%0 Journal Article %T Normalized solutions for nonlinear Schrodinger systems on bounded domains %+ Laboratoire Amiénois de Mathématique Fondamentale et Appliquée - UMR CNRS 7352 (LAMFA) %+ Instituto Superior Técnico, Universidade Técnica de Lisboa (IST) %+ Politecnico di Milano [Milan] (POLIMI) %A Noris, Benedetta %A Tavares, Hugo %A Verzini, Gianmaria %< avec comité de lecture %@ 0951-7715 %J Nonlinearity %I IOP Publishing %V 32 %N 3 %P 1044-1072 %8 2019 %D 2019 %Z 1807.03082 %R 10.1088/1361-6544/aaf2e0 %Z Mathematics [math]Journal articles %X We analyze L-2-normalized solutions of nonlinear Schrodinger systems of Gross-Pitaevskii type, on bounded domains, with homogeneous Dirichlet boundary conditions. We provide sufficient conditions for the existence of orbitally stable standing waves. Such waves correspond to global minimizers of the associated energy in the L-2-subcritical and critical cases, and to local ones in the L-2-supercritical case. Notably, our study also includes the Sobolev-critical case. %G English %L hal-03623063 %U https://u-picardie.hal.science/hal-03623063 %~ CNRS %~ UNIV-PICARDIE %~ INSMI %~ U-PICARDIE %~ LAMFA