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Abstract

In this paper, we define support τn-tilting modules over a finite
dimensional k-algebra A. We establish a bijection between support
τn-tilting modules and n-term silting complexes in the bounded homo-
topy category of finitely generated projective A-modules, generalizing
the result of Adachi, Iyama and Reiten for support τ -tilting modules
and two-term silting complexes.

1 Introduction

In representation theory, one may use tilting modules and associated tilting
functors to compare the module categories of two algebras A and B. The
reflection functors, introduced by Bernstein, Gelfand and Ponomarev [7] in
1973 motivated tilting theory. Then Auslander, Platzeck and Reiten [6] in
1979 reformulated them and as generalisations, tilting functors were studied
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by Brenner and Butler [8]. As further generalisations, in 1982, Happel and
Ringel [13] defined tilted algebras and tilting modules.

Tilting theory is one sort of generalisation of Morita equivalence. Indeed,
generalised tilting modules also yield derived equivalences. In 1989 Rickard
[16] proved that given two finite-dimensional algebras A and B, the bounded
derived categories of A and B are equivalent if and only if there exists a
tilting complex T over B such that A is the endomorphism algebra of T.
Tilting complexes are generalisations of generalised tilting modules [10]. In
[14] Muchtadi-Alamsyah studied the endomorphism ring of n-term tilting
complexes as generalisation of 2-term tilting complexes.

Silting complexes are generalisations of tilting complexes [9, 15]. In 2014
τ -tilting theory was introduced by Adachi, Iyama and Reiten [1], thus giving
a completion of tilting theory from the point-of-view of mutation, arising
from the theory of cluster algebras [11, 12]. Support tilting modules (tilting
modules) are generalised to support τ -tilting modules (τ -tilting modules)
[2, 5, 17, 18]. Moreover, Adachi, Iyama and Reiten prove the following:

Theorem (Adachi–Iyama–Reiten [1]): Let A be a finite-dimensional k-algebra.
Then there is an explicit bijection between support τ -tilting modules and two-
term silting complexes in the bounded homotopy category of finitely generated
projective A-modules Kb(projA).

A natural question arises:

Question: Can one generalise this result to n-term silting complexes?

In this note, we propose a definition of support τn-tilting modules and of
n-term silting complexes, and we prove an explicit bijection between support
τn-tilting A-modules and n-term silting complexes in Kb(projA).

2 Definitions and Notations

For a finite dimensional basic algebra A over an algebraically closed field k,
the category of finitely generated left A-modules is denoted by modA and the
category of finitely generated projective left A-modules is denoted by projA.
If M ∈ modA, addM is the category of all direct summands of finite direct
sums of copies of M, and the number of non isomorphic indecomposable
direct summands of M is denoted by d(M).

If M ∈ modA then the right A-module HomA(M,A) is denoted by M∗,
whereas the dual, the right A-module Homk(M, k) is denoted by D(M). If
X1 → X0 → M → 0 is a minimal projective presentation of M, the transpose
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Tr(M) of M is the cokernel of X∗

0 → X∗

1 . The Auslander-Reiten translation
is defined as τ = DTr. The syzygy of M, is the kernel of X0 → M, and is
denoted by Ω(M). We denote by τn = τΩn−2.

Remark 2.1. Note that τ = τ2 in our convention. Our notation slightly
differs from the one that is currently used in higher homological algebra: what
we call τn here is more commonly denoted τn−1. We chose to shift the usual
notation so that τn-tilting modules correspond to n-term complexes.

Definition 2.2. Let M ∈ modA.

1. If Hom(M, τnM) = 0 and Exti(M,M) = 0 for all i ∈ {1, · · · , n − 1},
then we call M a strongly τn-rigid module.

2. If M is a strongly τn-rigid module and d(M) = d(A), then we call M a
τn-tilting module.

3. If M is a τn-tiling (A/〈e〉)-module, where e is an idempotent of A, then
we call M a support τn-tilting module.

Let sτn-tiltingA be the set of isomorphism classes of basic support τn-
tilting modules.

Definition 2.3. Let M ∈ modA and X ∈ projA.

1. If M is a strongly τn-rigid module and HomA(X,M) = 0, then we call
(M,X) a strongly τn-rigid pair.

2. If (M,X) is a strongly τn-rigid pair and d(M) + d(X) = d(A), then we
call (M,X) a support τn-tilting pair.

Proposition 2.4. Let M be in modA with Xn−1
dn−1

−→ Xn−2
dn−2

−→ · · ·
d1−→

X0
d0−→ M → 0 as its minimal projecive presentation. Let N ∈ modA, with

Exti(M,N) = 0 for all i = 1, ..., n− 1.

1. The following sequence

0 → HomA(N, τΩn−2M) → DHomA(Xn−1, N)

DHom(dn−1,N)
−→ DHomA(Xn−2, N)

DHom(dn−2,N)
−→ · · ·

DHom(d2,N)
−→

DHomA(X1, N)
DHom(d1,N)

−→ DHomA(X0, N)
DHom(d0,N)

−→ DHomA(M,N) → 0

is exact.
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2. HomA(N, τΩn−2M) = 0 if and only if the sequence

HomA(X0, N)
Hom(d1,N)
−→ HomA(X1, N)

Hom(d2,N)
−→ · · ·

Hom(dn−2,N)
−→

HomA(Xn−2, N)
Hom(dn−1,N)

−→ HomA(Xn−1, N) → 0

is exact.

Proof. 1. The following sequence

0 → τΩn−2M → νXn−1 → νXn−2 · · · → νX0

is exact. By applying Hom(N,−), the following diagram

0 → HomA(N, τΩn−2M) → HomA(N, νXn−1) → · · · → HomA(N, νX0)
↓∼= ↓∼=

DHomA(Xn−1, N) → · · · → DHomA(X0, N) → DHomA(M,N) → 0

is a diagram of exact sequences.

2. It is clear from (1).

We denote by Kb(projA) the homotopy category of bounded complexes
of finitely generated projective A-modules and forX ∈ Kb(projA), we denote
by thickX, the smallest full subcategory of Kb(projA) that contains X and
is closed under (positive and negative) shifts, cones, isomorphisms, and direct
summands.

Definition 2.5. Assume X ∈ Kb(projA).

1. If for any i > 0, HomKb(projA)(X,X[i]) = 0, we call X a presilting
complex.

2. If X is a presilting complex and also thickX = Kb(projA), we call X
a silting complex.

The set of isomorphism classes of basic silting complexes is denoted by
siltingA.

Proposition 2.6. d(X) = d(A) for any X ∈ siltingA.

Proof See [3, Theorem 2.27, Corollary 2.28]
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Definition 2.7. X = (Xi, di) in Kb(projA) is an n-term complex if Xi =
0 for all i /∈ {0, · · · ,−(n− 1)} and H iX = 0 for all i /∈ {0,−(n− 1)}.

Let n-presiltingA (respectively, n-siltingA) be the set of isomorphism
classes of basic n-term presilting (respectively, silting) complexes.

Definition 2.8. Let X,Y be objects of Kb(projA). We denote by X ≥ Y if
for any positive integer i > 0,HomKb(projA)(X,Y[i]) = 0.

Proposition 2.9. Let A be a finite dimensional k-algebra, X ∈ Kb(projA),
and m > 0. Then length(X) ≤ m if and only if A[s] ≥ X ≥ A[m+ s− 1] for
some integer s.

Proof. See [4, Prop 2.9]

Proposition 2.10. IfX is a silting complex in Kb(projA) andY ∈ Kb(projA)
with X ≥ Y = Y0 then there exist triangles

Y1

g1
−→ X0

f0
−→ Y0 → Y1[1],

...

Ym

gm
−→ Xm−1

fm−1

−→ Ym−1 → Tm[1],

0
gl+1

−→ Xl

fl−→ Yl → 0

for some m ≥ 0 and fi is a minimal right addX-approximation.

Proof. See [3, Prop 2.23]

3 Main Results

Let A be a finite dimensional k-algebra.

Theorem 3.1. There exists a bijection between

n- siltingA ↔ sτn- tiltingA

given by X ∈ n-siltingA maps to H0(X) ∈ sτ -tiltingA and (M,Y ) ∈

sτ − tiltingA maps to (Xn−1 ⊕ Y
(dn−1 0)
−→ Xn−2

dn−2

−→ · · ·
d1→ X0) ∈ n-siltingA

where Xn−1
dn−1

→ Xn−2
dn−2

−→ · · ·
d1→ X0 is a minimal projective presentation of

M.



890 I. Muchtadi-Alamsyah, Y. Palu

Proposition 3.2. Any object in n− presiltingA is a direct summand of an
object in n− siltingA.

Proof. LetX ∈ n -presiltingA. By Proposition 2.9, we have A ≥ X ≥ A[n−1]
. Since X ≥ A[n− 1], by Proposition 2.10, we have triangles

V1

g1
−→ U0

f0
−→ A[n− 1] → V1[1]

V2

g2
−→ U1

f1
−→ V1 → V2[1]
...

Vn−1

gn−1

−→ Un−2

fn−2

−→ Vn−2 → Vn−1[1]

with fi minimal right addP-approximation. Put W = X ⊕ Vn−1. Since A
is a silting object, then Kb(projA) = thickW.

1. We prove that for any i > 0, HomKb(projA)(X,Vn−1[i]) = 0. As there
exists an exact sequence

HomKb(projA)(X,Vn−2[i− 1])
0
→ HomKb(projA)(X,Vn−1[i])

→ HomKb(projA)(X,Un−2[i]) = 0.

We observe that for any i > 0, HomKb(projA)(X,Vn−1[i]) = 0.

2. We will prove that for any i > 0, HomKb(projA)(Vn−1,W[i]) = 0. As
the following sequences

0
(1)
= HomKb(projA)(Un−2,W[i]) → HomKb(projA)(Vn−1,W[i]) →

HomKb(projA)(Vn−2[−1],W[i]) → HomKb(projA)(Un−2[−1],W[i])
(1)
= 0,

are exact, therefore HomKb(projA)(Vn−1,W[i]) ∼= HomKb(projA)(Vn−2[−1],W[i]).

There are exact sequences :

0 = Hom(Un−3[−1],W[i]) → Hom(Vn−2[−1],W[i]) →

Hom(Vn−3[−2],W[i]) → Hom(Un−3[−2],W[i]) = 0,

0 = Hom(Un−4[−2],W[i]) → Hom(Vn−3[−2],W[i]) →

Hom(Vn−4[−3],W[i]) → Hom(Un−4[−3],W[i]) = 0,

...

0 = Hom(U0[2−n],W[i]) → Hom(V1[2−n],W[i]) → Hom(A,W[i]) → Hom(U0[1−n],W[i]) = 0.
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Since A ≥ X, we have HomKb(projA)(A,X[i]) = 0 and there are exact
sequences

0 = Hom(A,Un−2[i]) → Hom(A,Vn−2[i]) → Hom(A,Vn−1[i+1]) → Hom(A,Un−2[i+1]) = 0,

0 = Hom(A,Un−3[i]) → Hom(A,Vn−3[i]) → Hom(A,Vn−2[i+1]) → Hom(A,Un−3[i+1]) = 0,

...

0 = Hom(A,U0[i]) → Hom(A,A[n−1+i]) → Hom(A,V1[i+1]) → Hom(A,U0[i+1]) = 0.

Finally, we get

HomKb(projA)(Vn−1,W[i]) ∼= HomKb(projA)(Vn−2[−1],W[i])
∼= HomKb(projA)(A,W[i])
= HomKb(projA)(A,X[i])⊕HomKb(projA)(A,Vn−2[i])
∼= 0⊕HomKb(projA)(A,A[n− 1 + i]) = 0.

.

By (1) and (2), we see that for any i > 0, HomKb(projA)(W,W[i]) = 0.

Proposition 3.3. If X ∈ n−presiltingA then X ∈ n− siltingA if and only
if d(X) = d(A).

Proof. According to Proposition 2.6, d(X) = d(A). We will show the other
direction. Let X ∈ n − presiltingA with d(X) = d(A). By Proposition
3.2, X ⊕ Y is silting for some complex Y. Therefore by Proposition 2.6,
d(X⊕Y) = d(A) = d(X). This implies Y is in addX and X is silting.

Lemma 3.4. Let M,N in modA. Let Xn−1

dX
n−1

−→ Xn−2

dX
n−2

−→ · · ·
dX1→ X0

dX0→

M → 0 be a minimal projective presentation of M and Yn−1

dY
n−1

−→ Yn−2

dY
n−2

−→

· · ·
dY
1→ Y0

dY
0→ N → 0 be minimal projective presentation of N. Denote by

X = (Xn−1

dX
n−1

−→ Xn−2

dX
n−2

−→ · · ·
dX
1→ X0) and Y = (Yn−1

dY
n−1

−→ Yn−2

dY
n−2

−→ · · ·
dY
1→ Y0)

n-term complexes over A. Then the following assertions are equivalent:

1. HomA(N, τnM) = 0 and for all i = 1, · · · , n− 1, Exti(M,N) = 0.

2. HomKb(projA)(X,Y[i]) = 0 for all i = 1, · · · , n− 1.

This implies that M is strongly τn-rigid if and only if X ∈ n− presiltingA.
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Proof. (1⇒ 2) Let i ∈ {1, · · ·n−1}. Any morphism f ∈ HomKb(projA)(X,Y[i])
is defined by some fj ∈ HomA(Xj , Yj−i), for all j ∈ {1, · · · , n− 1}.

0 → Xn−1

dX
n−1
−→ · · · → Xi

dX
i−→ Xi−1

dX
i−1
−→ · · · → X0 → 0

↓ ↓ fn−1 ↓ fi ↓

0 → Yn−1

dY
n−1

−→ · · · → Yn−i

dY
n−i

−→ Yn−1−i

dY
n−1−i

−→ · · · → Y0 → 0

By Proposition 2.4, since HomA(N, τnM) = 0,

HomA(X0, N)
(dX

1
,N)

−→ HomA(X1, N)
(dX

2
,N)

−→ · · ·
(dX

n−2,N)
−→

HomA(Xn−2, N)
(dX

n−1,N)
−→ HomA(Xn−1, N) → 0 is exact.

As Exti+1(M,N) = 0, then (dXi , N) : HomA(Xi−1, N) → HomA(Xi, N) is
surjective. Therefore there exists fi−1 : Xi−1 → N such that dY0 fi = fi−1d

X
i .

Moreover, since Xi−1 is projective, there exists hi−1 : Xi−1 → Y0 such that
dY0 hi−1 = fi−1. Since dY0 (fi − hi−1d

X
i ) = 0, we have hi : Xi → Y1 with

fi = dY1 hi + hi−1d
X
i .

0 → Xn−1

d
X

n−1

−→ · · · → Xi

d
X

i−→ Xi−1

d
X

i−1

−→ Xi−2 → · · · → X0 → M → 0

↓ ↓ fn−1 ↓ fi ↓ fi−1 ↓

0 → Yn−1 → · · · → Yn−i

d
Y

n−i

−→ Yn−1−i

d
Y

n−1−i

−→ · · · → Y0

d
Y

0−→ N → 0

Now since fid
X
i−1 = dY1 fi−1, then dY1 (fi−1 − hid

X
i−1) = 0, and we have

hi+1 : Xi+1 → Y2 with fi+1 = dY2 hi+1 + hid
X
i+1. We continue recursively and

get that fj = dYj−i+1hj + hj−1d
X
j for all j between i+ 2 and n− 1. Hence for

all i > 0, HomKb(projA)(X,Y[i]) = 0.

(2 ⇒ 1) Take any f ∈ HomA(Xn−1, N). Then since Xn−1 is projective,
dY0 g = f for some g : Xn−1 → Y0.

Xn−1

dX
n−1

−→ Xn−2

↓ g ց f

Y1 → Y0

dY
0−→ N → 0

Hence g induces a morphism X → Y[n− 1] in Kb(projA).
As HomKb(projA)(X,Y[n − 1]) = 0, there exists hn−2 : Xn−2 → Y0 and
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hn−1 : Xn−1 → Y1 such that g = dY1 hn−1 + hn−2d
X
n−1. Hence we have

f = dY0 (d
Y
1 hn−1 + hn−2d

X
n−1) = dY0 hn−2d

X
n−1. Therefore (dXn−1, N) is surjec-

tive and by Proposition 2.4, we conclude that HomA(N, τnM) = 0.
Now let i ∈ {1, · · ·n− 1}. It is clear that Exti(M,N) = Ext1(Ωi−1M,N)

and this is zero if HomA(Xi−1, N) → HomA(Ω
iM,N) is surjective. Take any

fi ∈ HomA(Ω
iM,N). This homomorphism induces f ′

i : Xi → N. Since Xi is
projective, there exists gi : Xi → Q0 such that dY0 gi = f ′

i .

Xi

dX
i−→ Xi−1

↓ gi−1 ց f ′

i

Y1 → Y0
dY0−→ N → 0

We see that gi induces a morphism X → Y[i] in Kb(projA).
As HomKb(projA)(X,Y[i]) = 0, there exists hi−1 : Xi−1 → Y0 and hi : Xi → Y1

such that gi = dY1 hi + hi−1d
X
i . Hence we have f ′

i = dY0 (d
Y
1 hi + hi−1d

X
i ) =

dY0 hi−1d
X
i and fi = dY0 hi−1si where si is the inclusion ΩiM → Xi−1. Therefore

(si, N) surjective and Exti(M,N) = 0.

Lemma 3.5. Let M ∈ modA. Let X := (Xn−1
dn−1

−→ Xn−2
dn−2

−→ · · ·
d2−→

X1
d1−→ X0) be an n-term complex where Xn−1

dn−1

−→ Xn−2
dn−2

−→ · · ·
d2−→ X1

d1−→

X0
d0−→ M → 0 is a minimal projective presentation of M. Let Y ∈ projA.

Then

HomA(Y,M) = 0 if and only if HomKb(projA)(Y,X) = 0.

By the following result we will see that n-term silting complexes define
support τn-tilting modules.

Proposition 3.6. Let X := (Xn−1
dn−1

−→ Xn−2
dn−2

−→ · · ·
d1−→ X1

d1−→ X0) be an
n-term complex for A. Let M = Cok d1.

1. If X is a silting complex for A where dn−1 is a right minimal homo-
morphism, then M is a τn-tilting module.

2. If X is a silting complex for A then M is a support τn-tilting module.

Proof. 1. Denote by dn−1 = (d′n−1 0) : X ′

n−1 ⊕ X ′′

n−1 → Xn−2, where

d′n−1 is right minimal. Then X ′

n−1

d
n−1′

−→ Xn−2
dn−2

−→ · · ·
d1−→ X1

p1
−→
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X0
d0−→ M → 0 is a minimal projective presentation of M. We will

prove that (M,X ′′

n−1) is a support τn-tilting pair. As X is a silting
complex, then HomKb(projA)(X

′′

n−1,X) = 0, and by Lema 3.5 we obtain
HomA(X

′′

n−1,M) = 0. Therefore (M,X ′′

n−1) is a strongly τn-rigid pair.
Now we obtain

d(M) = d(X ′

n−1

d′
n−1

−→ Xn−2 → · · · → X1 → X0),

because d′n−1 is a minimal projective presentation of M. Thus

d(M)+d(X ′′

n−1) = d(X ′

n−1

d′
n−1

−→ Xn−2 → · · · → X1 → X0)+d(P ′′

n−1) = d(P ),

and by Proposition 2.6 this is equal to d(A). We conclude the assertion.

2. For X ′′

n−1 = 0 in (1), we get the assertion.

We will see that support τn-tilting modules define n-term silting com-
plexes for A.

Proposition 3.7. Let Xn−1
dn−1

−→ Xn−2
dn−2

−→ · · ·
d1−→ X1

d1−→ X0 → M → 0 be
a minimal projective presentation for M.

1. If M is τn-tilting, then (Xn−1
dn−1

−→ Xn−2
dn−2

−→ · · ·
d1−→ X1

d1−→ X0) is a
n-term silting complex.

2. If (M,Y ) is a support τn-tilting pair then (Xn−1 ⊕ Y
(dn−1 0)
−→ Xn−2

dn−2

−→

· · ·
d1−→ X1

d1−→ X0) is a n-term silting complex.

Proof. 2. By Lemma 3.4, X := (Xn−1 ⊕ Y
(dn−1 0)
−→ Xn−2

dn−2

−→ · · ·
d1−→

X1
d1−→ X0) is a presilting complex. As Xn−1

dn−1

−→ Xn−2
dn−2

−→ · · ·
d1−→

X1
d1−→ X0 → M → 0 is a minimal projective presentation, we have

d(M) + d(Y ) = d(A). Thus we have

d(X) = d(Xn−1
dn−1

−→ Xn−2
dn−2

−→ · · ·
d1−→ X1

d1−→ X0) + d(Y )

= d(M) + d(Y ) = d(A).

Therefore X is silting by Proposition 2.6.
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1. For Q = 0 in 2 we obtain the assertion.

The proof of Theorem 3.1 is obtained by using Proposition 3.6 and Propo-
sition 3.7.

4 Further Research

When the algebra A is cluster-tilted (or more generally 2-Calabi–Yau tilted),
there is a functor from a cluster category (or 2-Calabi–Yau triangulated cat-
egory) C to modA. The support τ -tilting modules over A are precisely the
images of the cluster-tilting objects of C under this functor. It seems thus
natural to consider n-Calabi–Yau tilted algebras and try to establish a bijec-
tion between n-cluster tilting objects and support τn tilting modules. Once
the bijection is established, one may study mutations and geometric realisa-
tion of τn-tilting modules and n-term silting complexes.
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