

value related to µ3 (equals to 0.555) and, V50% outperforms V40% regarding µ4 (the

Wilcoxon’s p-value is equal to 0.577).

• The number of occasions that V10%, when compared to the rest of the versions of the

algorithm, achieves the best average bounds varies from 14 to 15 for N+ representing

µ
(k)
1 , k ≥ 1, while it is equal to 9 for µ4. This means that V50% represents the second

best version of the algorithm even if the average runtime becomes more important in

this case.

Therefore, because we seek solutions with high quality (smallest values) and with more

best average bounds, we then fix β = 10% for the rest of the experimental part.

23

5.1.3 Effect of the look-ahead strategy

In this section, we evaluate the behavior of the proposed method when introducing the

look-ahead strategy. We recall that the aforementioned strategy uses a beam parameter ρ;

that is used for limiting the size of the neighborhood to explore.

First, Table 5 reports the average bounds achieved by LA-BM when varying the value

of ρ in the interval represented below (obviously, other values have been tested without

providing better average bounds). As for the above tables, column 1 refers to the instance’s

information, columns from 2 to 7, under the value assigned to α, display the bounds reached

by the algorithm and, the last line labeled “Av” shows the global average value over all tested

instances with n = 20.

Variation of ρ
Instances 4% 8% 12% 16% 20%

n = 20 Av cpu Av cpu Av cpu Av cpu Av cpu

Type 1 α = 0.5 354.50 1.659 354.50 0.595 354.50 0.142 354.70 0.120 354.60 0.094
α = 1 411.60 1.611 411.60 0.594 413.30 0.150 411.80 0.120 412.00 0.095
α = 1.5 536.30 1.707 536.30 0.628 536.60 0.158 536.30 0.113 536.30 0.103

Type 2 α = 0.5 318.70 1.273 318.70 0.684 320.70 0.186 321.20 0.148 320.50 0.130
α = 1 471.10 1.315 471.10 0.713 474.40 0.191 475.00 0.156 475.50 0.128
α = 1.5 703.50 1.392 703.50 0.730 703.90 0.194 703.50 0.153 703.50 0.136

Type 3 α = 0.5 392.90 1.311 392.90 0.689 395.00 0.188 393.80 0.161 393.60 0.138
α = 1 491.80 1.294 491.80 0.681 496.40 0.186 493.30 0.155 493.30 0.141
α = 1.5 671.00 1.373 671.00 0.711 673.10 0.199 672.50 0.159 671.50 0.137

Type 4 α = 0.5 443.60 1.830 443.60 0.940 451.10 0.262 449.50 0.216 451.20 0.172
α = 1 568.50 1.843 568.50 0.998 573.30 0.263 573.30 0.222 573.40 0.176
α = 1.5 843.30 1.956 843.30 1.032 850.30 0.267 846.80 0.220 848.40 0.172

Type 5 α = 0.5 287.60 1.505 287.60 0.528 289.80 0.142 289.70 0.100 290.20 0.081
α = 1 395.10 1.576 395.10 0.548 401.80 0.145 401.20 0.108 402.80 0.086
α = 1.5 643.10 1.630 643.10 0.602 644.60 0.148 644.80 0.113 645.60 0.087

Av 502.17 1.552 502.17 0.712 505.25 0.188 504.49 0.151 504.83 0.125

Table 5: Effect of the look-ahead strategy

From Table 5, we observe what follows: LA-BM seems more efficient for both ρ = 4%

and ρ = 8%, especially when comparing its results to the results provided with the other

values of ρ. In this case, on the one hand, the global average solution value over the tested

instances, for the ten trials, is equal to 502.17 (last line, columns 3 and 4 of Table 5); that

is, the smallest global average value among all displayed values. On the other hand, the

average runtime related to the algorithm with ρ = 8% is faster than that of the algorithm

with ρ = 4%. Therefore, because for large-scale instances, the average runtime can grow

24

exponentially and so, we fix ρ to 8% for the rest of the experimental part.

Second, before fixing the final values of ρ, we also introduce a statistical analysis on

the average best solution values achieved by the five versions, where ρ varies from 4% to

20% with a path of four%. Both the sign test and the Wilcoxon signed-rank test statistics

are considered. As described above, we set the hypothesis H0: Algoρ1 - Algoρ2 = ν, where

ρ1 6= ρ2, to express that algorithm Algoρ1 performs better than Algoρ2 and, the hypothesis

H0: algorithm Algoρ2 performs better than Algoρ1 to express the rejection of the hypothesis

H0.

Table 6 shows, by varying ρ1 and ρ2 (ρ1 6= ρ2), the statistical study on instances with

n = 20 by using both the sign test and the sign rank test (the detailed results containing the

average bounds for the five versions are reported in Table 5). Columns from 1 to 5 display

the statistical results of the method when varying ρ: line 1 (resp. line 5) tallies the p-value

corresponding to the sign test (resp. rank sign test) and, line 2 (resp. line 3) reports the

number of times that the first algorithm dominates (resp. is dominated by) the second one.

ν1 ν2 ν3 ν4
p-value (Sign test) 1 <0.0001 <0.00005 <0.00005
N+ 0 15 15 15
N− 15 0 0 0
p-value (Wilcoxon) 1 <0.00005 0.001 0.001

Table 6: Statistical analysis when varying the parameter ρ: p-values for both sign and
Wilcoxon rank tests on the instances with n = 20 with the significance level θ = 0.05.

From Table 6 one can observe what follows:

• For ν1 (representing Algo4% vs Algo8%), the p-value related to the sign test (resp.

Wilcoxon test) is greatest to the significance level θ = 0.05, indicating that Algo8%

performs better than Algo4% (rejecting the hypothesis H0).

• Increasing the value of ρ doesn’t improve the quality of the algorithm’s average bounds:

p-values related to ν2 (Algo8% vs Algo12%), ν3 (Algo8% vs Algo16%) and, ν4 (Algo8%

vs Algo20%) vary from 0.00005 to 0.001, which means that Algo8% evolves better than

the other versions.

• The number of occasions that Algo8%, when compared to all versions, matches the

best average bounds (the values related to N− for ν1 and N+ for ν2, ν3 and ν4) is

equal to 15.

25

Therefore, because we are interested in high-quality solutions, we then fix ρ = 4% for

the rest of the paper.

G
A

R
S
B

A
L
H

-B
M

n
=

1
0

L
B

U
B

A
v
.

U
B

T
G

A
U

B
A
v
.

U
B

T
R
S
B
A

U
B

A
v
.

U
B

T
L
A
−

B
M

T
y
p
e

1
α
=

0.
5

40
0.

90
44

1.
30

46
7.

80
0.

06
8

40
7.

20
40

7.
20

0.
01

2
40

0.
90

40
0.

90
0.

62
0

α
=

1
47

8.
70

54
0.

90
57

5.
50

0.
06

5
49

6.
40

49
6.

40
0.

01
1

47
8.

70
47

8.
70

0.
81

3
α
=

1.
5

78
9.

30
84

5.
50

90
7.

20
0.

07
3

79
7.

90
79

7.
90

0.
01

1
78

9.
30

78
9.

30
0.

76
8

T
y
p
e

2
α
=

0.
5

40
2.

40
51

9.
10

55
6.

00
0.

09
4

47
6.

60
47

6.
60

0.
03

1
40

2.
80

40
3.

10
0.

52
5

α
=

1
65

1.
00

73
8.

10
81

0.
30

0.
10

3
65

1.
10

65
1.

10
0.

03
0

65
1.

10
65

1.
10

0.
85

9
α
=

1.
5

91
4.

80
10

02
.7

0
10

67
.2

0
0.

09
3

92
5.

90
92

5.
90

0.
03

3
91

4.
80

91
4.

80
0.

57
9

T
y
p
e

3
α
=

0.
5

49
4.

90
59

4.
70

64
0.

20
0.

10
4

52
8.

50
52

8.
50

0.
02

8
49

4.
90

49
4.

90
0.

69
6

α
=

1
66

4.
00

84
1.

30
89

5.
20

0.
09

4
69

6.
60

69
6.

60
0.

02
9

66
4.

10
66

4.
10

0.
54

1
α
=

1.
5

92
4.

80
10

62
.8

0
11

25
.4

0
0.

07
9

93
6.

10
93

6.
10

0.
03

5
92

4.
80

92
4.

80
0.

56
0

T
y
p
e

4
α
=

0.
5

54
7.

60
69

0.
90

75
1.

30
0.

11
8

58
2.

10
58

2.
10

0.
03

5
54

8.
70

54
9.

00
0.

68
4

α
=

1
73

2.
20

95
9.

10
10

25
.8

0
0.

11
5

78
1.

70
78

1.
70

0.
03

2
73

2.
20

73
2.

20
0.

83
2

α
=

1.
5

67
4.

50
76

7.
10

81
1.

60
0.

09
3

68
1.

20
68

1.
20

0.
04

0
67

4.
50

67
4.

50
1.

14
9

T
y
p
e

5
α
=

0.
5

37
3.

00
44

4.
80

47
5.

30
0.

07
3

39
7.

00
39

7.
00

0.
01

0
37

3.
60

37
3.

60
0.

46
6

α
=

1
54

5.
00

65
5.

40
70

9.
40

0.
06

3
56

0.
80

56
0.

80
0.

02
4

54
5.

00
54

5.
20

0.
45

9
α
=

1.
5

59
5.

50
66

7.
70

71
2.

30
0.

06
1

60
1.

60
60

1.
60

0.
01

1
59

5.
50

59
5.

50
0.

47
6

A
ve

ra
ge

61
2.

57
71

8.
09

76
8.

70
0.

08
6

63
4.

71
63

4.
71

0
.0

2
5

6
1
2
.7

3
6
1
2
.7

8
0.

66
8

n
=

2
0

L
B

U
B

A
v
.

U
B

T
G

A
U

B
A
v
.

U
B

T
R
S
B
A

U
B

A
v
.

U
B

T
L
A
−

B
M

T
y
p
e

1
α
=

0.
5

35
4.

50
40

5.
80

42
7.

70
0.

16
2

35
9.

10
36

1.
80

0.
00

5
35

4.
50

35
4.

50
0.

59
5

α
=

1
41

1.
60

52
3.

40
56

7.
10

0.
16

5
42

3.
80

43
9.

50
0.

00
6

41
1.

60
41

1.
60

0.
59

4
α
=

1.
5

53
6.

30
65

6.
10

69
1.

30
0.

16
3

54
3.

30
55

3.
90

0.
00

5
53

6.
30

53
6.

30
0.

62
8

T
y
p
e

2
α
=

0.
5

31
8.

60
46

6.
00

49
1.

50
0.

25
8

32
5.

00
33

1.
20

0.
00

5
31

8.
70

31
8.

80
0.

68
4

α
=

1
47

1.
10

63
0.

60
66

6.
40

0.
25

7
48

6.
50

50
0.

90
0.

00
5

47
1.

10
47

1.
10

0.
71

3
α
=

1.
5

70
3.

50
83

8.
40

88
2.

30
0.

25
9

71
2.

90
72

6.
00

0.
00

6
70

3.
50

70
3.

50
0.

73
0

T
y
p
e

3
α
=

0.
5

39
2.

80
51

9.
90

54
1.

50
0.

24
6

39
7.

20
40

3.
30

0.
00

8
39

2.
80

39
2.

80
0.

68
9

α
=

1
49

1.
80

69
0.

50
72

2.
40

0.
24

7
51

7.
90

53
4.

20
0.

00
6

49
1.

80
49

1.
80

0.
68

1
α
=

1.
5

67
0.

70
84

2.
50

88
4.

50
0.

24
5

69
0.

90
70

9.
00

0.
00

7
67

1.
00

67
1.

00
0.

71
1

T
y
p
e

4
α
=

0.
5

44
3.

40
61

1.
40

64
0.

00
0.

35
7

45
7.

10
46

6.
50

0.
00

8
44

3.
60

44
3.

60
0.

94
0

α
=

1
56

8.
50

81
0.

20
85

3.
50

0.
35

78
59

5.
80

61
2.

80
0.

00
9

56
8.

50
56

8.
50

0.
99

8
α
=

1.
5

84
3.

30
10

59
.2

0
11

07
.3

0
0.

35
8

87
0.

00
89

2.
10

0.
01

2
84

3.
30

84
3.

30
1.

03
2

T
y
p
e

5
α
=

0.
5

28
7.

10
39

1.
30

41
3.

10
0.

15
7

29
5.

80
30

0.
70

0.
00

5
28

7.
60

28
7.

60
0.

52
8

α
=

1
39

5.
10

54
9.

30
58

2.
50

0.
16

4
41

9.
00

43
4.

30
0.

00
3

39
5.

10
39

5.
10

0.
54

8
α
=

1.
5

64
3.

00
75

5.
80

79
3.

60
0.

15
8

65
2.

50
66

4.
50

0.
00

5
64

3.
10

64
3.

10
0.

60
2

A
ve

ra
ge

50
2.

09
65

0.
03

68
4.

31
0.

23
7

51
6.

45
52

8.
71

0
.0

0
7

5
0
2
.1

7
5
0
2
.1

7
0.

71
2

Table 7: Performance of LA-BM vs GA and RSBA on instances of Set 1: small and medium
instances.

5.2 Behavior of LA-BM vs available methods (Set 1)

First, in order to evaluate the performance of the proposed method LA-BM, we compare its

provided results to those achieved by GA (Genetic Algorithm−Kacem and Dammak (2014)),

26

Manaa and Chu’s (2010) tight lower bound (LB) and the more recent algorithm RSBA (Re-

active Search-Based Algorithm − Aïder, Baatout, and Hifi (2020)).

Table 7 reports the bounds related to LB and those achieved by both GA, RSBA, and

LA-BM. Column 3 of the table shows the average lower bound (LB) related to each group

of tested instances of Set 1 (with n = 10 and n = 20). Column 4 (resp. column 5 and

column 6) tallies the best average objective value achieved by GA (resp. the average value

over the ten trials and the average runtime over the ten trials). Column 7 (resp. column 8

and column 9) reports the best average objective value achieved by RSBA (resp. the average

values for all trials and the average runtime needed for the same trials) while column 10

(resp. column 11 and column 12) reports the best average objective value achieved by LA-

BM (resp. both average values and average runtime needed for the same trials). Finally,

the last line of the table displays the average values of all values represented in each column

(we note that the value in “boldface” (last line of the table) means that the best (average)

solution values have been provided by the considered algorithm).

In what follows, we comment results of Table 7:

1. For the small instances (with n = 10),

(a) LA-BM outperforms GA even when considering the global average value (the last

line of the table of the first block) corresponding to the average solution values

over the ten trials of both GA and LA-BM. Indeed, LA-BM achieves an average

global value of 612.73 while GA provides an average global value of 768.70. In

this case, the gap between both values is closest to 156 units even GA’s average

runtime remains slightly smaller than that of LA-BM.

(b) RSBA performs better than GA: both its global average value and its global

average runtime are better than those of GA (601.60 instead of 634.71 and, 0.086

sec instead of 0.025 sec, respectively).

(c) LA-BM outperforms both GA and RSBA. Indeed, LA-BM’s global average value

(612.78) is better (smallest) than those achieved by both GA (768.70) and RSBA

(634.71). Because RSBA is a core of the proposed LA-BM, one can observe that

its global average runtime grows more and more.

2. For the medium-sized instances (with n = 20), the same phenomenon can be observed.

Indeed, the best LA-BM’s average global value (502.17) is better (smallest) than those

27

achieved by both GA (650.03) and RSBA (516.45). However, as expected, LA-BM’s

global average runtime remains higher (0.712 sec) than that required for GA (0.237

sec) and RSBA (0.007 sec), for the medium instances, even if the average runtime is

less than one second.

Figure 5: Variation of the experimental approximation ratios for the three tested algorithms
GA, RSBA and LA-BM: (i) the left-side of the figure for n = 10 and, (ii) the right-side of
the figure for n = 20.

Figure 5 shows the variation of the experimental approximation ratios achieved by the

three tested methods: GA, RSBA, and LA-BM. As we can show from that figure, LA-BM’s

experimental approximation ratio is often better than those reached by both GA and RSBM;

in this case, it varies from 1 to 1.002.

5.3 Behavior of LA-BM vs available methods (Set 2)

In this section, LA-BM’s behavior is analyzed on the instances of Set 2 which contains three

groups representing the large-scale instances: a first group with n = 100 tasks, a second

group with n = 500 tasks and, a third group with n = 1000 tasks. Its provided results are

also compared to those achieved by the best method available in the literature: GA, RSBA,

and Manaa and Chu’s lower bound (LB). Table 8 reports the average bounds provided by

LA-BM, GA, RSBA, and LB on the instances of Set 2, where all its information are the

same as used in Table 7 (there are three blocks, where each block corresponds to each group

of Set 2).

In what follows, we comment on the results of Table 8:

28

G
A

R
S
B

A
L
H

-B
M

n
=

1
0
0

L
B

U
B

A
v

T
G

A
U

B
A
v

T
R
S
B
A

U
B

A
v

T
L
A
−

B
M

T
y
p
e1

α
=

0.
5

3
70

8.
60

5
64

9.
80

5
83

9.
70

4.
04

3
74

2.
40

3
74

8.
40

0.
42

3
71

1.
50

3
71

4.
30

7.
86

α
=

1
4

88
5.

80
7

71
1.

70
7

93
5.

40
4.

01
5

16
7.

30
5

26
1.

30
0.

40
4

91
0.

90
4

96
0.

20
7.

81
α
=

1.
5

7
46

5.
60

10
26

0.
10

10
53

7.
20

4.
05

7
50

8.
40

7
59

5.
90

0.
41

7
46

7.
80

7
47

2.
20

8.
06

T
y
p
e2

α
=

0.
5

3
79

3.
10

6
75

3.
60

6
94

0.
80

6.
50

4
87

5.
80

4
87

7.
10

0.
37

3
84

3.
50

3
86

5.
30

11
.0

2
α
=

1
6

11
3.

90
9

58
1.

90
9

77
0.

80
6.

49
6

46
3.

10
6

60
9.

10
0.

55
6

16
1.

10
6

23
1.

70
11

.3
0

α
=

1.
5

9
37

4.
60

12
64

1.
50

12
95

8.
60

6.
49

9
51

8.
90

9
62

1.
80

0.
37

9
37

6.
10

9
39

3.
70

11
.3

7
T

y
p
e3

α
=

0.
5

4
93

1.
60

7
61

7.
00

7
80

5.
90

6.
44

5
01

2.
10

5
02

6.
50

0.
60

4
93

1.
80

4
93

4.
20

11
.0

0
α
=

1
6

18
1.

40
10

31
2.

30
10

57
0.

10
6.

41
6

79
0.

50
6

89
6.

20
0.

42
6

38
1.

50
6

46
0.

50
11

.4
3

α
=

1.
5

9
01

9.
70

12
90

8.
80

13
18

1.
30

6.
42

9
13

4.
50

9
28

5.
40

0.
55

9
04

1.
70

9
07

8.
30

11
.3

6
T

y
p
e4

α
=

0.
5

4
98

1.
60

8
82

1.
40

9
03

2.
20

10
.2

5
6

07
3.

30
6

07
9.

30
0.

68
5

10
1.

20
5

12
2.

80
14

.5
9

α
=

1
7

27
0.

70
12

01
0.

30
12

26
5.

50
9.

58
8

09
8.

70
8

21
4.

40
0.

67
7

58
7.

50
7

69
7.

70
15

.3
8

α
=

1.
5

10
91

8.
80

15
37

2.
10

15
76

9.
10

9.
66

11
12

0.
40

11
25

9.
60

0.
77

10
96

1.
30

11
03

5.
00

15
.4

5
T

y
p
e5

α
=

0.
5

3
85

5.
90

6
20

4.
30

6
39

4.
10

3.
97

4
38

3.
80

4
38

6.
20

0.
27

3
86

6.
20

3
87

1.
70

7.
45

α
=

1
4

95
1.

80
8

25
7.

70
8

47
6.

00
3.

96
5

38
3.

80
5

46
8.

50
0.

41
5

12
4.

80
5

20
0.

10
7.

62
α
=

1.
5

7
37

8.
20

10
43

6.
40

10
74

8.
60

3.
97

7
40

8.
70

7
47

3.
10

0.
36

7
37

9.
90

7
39

5.
30

7.
77

A
ve

ra
ge

63
22

.0
87

9
63

5.
93

9
88

1.
69

6.
15

6
71

2.
11

6
78

6.
85

0.
48

6
3
8
9
.7

9
6

4
2
8
.8

7
10

.6
3

n
=

5
0
0

L
B

U
B

A
v

T
G

A
U

B
A
v

T
R
S
B
A

U
B

A
v

T
L
A
−

B
M

T
y
p
e1

α
=

0.
5

18
46

7.
40

30
48

0.
90

30
79

5.
60

16
8.

19
18

93
7.

30
19

13
1.

90
11

.0
6

18
52

6.
60

18
55

2.
10

12
1.

01
α
=

1
24

45
1.

50
41

94
9.

80
42

42
9.

60
16

8.
17

28
18

5.
70

28
52

0.
60

11
.1

6
26

94
3.

80
27

20
4.

90
12

0.
87

α
=

1.
5

36
49

5.
10

53
44

7.
70

54
12

8.
90

90
.2

0
39

20
8.

70
39

58
7.

50
6.

33
38

40
9.

40
38

70
5.

00
12

0.
84

T
y
p
e2

α
=

0.
5

18
66

9.
00

36
42

7.
90

36
81

9.
70

14
7.

75
24

86
6.

90
24

98
0.

30
8.

93
20

46
0.

40
20

54
4.

70
18

5.
04

α
=

1
30

39
7.

70
50

44
3.

20
51

16
0.

30
24

5.
19

34
72

0.
30

35
30

4.
60

13
.1

8
33

73
2.

90
33

90
6.

80
18

5.
26

α
=

1.
5

45
49

2.
80

65
19

6.
20

65
81

6.
10

16
5.

81
48

92
7.

10
49

44
3.

70
9.

77
48

09
6.

10
48

46
9.

10
18

5.
37

T
y
p
e3

α
=

0.
5

24
42

2.
20

40
21

9.
20

40
67

5.
80

15
9.

43
24

99
2.

10
25

18
4.

40
7.

69
24

48
4.

30
24

51
1.

50
18

4.
76

α
=

1
30

34
5.

30
54

30
3.

20
54

89
0.

10
14

1.
28

35
74

7.
30

36
16

4.
10

7.
47

34
52

8.
20

34
78

7.
20

18
4.

58
α
=

1.
5

45
40

2.
20

68
59

7.
60

69
51

6.
80

19
6.

38
48

81
3.

50
49

55
1.

30
9.

89
48

44
0.

00
48

82
8.

40
18

4.
54

T
y
p
e4

α
=

0.
5

24
74

2.
10

46
58

3.
10

47
12

7.
50

28
9.

12
30

91
3.

90
31

00
3.

40
14

.0
4

25
84

8.
50

25
99

8.
70

25
2.

80
α
=

1
36

93
1.

70
64

60
1.

00
65

36
8.

60
17

9.
78

42
96

3.
30

43
75

4.
30

8.
88

41
77

7.
00

42
06

1.
20

26
2.

41
α
=

1.
5

54
81

3.
00

81
70

7.
90

82
50

6.
30

34
7.

97
59

53
0.

50
60

18
0.

70
17

.8
8

58
41

5.
10

58
81

6.
10

26
2.

63
T

y
p
e5

α
=

0.
5

18
50

1.
50

32
60

3.
00

33
03

4.
20

90
.1

1
21

43
4.

90
21

47
8.

70
6.

13
18

79
4.

40
18

86
7.

40
11

8.
15

α
=

1
24

50
8.

10
44

20
1.

30
44

70
5.

60
15

9.
29

28
72

9.
00

29
11

4.
00

9.
59

27
64

1.
70

27
83

7.
90

11
0.

85
α
=

1.
5

36
51

6.
30

55
65

0.
00

56
23

8.
50

13
0.

22
39

03
3.

10
39

59
7.

60
8.

12
38

73
0.

40
39

14
0.

00
11

0.
52

A
ve

ra
ge

31
34

3.
72

7
51

09
4.

13
51

68
0.

91
17

8.
59

35
13

3.
57

35
53

3.
14

10
.0

1
3
3
6
5
5
.2

5
3
3
8
8
2
.0

7
17

2.
64

n
=

1
0
0
0

L
B

U
B

A
v

T
G

A
U

B
A
v

T
R
S
B
A

U
B

A
v

T
L
A
−

B
M

T
y
p
e1

α
=

0.
5

36
25

7.
60

61
32

2.
00

61
80

9.
20

42
5.

55
38

29
7.

10
38

63
6.

30
19

.6
4

36
49

6.
10

36
53

8.
00

46
1.

93
α
=

1
48

21
7.

50
84

18
9.

30
84

93
2.

50
42

6.
71

56
59

0.
70

57
37

7.
30

19
.8

6
54

98
8.

70
55

31
9.

90
46

0.
97

α
=

1.
5

72
63

0.
30

10
80

94
.0

0
10

89
63

.0
0

42
3.

89
79

06
3.

80
79

94
9.

90
19

.9
0

78
16

5.
90

78
70

5.
30

46
1.

44
T

y
p
e2

α
=

0.
5

37
15

0.
80

73
88

0.
30

74
53

9.
40

69
8.

76
49

67
0.

40
49

92
4.

50
28

.6
1

41
19

3.
80

41
32

4.
90

66
4.

22
α
=

1
61

24
9.

70
10

35
02

.3
0

10
43

27
.5

0
69

0.
86

71
95

8.
80

73
36

4.
70

28
.4

4
69

47
0.

20
69

75
1.

60
65

9.
49

α
=

1.
5

91
30

4.
70

13
27

36
.8

0
13

36
81

.5
0

69
1.

01
99

72
1.

30
10

12
30

.5
0

28
.3

6
98

36
5.

60
98

75
6.

60
65

7.
18

T
y
p
e3

α
=

0.
5

48
67

3.
70

81
14

1.
80

81
72

6.
00

69
7.

23
50

40
5.

50
50

85
3.

30
27

.2
0

48
90

1.
70

48
97

2.
10

68
7.

31
α
=

1
60

64
4.

10
11

04
23

.6
0

11
12

98
.8

0
70

3.
04

71
80

6.
20

73
02

3.
50

27
.7

3
70

49
2.

70
70

88
9.

30
71

2.
35

α
=

1.
5

91
36

1.
40

14
03

67
.8

0
14

15
12

.6
0

70
9.

17
10

13
23

.8
0

10
27

08
.1

0
28

.0
2

99
82

6.
20

10
03

46
.5

0
71

2.
21

T
y
p
e4

α
=

0.
5

49
04

1.
30

94
50

7.
80

95
30

3.
00

10
40

.7
7

61
50

9.
00

61
74

8.
20

37
.3

9
52

43
7.

10
52

78
0.

30
94

7.
46

α
=

1
73

38
5.

70
13

03
31

.4
0

13
13

07
.1

0
10

38
.1

6
88

19
7.

70
89

74
9.

10
37

.4
0

84
46

8.
00

84
84

5.
10

98
4.

56
α
=

1.
5

10
98

91
.6

0
16

54
20

.3
0

16
70

58
.3

0
10

47
.4

1
12

08
59

.7
0

12
24

30
.7

0
37

.5
8

11
99

26
.0

0
12

03
14

.5
0

10
68

.7
4

T
y
p
e5

α
=

0.
5

36
62

4.
50

65
94

0.
80

66
54

6.
40

44
5.

58
42

85
8.

20
43

00
7.

30
19

.5
1

37
80

4.
90

37
97

0.
20

42
5.

95
α
=

1
48

72
9.

40
89

42
9.

70
90

14
1.

50
45

2.
29

58
29

4.
70

59
21

8.
30

19
.4

5
56

71
5.

40
57

07
6.

40
45

8.
93

α
=

1.
5

73
18

1.
70

11
34

30
.1

0
11

43
02

.6
0

45
2.

35
80

01
8.

10
81

20
5.

10
19

.6
2

79
70

8.
60

80
16

8.
20

45
9.

07
A
ve

ra
ge

62
55

6.
27

10
36

47
.8

7
10

44
96

.6
3

66
2.

85
71

37
1.

67
72

29
5.

12
26

.5
8

6
8
5
9
7
.3

9
6
8
9
1
7
.2

6
65

4.
79

Table 8: Performance of LA-BM vs GA and RSBA on instances of Set 2: large-scale in-
stances.

29

1. The first group with n = 100: LA-BM’s best global average bound (last line of bloc 1)

is equal to 6389.79 while those provided by both GA and RSBA are equal to 9635.93

and 6712.11. In this case, on the one hand, the gap between both LA-BM and GA

(resp. RSBA) is closest to 3246.14 (resp. 322,33). On the other hand, EA(LA-BM)

is equal to 1.01 (when comparing its result to that achieved by LB). Unfortunately,

LA-BM’s average runtime remains higher for instances with n = 100 (tasks).

2. The second group with n = 500: LA-BM’s best global average bound (last line of

bloc 2) is equal to 33655.25 while those achieved by both GA and RSA are equal to

51094.13 and 35133.57. Moreover, on the one hand, one can observe that the gap

increases, in this case: it is close to 17438.88 when compared to GA’s result and to

-1478.32 for RSBA. On the other hand, LA-BM consumes the smallest runtime when

compared to GA’s average runtime. We note also that LA-BM’s EA is equal to 1.07

while GA’s (resp. RSBA’s) experimental approximation ratio is equal to 1.67 (resp.

1.13).

3. The third group with n = 1000: the best global average bound (last line of bloc 3) of

LA-BM is equal to 68597.39, which is better (smallest) than those achieved by both

GA (103647.87) and RSBA (71371.67). In this case, LA-BM realizes a gap closest to

35050.47 when compared to GA’s results and closest to 2774.27 when compared to

RSBA’s result. We note that LA-BM’s experimental approximation ratio (EA(LA-

BM)) is equal to 1.09 whereas EA(GA) is equal to 1.70 and EA(RSBA) is equal to

1.15. Finally, LA-BM average runtime remains smallest than that required for GA for

matching the results displayed in the third block (column 12, of Table 8).

Figure 6: Variation of the experimental approximation ratios for the three tested algorithms
GA, RSBA and LA-BM: (i) on the left-side of the figure for n = 100, (ii) on the middle of
the figure for n = 500 and, (iii) on the right-side for n = 1000.

Figure 6 shows the variation of the experimental approximation ratios achieved by the

30

three tested methods: GA, RSBA and LA-BM. As we can show from that figure, LA-BM’s

the experimental approximation ratio is often better than those reached by both GA and

RSBM. Indeed, it varies from 1 to 1.04 for n = 100, from 1 to 1.14 for n = 500 and, from 1

to 1.16 for n = 1000. While for GA (resp. RSBA) it varies from 1.35 to 1.78 (resp. from 1

to 1.29) for n = 100, from 1.43 to 1.95 (resp. from 1.02 to 1.33) for n = 500 and, from 1.45

to 1.99 (resp. from 1.04 to 1.34) for n = 1000.

6 Conclusion

In this paper, the problem of scheduling tasks on two dedicated processors was solved

with an iterative search using a look-ahead strategy combined with path relinking. The

proposed method combines four main features. First, a starting solution was built by

tailoring a constructive greedy procedure following the knapsack problem rule. Second, an

intensification search was introduced in order to visit a series of local solutions, where a

standard tabu list was also incorporated for avoiding cycling solutions. Third, the drop and

rebuild operator was added as a diversification strategy for searching unvisited subspaces.

Fourth and last, the method was augmented by introducing the path relinking combined with

a look-ahead strategy that applies a special beam search. Finally, the performance of the

proposed method was evaluated on a set of benchmark instances containing small, medium,

and large-scale instances, where its provided results were compared to those provided by

more recent methods of the literature and to the tight lower bound tailored for the problem.

The experimental part showed that the proposed look-ahead method performed better than

all existing methods by providing tight experimental approximation ratios on the considered

instances.

Acknowledgements.

The authors thank the anonymous referees for their helpful comments and suggestions which

contributed to the improvement of the presentation and the contents of this paper.

References

[1] Aïder, M., Baatout, F.Z., & Hifi, M. (2020). A reactive search-based algorithm

for scheduling multiprocessor tasks on two dedicated processors. In: Proceedings

31

of the IEEE, Federated Conference on Computer Science and Information Sys-

tems, M. Ganzha, L. Maciaszek, M. Paprzycki (eds). ACSIS, 21, 257-261, DOI:

10.15439/2020F134.

[2] Al-douri, T., Hifi, M., & Zissimopoulos, V. (2019). An iterative algorithm for

the max-min knapsack problem with multiple scenarios. Operational Research,

https://doi.org/10.1007/s12351-019-00463-7.

[3] Bianco, L., Blazewicz, J., Dell’Olmo, P., & Drozdowski, M. (1997). Preemptive multi-

processor task scheduling with release times and time windows, Annals of Operations

Research, 70(1), 43-55, https://doi.org/10.1023/A:1018994726051.

[4] Blazewicz, J., Dell’Olmo, P., Drozdowski, M., & Speranza, M.G. (1992). Scheduling

multiprocessor tasks on three dedicated processors. Information Processing Letters, 41,

275-280, https://doi.org/10.1016/0020-0190(92)90172-R.

[5] Blazewicz, J., Dell’Olmo, P., & Drozdowski (2002). Scheduling Multiprocessor

Tasks On Two Parallel Processors. RAIRO Operations Research, 36, 37-51, DOI:

10.1051/ro:2002004.

[6] Brucker, P. (2007). Scheduling algorithms. Springer, ISBN 978-3-540-20524-1 4th ed.

Springer Berlin Heidelberg New York.

[7] Buffet, O., Cucu, L., Idoumghar, L., & Schott, R. (2010). Tabu search type algorithms

for the multiprocessor scheduling problem. In: Proceedings of the 10th International

Conference on Artificial Intelligence and Applications, DOI: 10.2316/P.2010.674-070.

[8] Bukchin, Y., Raviv, T., & Zaides, I. (2000) The consecutive multiprocessor job

scheduling problem, European Journal of Operational Research, 284(2), 427-438,

https://doi.org/10.1016/j.ejor.2019.12.043.

[9] da Silva, E.C., & Gabriel, P.H.R. (2020). A comprehensive review of evolu-

tionary algorithms for multiprocessor DAG scheduling. Computation, 8(2), 26,

doi:10.3390/computation8020026.

[10] Drozdowski, M., (1996). Scheduling multiprocessor tasks-an overview. European

Journal of Operational Research, 94(2), 215-230, https://doi.org/10.1016/0377-

2217(96)00123-3.

32

[11] Graham, R.L., Lower, E.L, Lenstra, J.K., & Rinnoy, A.H.G. (1979). Optimization and

Approximation in Deterministic Sequencing and Scheduling Theory’ A Survey. Annals

of Discrete Mathematics, 5, 287-326, https://doi.org/10.1016/S0167-5060(08)70356-X.

[12] Hifi M., & Michrafy M. (2006). A reactive local search-based algorithm for the dis-

junctively constrained knapsack problem. Journal of the Operational Research Society.

57(6), 718-726, https://doi.org/10.1057/palgrave.jors.2602046.

[13] Hoogeveen, J.A., van de Velde, S.L., & Veltman, B. (1994). Complexity of scheduling

multiprocessor tasks with prespecified processor allocations. Discrete Applied Mathe-

matics, 55, 259-272, https://doi.org/10.1016/0166-218X(94)90012-4.

[14] Kacem, A., & Dammak, A. (2014). A genetic algorithm to minimize the

makespan on two dedicated processors. In: Proceedings of the International Con-

ference in Control, Decision and Information Technologies (CoDIT), pp. 400-404,

https://doi.org/10.1109/CoDIT.2014.6996927.

[15] Kononova, A., Kononovaa, P. & Gordeev, A. (2020). Branch-and-bound approach for

optima localization in scheduling multiprocessor jobs. International Transactions in

Operational Research, 27, 381-393, DOI:10.1111/itor.12503.

[16] Laguna, M., Marti, R. (1999). GRASP and path relinking for 2-layer

straight line crossing minimization. INFORMS Journal on Computing, 11, 44-52,

https://doi.org/10.1287/ijoc.11.1.44.

[17] Lei, D., & Cai, J. (2020). Multi-population meta-heuristics for produc-

tion scheduling: a survey. Swarm and Evolutionary Computation (to appear),

https://doi.org/10.1016/j.swevo.2020.100739.

[18] Manaa, A., & Chu, C. (2010). Scheduling multiprocessor tasks to minimise the

makespan on two dedicated processors. European Journal Industrial Engineering, 4(3),

265-279, https://dx.doi.org/10.1504/EJIE.2010.033331.

[19] Priya, A., & Sahana, S.K. (2019). A survey on multiprocessor scheduling using evo-

lutionary technique. In: Nanoelectronics, Circuits and Communication Systems. Lec-

ture Notes in Electrical Engineering, Nath V., Mandal J. (eds), vol 511, pp. 149-160,

Springer, Singapore, https://doi.org/10.1007/978-981-13-0776-8_14.

33

[20] Resende, MGC., Marti, R., Gallegoc, M., & Duarte, A. (2010). GRASP and path

relinking for the max-min diversity problem. Computers and Operations Research 37(3),

498-508, https://doi.org/10.1016/j.cor.2008.05.011.

[21] Song, Y., Xing, L., Wang, M., Yi, Y., Xiang, W., & Zhang, Z. (2020). A knowledge-

based evolutionary algorithm for relay satellite system mission scheduling problem.

Computers and Industrial Engineering, 150, doi.org/10.1016/j.cie.2020.106830.

[22] Thesen. A. (1998). Design and evaluation of tabu search algo-

rithms for multiprocessor scheduling. Journal of Heuristics, 4, 141-160,

https://doi.org/10.1023/A:1009625629722.

[23] Zhang, X., Li, X. & Wang, J., (2016). Local search algorithm with path relinking for

single batch-processing machine scheduling problem. The Natural Computing Applica-

tions Forum, 28, 313-326, DOI 10.1007/s00521-016-2339-z.

[24] Zhao, F., Zhang, L., Cao, J., & Tang, J. (2021). A cooperative water wave

optimization algorithm with reinforcement learning for the distributed assembly

no-idle flowshop scheduling problem. Computers and Industrial Engineering, 153,

doi.org/10.1016/j.cie.2020.107082.

34

