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We prove a flatness result for entire nonlocal minimal graphs hav-
ing some partial derivatives bounded from either above or below.
This result generalizes fractional versions of classical theorems due
to Bernstein and Moser. Our arguments rely on a general splitting
result for blow-downs of nonlocal minimal graphs.

Employing similar ideas, we establish that entire nonlocal min-
imal graphs bounded on one side by a cone are affine.

Moreover, we show that entire graphs having constant nonlocal
mean curvature are minimal, thus extending a celebrated result of
Chern on classical CMC graphs.

1. Introduction and main results

Let n ⩾ 1 be an integer and α ∈ (0, 1). Given an open set Ω ⊆ R
n+1 and a

measurable set E ⊆ R
n+1, we define the α-perimeter of E in Ω by

Perα(E,Ω) :=

∫

Ω∩E

∫

Rn+1\E

dxdy

|x− y|n+1+α
+

∫

E\Ω

∫

Ω\E

dxdy

|x− y|n+1+α
.

A measurable set E ⊆ R
n+1 is called α-minimal in Ω if it satisfies

Perα(E,Ω) < +∞ and Perα(E,Ω) ⩽ Perα(F,Ω) for every F ⊆ R
n+1 such

that F \ Ω = E \ Ω. Sets that minimize Perα in all bounded open subsets
of Rn+1 will be simply called α-minimal and their boundaries α-minimal
surfaces.

The first author acknowledges support from a Royal Society Newton International
Fellowship, from the MINECO grants MTM2014-52402-C3-1-P and MTM2017-
84214-C2-1-P, and from the Maŕıa de Maeztu Programme for Units of Excellence
in R&D with project code MDM-2014-0445. Part of this work has been carried
out while the first and second authors were visiting the Università degli Studi di
Milano, which they thank for the warm hospitality.
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Fractional (or nonlocal) perimeters and their minimizers have been first
introduced by Caffarelli, Roquejoffre & Savin [7] in 2010, motivated by ap-
plications to phase transition problems in the presence of long range in-
teractions. There, the authors established several results about α-minimal
surfaces, concerning in particular their existence and regularity. They also
showed that every minimizer E of Perα satisfies the Euler-Lagrange equation

Hα[E](x) = 0 for x ∈ ∂E

in a suitable viscosity sense. The quantity Hα[E](x) is often referred to as
the α-mean curvature of E at x ∈ ∂E and is formally defined by

(1.1) Hα[E](x) := P.V.

∫

Rn+1

χRn+1\E(y)− χE(y)

|x− y|n+1+α
dy.

In the subsequent years, many authors have directed their attention to-
wards α-minimal surfaces, obtaining a variety of results mostly regarding
their regularity and qualitative behavior. We encourage the reader to con-
sult the surveys contained in [27], [4, Chapter 6], [15], and [11, Section 7]
for more information.

In this brief note we are mostly interested in α-minimal sets E ⊆ R
n+1

that are subgraphs of a measurable function u : Rn → R, i.e., that satisfy

(1.2) E =
{

x = (x′, xn+1) ∈ R
n × R : xn+1 < u(x′)

}

.

We will call the boundaries of such extremal sets α-minimal graphs.
Note that, when E is the subgraph of a function u, we can write its α-

mean curvature as an integrodifferential operator acting on u. More precisely,
letting u : Rn → R be a function of, say, class C1,1 in a neighborhood of a
point x′ ∈ R

n and E be given by (1.2), we have that

(1.3) Hα[E](x′, u(x′)) = Hαu(x
′),

with

(1.4) Hαu(x
′) := 2P.V.

∫

Rn

G

(

u(x′)− u(y′)

|x′ − y′|

)

dy′

|x′ − y′|n+α

and

(1.5) G(t) :=

∫ t

0

dτ

(1 + τ2)
n+1+α

2

for t ∈ R.
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Both here and in (1.1) the symbol P.V. means that the integrals must be
understood in the Cauchy principal value sense. See, e.g., [8, Section 2] or [3,
Appendix B] for a proof of identity (1.3).

Taking advantage of the convexity of the energy functional associated
to Hα and of a suitable rearrangement inequality, it is shown in [12] that a
set E given by (1.2) for some function u : Rn → R is α-minimal if and only
if u is a solution of

(1.6) Hαu = 0 in R
n.

There are several notions of solutions of (1.6), such as smooth solutions, vis-
cosity solutions, and weak solutions. However, all such definitions are equiv-
alent under mild assumptions on u—for more details, see [12] or Chapter 4 of
the PhD thesis [22] of the third author (and in particular [12, Theorem 1.10]
or [22, Corollary 4.1.12]). In what follows, a solution of (1.6) will always be
a function u ∈ C∞(Rn) that satisfies identity (1.6) pointwise. We stress that
no growth assumptions at infinity are made on u.

The main contribution of this note is the following result.

Theorem 1.1. Let n ⩾ ℓ ⩾ 1 be integers, α ∈ (0, 1), and suppose that

(Pα,ℓ) there exist no singular α-minimal cones in R
ℓ.

Let u be a solution of (1.6) having n− ℓ partial derivatives bounded on one
side.

Then, u is an affine function.

We point out that throughout the paper a cone is any subset C of the
Euclidean space for which λx ∈ C for every x ∈ C and λ > 0. A set E will
be said to be trivial if either E or its complement has measure zero. In
addition, a singular cone is a cone whose boundary is not smooth at the
origin or, equivalently, any nontrivial cone that is not a half-space.

Characterizing the values of α and ℓ for which (Pα,ℓ) is satisfied repre-
sents a challenging open problem, whose solution would lead to fundamental
advances in the understanding of the regularity properties enjoyed by non-
local minimal surfaces. Currently, property (Pα,ℓ) is know to hold in the
following cases:

• when ℓ = 1 or ℓ = 2, for every α ∈ (0, 1);

• when 3 ⩽ ℓ ⩽ 7 and α ∈ (1− ε0, 1) for some small ε0 ∈ (0, 1] depending
only on ℓ.
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Case ℓ = 1 holds by definition, while ℓ = 2 is the content of [26, Theorem 1].
On the other hand, case 3 ⩽ ℓ ⩽ 7 has been established in [8, Theorem 2]—
see also [5] for a different approach yielding an explicit value for ε0 when
ℓ = 3.

As a consequence of Theorem 1.1 and the last remarks, we immediately
obtain the following result.

Corollary 1.2. Let n ⩾ ℓ ⩾ 1 be integers and α ∈ (0, 1). Assume that ei-
ther

• ℓ ∈ {1, 2}, or

• 3 ⩽ ℓ ⩽ 7 and α ∈ (1− ε0, 1), with ε0 = ε0(ℓ) > 0 as in [8, Theorem 2].

Let u be a solution of (1.6) having n− ℓ partial derivatives bounded on one
side.

Then, u is an affine function.

We observe that Theorem 1.1 gives a new flatness result for α-minimal
graphs, under the assumption that (Pα,ℓ) holds true. It can be seen as a gen-
eralization of the fractional De Giorgi-type lemma contained in [19, Theo-
rem 1.2], which is recovered here taking ℓ = n. In this case, we indeed provide
an alternative proof of the result of [19].

On the other hand, the choice ℓ = 2 gives an improvement of [18, Theo-
rem 4], when specialized to α-minimal graphs. In light of these observations,
Theorem 1.1 and Corollary 1.2 can be seen as a bridge between Bernstein-
type theorems (flatness results in low dimensions) and Moser-type theorems
(flatness results under global gradient bounds).

For classical minimal graphs—formally corresponding to the case α = 1
here (see, e.g., [1, 8])—the counterpart of Corollary 1.2 has been recently
obtained by the second author in [17]. In that case, the result is sharp and
holds with ℓ = min{n, 7}. See also [16] by the same author for a previous
result established for ℓ = 1 and through a different argument.

Using the same ideas that lead to Theorem 1.1, we can prove the follow-
ing rigidity result for entire α-minimal graphs that lie above a cone.

Theorem 1.3. Let n ⩾ 1 be an integer and α ∈ (0, 1). Let u be a solution
of (1.6) and assume that there exists a constant C > 0 for which

(1.7) u(x′) ⩾ −C(1 + |x′|) for every x′ ∈ R
n.

Then, u is an affine function.
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Of course, the same conclusion can be drawn if (1.7) is replaced by the
specular

u(x′) ⩽ C(1 + |x′|) for every x′ ∈ R
n.

For classical minimal graphs, the corresponding version of Theorem 1.3
follows at once from the gradient estimate of Bombieri, De Giorgi & Mi-
randa [2] and Moser’s version of Bernstein’s theorem [25]. See for instance [20,
Theorem 17.6] for a clean statement and the details of its proof.

In the nonlocal scenario, a gradient bound for α-minimal graphs has
been recently established in [6]. However, this result is partly weaker than
the one of [2], since it provides a bound for the gradient of a solution
of (1.6) in terms of its oscillation, and not just of its supremum (or in-
fimum) as in [2]. Consequently, in [6] a rigidity result analogous to The-
orem 1.3 is deduced, but with (1.7) replaced by the stronger, two-sided
assumption: |u(x′)| ⩽ C(1 + |x′|) for every x′ ∈ R

n. Theorem 1.3 thus im-
proves [6, Theorem 1.6] directly. Moreover, our proof is different, as it relies
on geometric considerations rather than uniform regularity estimates.

The proof of Theorem 1.1 is based on the extension to the fractional
framework of a strategy devised by the second author for classical minimal
graphs and previously unpublished. As a result, the ideas contained in the
following sections can be used to obtain a different, easier proof of [17, The-
orem 1.1]—since, by Simons’ theorem (see, e.g., [23, Theorem 28.10]), no
singular classical minimal cones exist in dimension lower or equal to 7. Simi-
larly, the same argument that we employ for Theorem 1.3 can be successfully
applied to classical minimal graphs, giving a different, more geometric, proof
of [20, Theorem 17.6].

The argument leading to Theorem 1.1 relies on a general splitting result
for blow-downs of α-minimal graphs. Since it may have an interest on its
own, we provide its statement here below.

Theorem 1.4. Let n ⩾ 1 be an integer and α ∈ (0, 1). Let u be a solution
of (1.6) and E as in (1.2). Assume that u is not affine and that, for some k ∈
{1, . . . , n− 1}, the partial derivative ∂u

∂xi
is bounded from below in R

n for
every i = 1, . . . , k.

Then, every blow-down limit C ⊆ R
n+1 of E is a cylinder of the form

C = R
k × P × R,

for some singular α-minimal cone P ⊆ R
n−k.

The notion of blow-down limit will be made precise in Section 2.
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Remark 1.5. As revealed by a simple inspection of its proof, Theorem 1.4
still holds if we require any k directional derivatives ∂ν1

u, . . . , ∂νk
u (not

necessarily the partial derivatives) to be bounded from below, provided that
the directions ν1, . . . , νk are linearly independent. Consequently, one can
similarly modify the statements of Theorem 1.1 and Corollary 1.2 without
affecting their validity.

Theorem 1.3 says in particular that there exist no non-flat α-minimal
subgraphs that contain a half-space. Actually, one can prove the following
theorem, valid not only for α-minimal subgraphs, but for general minimizers
of the α-perimeter.

Theorem 1.6. Let n ⩾ 1 be an integer and α ∈ (0, 1). If E is a nontriv-
ial α-minimal set in R

n+1 that contains a half-space, then E is a half-space.

Theorem 1.6 already appeared in the literature—see [14, Lemma 8.3].
For the reader’s convenience, we nevertheless include a brief and slightly
different proof of it in Section 5.

Interestingly, Theorem 1.6 can be used to obtain a stronger version of
Theorem 1.3, where the bound in (1.7) is required to only hold at all points x′

that lie in a half-space of Rn. See Remark 6.1 at the end of Section 6.
The remainder of the paper is structured as follows. In Section 2 we

gather some known facts about sets with finite perimeter, the regularity of α-
minimal surfaces, and their blow-downs. Section 3 is devoted to the proof of
Theorem 1.4, while in Section 4 we show how Theorem 1.1 follows from it.
Sections 5 and 6 contain the proofs of Theorems 1.6 and 1.3, respectively.
The note is closed by Section 7, which includes the extension of a result due
to Chern [9] to the framework of graphs having constant α-mean curvature.

2. Some remarks on nonlocal minimal surfaces and

blow-down cones

As customary when dealing with the perimeter (either classical or frac-
tional), we implicitly assume that all the sets we consider contain their mea-
sure theoretic interior, do not intersect their measure theoretic exterior, and
are such that their topological boundary coincides with their measure theo-
retic boundary—which is possible up to modifications in a set of Lebesgue
measure zero.
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More precisely, given a measurable set E ⊆ R
n+1 we define

Eint :=
{

x ∈ R
n+1 : |E ∩Br(x)| = |B1|r

n+1 for some r > 0
}

,

Eext :=
{

x ∈ R
n+1 : |E ∩Br(x)| = 0 for some r > 0

}

,

and

∂−E := R
n+1 \

(

Eint ∪ Eext

)

=
{

x ∈ R
n+1 : 0 < |E ∩Br(x)| < |B1|r

n+1 for all r > 0
}

.

Then, we assume that

Eint ⊆ E, Eext ∩ E = ∅, and ∂E = ∂−E.

See, e.g., step two in the proof of [23, Proposition 12.19] and Section 3.2
of [28]. Notice that this requirement amounts to identifying the set E with
a specific representative within its L1

loc class. Since

Perα(F,Ω) = Perα(E,Ω) for every set F ⊆ R
n+1 such that |E∆F | = 0,

such an assumption does not affect the α-perimeter of E.
We now recall some known results about the regularity of α-minimal

surfaces, which will be often used without mention in the subsequent sec-
tions.

Let E ⊆ R
n+1 be an α-minimal set. Then, its boundary ∂E is n-

rectifiable. Actually, by [7, Theorem 2.4], [26, Corollary 2], and [19, The-
orem 1.1], ∂E is locally of class C∞, except possibly for a set of singular
points ΣE ⊆ ∂E satisfying

Hd(ΣE) = 0 for every d > n− 2.

In particular, the set E has locally finite (classical) perimeter in R
n+1 and

actually, as proved in [10], uniform perimeter estimates are available. Thus,
it makes sense to consider its reduced boundary ∂∗E.

Furthermore, thanks to the blow-up analysis developed in [7]—see in
particular [7, Theorem 9.4]—and the tangential properties of the reduced
boundary of a set of locally finite perimeter—see, e.g., [23, Theorem 15.5]—
we have that ∂∗E is smooth and the singular set is given by

ΣE = ∂E \ ∂∗E.
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Given a measurable set E ⊆ R
n+1, a point x ∈ R

n+1, and a real num-
ber r > 0, we write

Ex,r :=
E − x

r
.

We call any L1
loc-limit Ex,∞ of Ex,rj along a diverging sequence {rj} a blow-

down limit of E at x.
Observe that doing a blow-down of a set E corresponds to the operation

of looking at E from further and further away. As a result, in the limit one
loses track of the point at which the blow-down was centered. That is, blow-
down limits may depend on the chosen diverging sequence {rj} but not on
the point of application x. This fact is certainly well-known to the experts.
Nevertheless, we include in the following Remark a brief justification of it
for the convenience of the less experienced reader.

Remark 2.1. Let x, y ∈ R
n+1 and E ⊆ R

n+1 be a measurable set. Assume
that there exists a set F ⊆ R

n+1 such that Ex,rj → F in L1
loc(R

n+1) as j →
+∞, along a diverging sequence {rj}. We claim that also

(2.1) Ey,rj → F in L1
loc(R

n+1) as j → +∞.

To verify this assertion, let R > 0 be fixed and write fj := χEx,rj
and f :=

χF . Notice that χEy,rj
= τvj

fj := fj(· − vj), with vj := (x− y)/rj . Since
vj → 0 as j → 0, we have

∣

∣(Ey,rj∆F ) ∩BR

∣

∣ = ∥χEy,rj
− χF ∥L1(BR) = ∥τvj

fj − f∥L1(BR)

⩽ ∥τvj
fj − τvj

f∥L1(BR) + ∥τvj
f − f∥L1(BR)

⩽ ∥fj − f∥L1(BR+1) + ∥τvj
f − f∥L1(BR),

provided j is sufficiently large. Claim (2.1) follows since, by assumption, fj →
f in L1

loc(R
n+1) and R > 0 is arbitrary.

In light of this remark, we can assume blow-downs to be always centered
at the origin. For simplicity of notation, we will write Er := E0,r = E/r and
use E∞ to indicate any blow-down limit.

The next lemma collects some known facts about blow-downs of α-
minimal sets.

Lemma 2.2. Let E ⊆ R
n+1 be a nontrivial α-minimal set. Then, for ev-

ery diverging sequence {rj}, there exists a subsequence {rjk} of {rj} and a
set E∞ ⊆ R

n+1 such that Erjk
→ E∞ in L1

loc(R
n+1) as k → +∞. The set E∞
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is a nontrivial α-minimal cone. Furthermore, E∞ is a half-space if and only
if E is a half-space.

Proof. The existence of a limit of Erj (up to a subsequence) is a conse-
quence of uniform estimates for the α-perimeter of α-minimal sets and the
compactness of the fractional Sobolev embedding. More in detail, by the
scale invariance of Perα, we have that Er is an α-minimal set. Hence, for
every r,R > 0,

Perα(Er, BR) ⩽ Perα(Er \BR, BR)

⩽

∫

BR

∫

Rn+1\BR

dxdy

|x− y|n+1+α
⩽ CRn+1−α,

for some constant C > 0 depending only on n and α. In particular, for
fixed R > 0, the quantities [χErj

]W 1,α(BR) are bounded uniformly in j ∈ N.

By, say, [13, Theorem 7.1], there exist therefore a subsequence {r
(R)
jk

} and

a set E
(R)
∞ ⊆ BR for which E

r
(R)
jk

→ E
(R)
∞ in L1(BR) as k → +∞. A stan-

dard diagonal argument then yields the existence of a limit E∞ ⊆ R
n+1

in L1
loc(R

n+1) along some subsequence {rjk}.
The fact that E∞ is α-minimal is a consequence of the α-minimality of

the sets Erjk
and their L1

loc convergence to E∞—see [7, Theorem 3.3].
Next we observe that, since E is nontrivial, we can find a point x ∈ ∂E.

Thanks to Remark 2.1, we then have that

Ex,rjk
→ E∞ in L1

loc(R
n+1) as k → ∞.

Since 0 ∈ ∂Ex,rjk
for every k ∈ N, we can conclude that E∞ is a cone by

arguing as in [7, Theorem 9.2].
The nontriviality of E∞ can be established, for instance, by using the

uniform density estimates of [7]. Indeed, 0 ∈ ∂Ex,rjk
for every k ∈ N and

hence [7, Theorem 4.1] gives that min{|Ex,rjk
∩B1|, |B1 \ Ex,rjk

|} ⩾ c for
some constant c > 0 independent of k. As Ex,rjk

→ E∞ in L1(B1), it follows
that both E∞ and its complement have positive measure in B1. Conse-
quently, E∞ is neither the empty set nor the whole R

n+1.
Finally, if E∞ is a half-space, one can deduce the flatness of ∂E from

the ε-regularity theory of [7, Section 6] and the fact that ∂Erjk
→ ∂E∞ in

the Hausdorff sense, thanks to the uniform density estimates. See, e.g., [19,
Lemma 3.1] for more details on this argument. □
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3. Proof of Theorem 1.4

In this section we include a proof of the splitting result stated in the intro-
duction, namely Theorem 1.4. The argument leading to it is based on the
following classification result for nonlocal minimal cones that contain their
translates. For classical minimal cones, it was proved in [21].

Proposition 3.1. Let C ⊆ R
n+1 be an α-minimal cone and assume that

(3.1) C + v ⊆ C

for some v ∈ R
n+1 \ {0}. Then, C is either a half-space or a cylinder in

direction v.

Proof. First of all, we notice that, since C is a cone and inclusion (3.1) holds
true, the function w := −νC · v satisfies

(3.2) w ⩾ 0 in ∂∗
C .

To see this, let x ∈ ∂∗C and observe that, C being a cone, we have that µx ∈
C for every µ > 0. But then µx+ v ∈ C + v and, using (3.1), it follows
that µx+ v ∈ C . Consequently, µλx+ λv = λ(µx+ v) ∈ C for every λ, µ >
0. Choosing µ = 1/λ we get that x+ λv ∈ C for every λ > 0, which gives
that v points inside C . Recalling that the normal νC points outside C , we
are immediately led to (3.2).

Now, by [6, Theorem 1.3(i)] we know that w solves

(3.3) Lw + c2w = 0 in ∂∗
C ,

where

Lw(x) := P.V.

∫

∂∗C

w(y)− w(x)

|x− y|n+1+α
dHn(y),

c2(x) :=
1

2

∫

∂∗C

|νC (x)− νC (y)|
2

|x− y|n+1+α
dHn(y),

for every x ∈ ∂∗C . As c2 ⩾ 0 in ∂∗C and (3.2) holds true, we deduce from (3.3)
that w is L-superharmonic in ∂∗C , i.e.,

−Lw ⩾ 0 in ∂∗
C .
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By [6, Corollary 6.9] (and the perimeter estimate of [10]), we then infer that,
for every point x ∈ ∂∗C and radius R > 0, the function w satisfies

inf
BR(x)∩∂∗C

w ⩾ c⋆R
1+α

∫

∂∗C

w(y)

(R+ |y − x|)n+1+α
dHn(y),

for some constant c⋆ ∈ (0, 1] depending only on n and α.
Accordingly, either w = 0 in the whole ∂∗C or infBR(x)∩∂∗C w ⩾ cx,R for

some constant cx,R > 0 and for every x ∈ ∂∗C and R > 0. In the first case, it
is easy to see that C must be a cylinder in direction v. If the second situation
occurs, then ∂C is a locally Lipschitz graph with respect to the direction v
(see, e.g., [24, Theorem 5.6]), and hence smooth, due to [19, Theorem 1.1].
It being a cone, we conclude that C must be a half-space. □

With this in hand, we may now proceed to prove the splitting result.

Proof of Theorem 1.4. Let E denote the subgraph of u, as defined by (1.2).
We recall that, as observed right before the statement of Theorem 1.1, the
set E is α-minimal.

Let C be a blow-down cone of E. By definition, there exists a diverg-
ing sequence rj for which Erj = E/rj → C in L1

loc(R
n+1). As noticed in

Lemma 2.2, C is a nontrivial α-minimal cone. Moreover, C is not an half-
space, since, otherwise, E would be a half-space too (again, by Lemma 2.2),
contradicting the hypothesis that E is the subgraph of a non-affine function.
We also recall that this is equivalent to the cone C being singular.

As E is a subgraph, it follows that E − ten+1 ⊆ E for every t > 0.
This yields that Erj − en+1 ⊆ Erj for every j. Hence, by L1

loc(R
n+1) con-

vergence, C − en+1 ⊆ C . Since C is not a half-space, by Proposition 3.1 we
conclude that C is a cylinder in direction en+1, that is

(3.4) C + λen+1 = C for every λ ∈ R,

or, equivalently, C = C ′ × R, for some singular α-minimal cone C ′ ⊆ R
n.

Observe that the α-minimality of C ′ is a consequence of [7, Theorem 10.1].
Also note that to obtain (3.4) we only took advantage of the fact that E is
an α-minimal subgraph and not the hypotheses on the partial derivatives
of u.

Let now i = 1, . . . , k be fixed. By the bound from below on the par-
tial derivative ∂u

∂xi
and the fundamental theorem of calculus, there exists a
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constant κ > 0 such that

u(z′ + tei)− u(z′) =

∫ t

0

∂u(z′ + τei)

∂xi
dτ ⩾ −κt

for every z′ ∈ R
n and t > 0. Let now uj be the function defining the blown-

down set Erj . Clearly, uj(z
′) = u(rjz

′)/rj and hence

uj(y
′ + ei)− uj(y

′) =
u(rjy

′ + rjei)− u(rjy
′)

rj
⩾ −κ

for every y′ ∈ R
n and j ∈ N. This means that Ej − κen+1 + ei ⊆ Ej for ev-

ery j ⩾ 1. Passing to the limit and using (3.4), we deduce that C + ei =
C − κen+1 + ei ⊆ C . Taking advantage once again of Proposition 3.1 and of
the fact that C is not a half-space, we infer that C is a cylinder in direction ei
for every i = 1, . . . , k. The conclusion of Theorem 1.4 follows. □

4. Proof of Theorem 1.1

First of all, we may assume that the partial derivatives of u bounded on
one side are the first n− ℓ. Also, up to flipping the variable xi, for some i ∈
{1, . . . , n− ℓ}, we may suppose that those partial derivatives are all bounded
from below. All in all, we have that

∂u

∂xi
⩾ −κ for every i = 1, . . . , n− ℓ,

for some constant κ ⩾ 0.
If u were not affine, then, by applying Theorem 1.4 with k = n− ℓ, we

would have that every blow-down cone C of the set E defined by (1.2) is
given by

C = R
k × P × R,

for some singular α-minimal cone P ⊆ R
n−k = R

ℓ. As this contradicts as-
sumption (Pα,ℓ), we conclude that u must be affine.

5. Proof of Theorem 1.6

Let Π be a half-space contained in E. Without loss of generality, we may
assume that Π = {x ∈ R

n : xn+1 < 0}. Consider then a blow-down C of E,
which is a nontrivial α-minimal cone, by Lemma 2.2. In particular, Π ⊆ C

and 0 ∈ ∂Π ∩ ∂C . Using, e.g., [7, Corollary 6.2], we infer that C = Π and
therefore that E is half-space as well, thanks again to Lemma 2.2.
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6. Proof of Theorem 1.3

Suppose by contradiction that the function u is not affine and denote with E
its subgraph. Up to a translation of E in the vertical direction, hypothe-
sis (1.7) yields that E contains the cone

D :=
{

x ∈ R
n+1 : xn+1 < −C|x′|

}

.

Consider now a blow-down C of E. On the one hand, we clearly have
that D ⊆ C . On the other hand, by arguing as in the beginning of the proof
of Theorem 1.4, we have that C must be a nontrivial vertical cylinder. More
precisely, C = C ′ × R, for some nontrivial singular α-minimal cone C ′ ⊆ R

n.
These two facts imply that C ′ = R

n, contradicting its nontriviality. This
concludes the proof.

Remark 6.1. By a refinement of this argument we can prove a stronger
version of Theorem 1.3, where hypothesis (1.7) is replaced by

(6.1) u(x′) ⩾ −C(1 + |x′|) for every x′ ∈ R
n such that x1 < 0.

Indeed, arguing by contradiction as before, we see that any blow-down of
the subgraph of u is a cylinder of the form C ′ × R. In light of (6.1), the
cone C ′ contains a half-space of Rn and is thus flat, due to Theorem 1.6.
This leads to a contradiction.

7. Subgraphs of constant fractional mean curvature

We pointed out in the introduction that if a function u : Rn → R is regular
enough in a neighborhood of a point x′ ∈ R

n, then the quantity Hαu(x
′)

considered in (1.4)–(1.5) is well-defined.
In case u is merely a measurable function, we can still understand Hαu

as a linear form on the fractional Sobolev space Wα,1(Rn), setting

⟨Hαu, v⟩ :=

∫

Rn

∫

Rn

G

(

u(x′)− u(y′)

|x′ − y′|

)

(

v(x′)− v(y′)
) dx′dy′

|x′ − y′|n+α

for every v ∈ Wα,1(Rn). This definition is indeed well-posed since G is
bounded.
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Let h be a real number. We say that a measurable function u : Rn → R

is a weak solution of Hαu = h in R
n if it holds

(7.1) ⟨Hαu, v⟩ = h

∫

Rn

v(x′) dx′ for every v ∈ Wα,1(Rn).

We remark that by the density of C∞
c (Rn) in Wα,1(Rn), it is equivalent to

consider the test functions v to be smooth and compactly supported.
We now prove that if the α-mean curvature of a global subgraph is con-

stant, then this constant must be zero. More precisely, we have the following
statement.

Proposition 7.1. Let u : Rn → R be a weak solution of Hαu = h in R
n,

for some constant h ∈ R. Then h = 0.

Proof. Recalling (1.5), we notice that

|G(t)| ⩽

∫ +∞

0

dτ

(1 + τ2)
n+1+α

2

=: Λ < +∞ for every t ∈ R.

Suppose that h ⩾ 0—the case h ⩽ 0 is analogous. Let R > 0 and consider
the test function v = χB′

R
∈ Wα,1(Rn). We have

|⟨Hαu, χB′

R
⟩| ⩽ 2Λ

∫

B′

R

∫

Rn\B′

R

dx′dy′

|x′ − y′|n+α
= CRn−α,

for some constant C > 0 depending only on n an α. Since u weakly solves
Hα = h in R

n, by plugging v = χB′

R
in (7.1) we deduce that

h|B′
1|R

n = h

∫

Rn

χB′

R
(x′) dx′ = ⟨Hαu, χB′

R
⟩ ⩽ CRn−α

for all R > 0, that is 0 ⩽ hRα ⩽ C/|B′
1|. Letting R → +∞ we conclude

that h = 0. □

We point out that, as a consequence of Proposition 7.1 and the results
of [12], if a function u ∈ Wα,1

loc (R
n) is a weak solution of Hαu = h in R

n,
then the subgraph of u must be an α-minimal set—thus extending to the
nonlocal framework a celebrated result of Chern, namely the Corollary of
Theorem 1 in [9].

We further remark that other definitions for solutions of the equation
Hαu = h could have been considered, namely smooth pointwise solutions
and viscosity solutions—for a rigorous definition see [12, Section 4] or [22,
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Subsection 4.3]. However, it is readily seen that a smooth pointwise solution
is also a viscosity solution. Moreover, in [12] it is shown that a viscosity
solution is also a weak solution. Consequently, Proposition 7.1 applies to
these other two notions of solutions as well.
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