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Abstract 
 

In this paper, we propose an analytical electromagnetic modelling and an electromechanical coupling of the 1-turn bulk coil with 

a cut, made of conducting steel or copper alloys, and used in the electro-magnetic forming technology. The electromagnetic part 

of the work is the one created beyond the state of the art. Such analytical models that can quickly solve for key process parameters are 

extremely desirable but must be completed with a mechanical model able to calculate in the end the deformation. An existing mechanical 

model to calculate the deformation is used and coupled to our electromagnetic model. First, the basic electromagnetic theory will be 

summarised and then the One-Dimensional (1-D) axi-symmetrical approximation discussed (part 2). The goal is to be able to 

determine the magnetic vector potential A diffusion, that will quickly lead to all the parameters needed to characterize, qualify, 

feed and optimize the use of the coil (ex.: magnetic flux density, equivalent inductance, force coefficients, …). Then the pseudo-

harmonic solution of the 1D-problem is expanded with the help of Bessel basis functions, including some specific limit conditions 

and constraints (part 3). The results are compared to numerical 2-D and 3-D computations, performed, thanks to the Finite Element 

Method, onto some test cases without and with a tube to deform. The proposed model does not only give the numerical value of 

each parameter, but it provides analytical formulae, with explicit dependences upon some key geometrical and physical variables 

(ex.: changeable air-gap between the coil and the tube linked to the deformation). The use of a pseudo harmonic working condition 

will be justified by comparing it to the transient working condition for which the model is improved. Experimental measurements 

will be carried out with and without a tube but with no deformation (part 4). The results are close and coherent and useful when 

sizing the coil with respect to performance criteria and performing an equivalent electrical circuit and an electro-mechanical 

coupling solution, usable with deformation in the transient working conditions (part 5). 

——— 
1: corresponding author Olivier MALOBERTI (maloberti@esiee-amiens.fr, olivie.maloberti@gmail.com) 
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1. Introduction and context 

Electromagnetic problems in Electrical Engineering are usually divided into three categories: low, intermediate and high frequencies. 

At low frequencies, quasi-static conditions prevail over transient ones and the classical resistance, as well as the inductance value of a 

component, do not depend on the frequency. At high frequencies, wave equations are used to predict the propagation of electromagnetic 

waves. Both these regions have been studied extensively. The magnetic pulse technology, that benefits from the Lorentz force effects 

produced in a metal by the pulsed magnetic field, fall into this intermediate frequency region, where eddy currents take place. Different 

geometries of inductors are investigated to generate electromagnetic pulses. Psyk et al. (2011) introduced several industrial cases for 

which the single-turn coil (see Figure 1) is often preferable to the multi-turn coil because it is more robust and simple. Most of 

electromagnetic models compatible with the tube compression with a single-turn coil do not provide any prediction on the actual current 

and flux densities distribution within conducting regions. For example, Nassiri et al. (2015) does not give details on these densities that 

are just said to penetrate homogeneously inside a very classical cartesian skin depth. The resulting magnetic field is calculated thank to 

the Biot and Savart law, only for the enforced current. In fact then, current source must be known. The same problem occurs for the 

resistance or the inductance calculation. Kinsey and Nassiri (2017) gives estimations without taking the actual current distribution inside 

the materials into account. Finally, the Lorentz force density should also be highly influenced by the eddy currents radial distribution 

either in the tube (deformation expected) or in the coil (deformation and cracking to avoid), which is not recently described neither by 

most authors on this subject nor by weddeling et al. (2015), whose main contribution is rather on the mechanical behavior. In the pulsed 

magnetic technology, we must compute not only the single-turn coils each carrying a known current source; we must calculate the natural 

eddy currents and skin effects in the coil, in the field-shaper and in the tube. Therefore, the total current source densities are not primarily 

known and must be calculated. This led us look for other past contributions to adapt calculations to this new technology. 

Thus, the aim is first the inclusion of the skin effect into electrical parameters (resistance, inductance, force coefficients) within 

cylindrical coordinates, then the evaluation of the electromagnetic fields, densities and force, and finally the prediction of the deformation 

and of the process global efficiency. This paper proposes an analytical method to calculate the electromagnetic fields and densities that 

are generated by the current pulse in an inductor, as used in the magneto-forming technology. Two versions of the model will be 

investigated to avoid any misleading assumption and make sure each induced current is effectively and correctly calculated. Its usefulness 

will be emphasized by coupling it with electrical and mechanical models to allow deformation and efficiency predictions. 

Figure 1. The single turn coil modelled and used in the pulsed magnetic technology for forming, crimping and welding processes @PFT Innovaltech. 

We suggest studying one single turn coil example made of a conducting massive coil. Due to a cut within the toroidal coil between the 

two terminals, the geometry is strictly speaking a 3D component with no axial symmetry. Sapanathan et al. (2015) studied the mechanical 

behaviour of the single-turn coil and the tube with a 3D numerical method. Because this cut is very small and due to a big computation 

time, we, Maloberti et al. (2015), would like to investigate the possibility to reduce this geometry into an equivalent 2D and then 1D axi-

symmetrical model, to give a good approximate solution. Guglielmetti (2012) studied the electromagnetic and mechanical behaviour of 

a cylindrical multi-turn coil and a tube with a 2D numerical method. For our purpose, Dodd (1967) provided the basis of the solutions to 

electromagnetic induction problems. Mansouri et al. (2016) introduced an analytical method to describe the electromagnetic behaviour 

of the single-turn coil dedicated to the magneto-forming process without a tube. The coil is highly conducting and the source always 

delivers a sinusoidal pulse varying very quickly in time with a natural frequency fn (typically from 1 to 100 kHz) and an exponential 



 

 

decay. We suggest computing the model with time harmonics in order to analyse the eddy currents, skin effects and induced Lorentz 

forces either in the coil, in the field-shaper or in the tube. In the following, we will first derive the general 1D Partial Differential Equation 

(PDE) in cylindrical coordinates, then solve the problem in the harmonic working condition, and finally give the main electromagnetic 

fields, densities, and parameters. 

2. Theoretical preliminaries 

2.1. The general physical equations 

The equations for the magnetic vector potential A can be derived from the Maxwell's equations, involving the magnetic field H, the 

flux density B, the current density j, the electric field E and the electronic displacement field D. The media are assumed to be linear, 

isotropic and homogeneous:  H= B μ ,  E= D  ,  E= j  .  and  are respectively the absolute magnetic permeability and dielectric 

permittivity.  is the electric conductivity. According to Dodd and Deeds (1968), the conduction (E) is much greater than the propagation 

((E)/t), so the latter may be neglected for frequencies below about ten megacycles per second. The magnetic induction field B is 

expressed as the curl of a magnetic vector potential Ai. The coil is driven by a voltage generator with an applied voltage V. The total 

electric field E is thus the sum of the source field Es=-(V) and the induced field Ei=-tAi, where V is an electric scalar potential. In the 

following, we investigate the possibility of looking at either a total magnetic potential A (Eq. (1), (3)), responsible for the total electric 

field E, or a reduced magnetic vector potential Ai (Eq. (2), (4)), responsible for the induced field Ei. Both lead to the total electric current 

density j, including enforced and induced currents, such that ( is the Nabla operator, “∧” is the cross product, “.” is the dot product): 
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
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By using the Coulomb gauge also used by Maloberti et al. (2015) A=0 or Ai=0, the Maxwell equations give for A and Ai: 
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2.2. 2D and 1D geometrical assumptions 

Figure 2 shows the inductor in 3, 2 and 1 dimensions respectively. In 1D axial symmetric models only the  (orthoradial) components 

A and j are present in the magnetic vector potentials A and Ai and in the current density j. Then, we obtain the homogeneous and non-

homogeneous Partial Differential Equations (PDE) (5) and (6) of the inductor in cylindrical coordinates (r,,z). It is written as a function 

of A(r,t)=A(r,t) or Ai(r,t)=Ai(r,t), depending on the radius r and time t, while neglecting both the z and  dependences.  
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Figure 2. Geometry of the 3D geometry and its reduced models. 

2.3. 3D effects considerations and limitations 
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The model will be calculated in one dimension (1D) for which the useful length Z of the inductor should be “quasi-infinite”. We 

suggest comparing the analytical results to 2D numerical simulations obtained with the Finite Element method, that have been already 

compared to 3D calculations and measurements by Maloberti et al. (2015). The discrepancy between results is mainly due to the finite Z 

dependence of the actual fields and densities. In order to reduce this error, we must take the length Z into account. In the 2D numerical 

simulations, we can observe that the current density j is expanding with a longer effective length Zc=(Z+2∆Z), including the edges at both 

sides of the region c (c=1, 3 or 5 for the coil, 1 for the tube, 3 for the 

field-shaper) (Figure 3). In conclusion, we propose the use of Zc 

instead of Z in the model. The absolute and relative difference 2∆Z 

between Zc and Z can be expressed and estimated as a function of the 

internal radius Ri and the actual length Z of region c as follows (for 

large enough length such that (Ri/Z)  3 %, it tends towards zero): 
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Figure 3. Calculation of the ∆Z correction length according to the length Z of 

inductor for different values of Ri [4,6,8,10,12,14,16,18,20,30,40,50,60,70]. 

The exponents and coefficients of the fitting function have been adjusted with respect to the 2D computations given by Maloberti et 

al. (2015). The first analysis consists in adjusting the value of ∆Z for various Ri ([4;70] mm) and Z ([20;200] mm), in order to fit the 2D 

numerical data. We observe that ∆Z depends mainly on the ratio between the radius Ri and Z, but the relative error ∆Z/Z is rapidly 

decreasing while the length is increasing, thus rendering the 1D assumption more relevant (Figure 3). The 1D hypothesis stays reliable 

if Z is very large compared to Ri ((Ri/Z)  3 %) or providing the correction length ∆Z given by Eq. (7). The modified Bessel functions of 

the 1st kind of order 1/k (I1/k) have been chosen to rely on the natural base functions of the quasi-static 1D and the 2D solutions studied by 

several authors. Conway (2001) found the exact solution of the magnetic field in axi-symmetrical solenoids, but providing that the current 

source distribution is known and simple. Labinac et al. (2006) calculated the magnetic fields of cylindrical coils due to a known surface 

current and a volume current in a cylindrical coil. Ravaud et al. (2010) derived the mutual inductance and force exerted between thick 

coils carrying uniform current volume densities. Unfortunately, the current source densities cannot be primarily known and must be 

calculated. The present paper gives a solution with 1D approximations for which the 2D effect is given by Eq. (7). This last impediment 

is not completely satisfactory. It will however be less time consuming and easier to perform any sensitivity analysis to the whole 

parameters, optimisation or coupling procedures with an analytical model. Another limitation may come from the dependence of such a 

2D factor on the conductivity and the permeability. We observe that it is more sensitive to the geometry (ratio between the radius and the 

length) than to the physical properties  and , which fix the skin depth (taken into account in the model). 

Figure 4. Domains Geometry of the 1D reduced models, without field-shaper nor tube (a), without field-shaper but tube (b), with field-shaper and tube (c) 



 

 

3. The 1D magneto-harmonic model 

Assuming that both the voltage V and the total current I are sinusoidal functions of time, ∆𝑉(𝑡) = ∆𝑉𝑒௜௧ା and   tiIetI  , then A 

is likewise a sinusoidal function of time, 𝐴ఏ = 𝐴𝑒௜௧, with A being the complex magnitude. Equation (5) is therefore written as follows: 
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In such a 1D axial symmetric model, if only the  (orthoradial) component A(r,) is present in the magnetic potential A=A(r,)u, it 

can easily be shown that E, j, H and B have also got only one component: E=E(r,)u, j=j(r,)u, H=H(r,)uz and B=B(r,)uz. 

3.1. General solution of the homogeneous PDE with the total magnetic vector potential A 

3 .1 .1 .  Conduct ing reg ions  

We consider that the total current density is included in the magnetic potential equation. For this, the 1D PDE in the harmonic working 

condition is given by Eq. (10) ( is the angle velocity of the current, 2 = μσ). Eq. (8) or (9) are known as the modified Bessel equations 

well introduced, detailed and solved by Gray and Mathews (1985) with the Bessel functions for very general problems and by Figueiredo 

and Laks (1989) with the Kelvin functions for similar magnetic cylinders. Then our solution is built and given by Eq. (11) or (12). 
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𝐴(𝑟, 𝜔) = 𝐶ᇱ𝐽ଵ(𝛼ଵ𝑟) − 𝑖 ∗ 𝐷ᇱ𝐾ଵ(𝛼ଶ𝑟) (11) 

𝐴(𝑟, 𝜔) = 𝐶𝐽ଵ(𝛼ଵ𝑟) + 𝐷𝑌ଵ(𝛼ଵ𝑟)  (12) 

With 𝛼ଵ = 𝛼. exp (3𝜋𝑖/4) and 𝛼ଶ = 𝛼. 𝑒𝑥𝑝(𝜋𝑖/4) (𝛼ଵ
∗ = −𝛼ଶ), and where 𝐽ଵ is the 1st order and 1st kind Bessel function, for which 

the relevance is emphasized by Conway (2001) in the magnetic field and by Conway (2007) in the coil inductance, 𝑌ଵ is the 1st order and 

2nd kind Bessel function (Neumann function) and  𝐾ଵ is the 1st order and 2nd kind modified Bessel function (𝐾ଵ(𝑥) =

−(/2)൫𝐽ଵ(𝑖𝑥) + 𝑖𝑌ଵ(𝑖𝑥)൯). C’ or C and D’ or D come from boundary conditions on H and constraints on j (see next § and Figure 5). 

Figure 5. Constraints and limit conditions, with no field-shaper and no tube (a), with field-shaper but no tube (b), with field-shaper and with tube (c). 

3.1 .2 .  Air  and  a i rgap reg ions  

The 1D PDE in the air regions with neither conductivity nor current and its solution are shown in Equations (13) and (14). 
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 (13)  𝐴(𝑟) = 𝐶𝑟 + 𝐷/𝑟  (14) 
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3.2. Complete solution of the total magnetic vector potential A as a function of the current I 

In the following, we will consider conducting regions only, numbered 1, 3 and 5. As a consequence, previous solutions can be identified 

for each region with its number in index. All the following solutions are given in the Appendix B.1. after some mathematical operations. 

3.2 .1 .  Inductor  w ithou t  f i e ld -shaper nor tube  

This case corresponds to case (a) of Figure 4 and Figure 5. Only one conducting region is considered, the bulk 1-turn coil. 

We now need a limit condition on the surface magnetic field H, and a constraint on the total current density j, and we assume that the 

inductor has a finite equivalent corrected length Z1 along the z axis (even if no z dependence is considered, see § 2.3). Equation (15) 

comes from the current conservation principle inside the coil section and equation (16) comes from the Maxwell-Ampere theorem applied 

onto the external limit of the coil section. It means that the flux of the current density j and the circulation of the magnetic field H equal 

the current I1=I in region 1 (the coil). 

𝐼 = ∫ ∫ 𝑗𝑑𝑟𝑑𝑧
ା௓భ/ଶ

ି௓భ/ଶ

ோభ೐

ோభ೔
= −𝜎ଵ𝑍ଵ𝑖𝜔 ∫ 𝐴(𝑟, 𝜔)𝑑𝑟

ோభ೐

ோభ೔
 (15) 

𝐼 = ∮ 𝐻𝑑𝑙 = 𝐻௭(𝑅ଵ௜ ,)𝑍ଵ =
௓భ

ఓభ
(

୅(ோభ೔ ,)

ோభ೔
+ 𝜕௥A(𝑅ଵ௜ ,))  (16) 

Some mathematical operations give: 
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= 𝐾஼ଵ ቀ

ூ

௓
ቁ (17) 

𝐷ଵ =
ൣି஼భభ௃బ(ఈభோభ೔)ା஽భమ൫௃బ(ఈభோభ೐)ି௃బ(ఈభோభ೔)൯൧

[௒బ(ఈభோభ೔)௃బ(ఈభோభ೐)ି௒బ(ఈభோభ೐)௃బ(ఈభோభ೔)]
= 𝐾஽ଵ ቀ

ூ

௓
ቁ (18) 

where:    𝐶ଵଵ =
ఈమ

ఙభ௓భఠ
𝐼     (19) and 𝐷ଵଶ =

ఓభ

௓భఈభ
𝐼 (20) 

The constants KC1 and KD1 only depend on the material properties (, ), the geometry (Ri, Re, Z) and the angle velocity (=2f). They 

are given in equations (21) and (22). The results show that the magnitude of the magnetic vector potential and its derivative quantities 

(the fields B, H and density j, see § 3.4) are proportional to the current per unit length (I/Z). 
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    (21) 
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    (22) 

The physical unit of parameters KC1 and KD1 is given by the important factor (/()) that will be used afterwards. The factor (Z/Z1) 

is just a correction factor that involves the correction length for the 2D geometry (Z1 = Z + 2Z = Z(1+2Z/Z)  Z/Z1 = 1/(1+2Z/Z)). 

3.2 .2 .  Inductor  w ithout  f i e ld -shaper bu t  tube  

This case corresponds to case (b) of Figure 4 and Figure 5. Two conducting regions are considered: the bulk 1-turn coil and the tube, 

separated by one air region: the airgap. Let’s first define the skin depth k (Eq. (23)) of regions k=1 (the tube), k=3 (the field-shaper) and 

k=5 (the coil) respectively 

𝛿௞ =
√ଶ

ఈೖ
= ට

ଶ

ఓೖఙೖఠ
 (23) 

In addition to the limit condition and the constraint on H and j, we need to know the relationship between the secondary current I1 in 

region 1 and the primary current I3=I in region 3. The induced voltage ratio is lower than 1 due to a flux ratio, which is weakened by the 

flux leakage in the airgap. This is as a result of the different crossed sections. Then the induced current ratio can be tuned by the different 

short-circuit resistances estimated by Lal and Hillier (1968). Let’s assume a current transformation ratio  given by Eq. (24) and inspired 

from Lal and Hillier (1968) studies (the ideal transformation ratio is m=1). 

 =
ିூభ

ூయ
=

ௌభ

ௌయ

ோయ

ோభ
≈

గ(ோభ೐ିఋభ)మ

గ(ோయ೔ାఋయ)మ

ఋభ௓భ(ோయ೔ାఋయ)

(ோభ೐ିఋభ)ఋయ௓

ଵ

௠
 (24) 

Then, the current conservation principle inside the coil section is given by Eq. (25) and the Maxwell-Ampere theorem applied onto the 

external limit of the coil section is given by Eq. (26): 



 

 

𝐼ଷ = −𝜎ଷ𝑍ଷ𝑖𝜔 ∫ 𝐴ଷ(𝑟, 𝜔)𝑑𝑟
ோయ೐

ோయ೔
  (25) 

𝐼ଷ − 𝐼ଵ =
௓య

ఓయ
(

஺య(ோయ೔ ,)

ோయ೔
+ 𝜕௥𝐴ଷ(𝑅ଷ௜ ,)) (26) 

Likewise, the same physical principles inside the tube section and onto the external limit of the tube give equations (27) and (28): 

−𝐼ଵ = −𝜎ଵ𝑍ଵ𝑖𝜔 ∫ 𝐴ଵ(𝑟, 𝜔)𝑑𝑟
ோభ೐

ோభ೔
  (27) 

𝐼ଷ − 𝐼ଵ =
௓భ

ఓభ
(

஺భ(ோభ೐,)

ோభ೐
+ 𝜕௥𝐴ଵ(𝑅ଵ௘ ,)) (28) 

We still assume a finite equivalent corrected inductor length Z3 and tube length Z1 along the z axis (most of the case Z3  Z1). 

3.2 .3 .  Inductor  w ith  f ie ld -shaper  and  tube  

This case corresponds to case (c) of Figure 4 and Figure 5. Three conducting regions are considered: the bulk 1-turn coil, the field-

shaper and the tube, separated by two air regions: the airgaps. 

We still need to know the relationships between the secondary currents I1 in region 1, I3 in region 3, and the primary current I5 in region 

5. A slot is cut in the field-shaper, preventing any total current to cross its section. We can separate both sides of it, the one facing the 

tube crossed by the current I3 and the one facing the coil crossed by the current (-I3). Therefore, we propose two current transformation 

ratios 13 and 35 to be associated to airgaps 2 and 4 between regions 1 and 3 or 3 and 5 respectively. 


ଵଷ

=
ିூభ

ூయ
=

ௌభ

ௌయ

ோయ

ோభ
≈

గ(ோభ೐ିఋభ)మ

గ(ோయ೔ାఋయ)మ

ఋభ௓భ(ோయ೔ାఋయ)

(ோభ೐ିఋభ)ఋయ௓య

ଵ

௠
 (27) 

 
ଷହ

=
ିூయ

ூఱ
=

ௌయ

ௌఱ

ோఱ

ோయ
≈

గ(ோయ೐ିఋయ)మ

గ(ோఱ೔ାఋఱ)మ

ఋయ௓య(ோఱ೔ାఋఱ)

(ோయ೐ିఋయ)ఋఱ௓

ଵ

௠
 (28) 

Then, the current conservation inside the coil and the Maxwell-Ampere theorem applied around the coil give equations (29) and (30): 

𝐼ହ = −𝜎ହ𝑍ହ𝑖𝜔 ∫ 𝐴ହ(𝑟, 𝜔)𝑑𝑟
ோఱ೐

ோఱ೔
 (29) 

𝐼ହ − 𝐼ଷ =
௓ఱ

ఓఱ
(

஺ఱ(ோఱ೔ ,)

ோఱ೔
+ 𝜕௥𝐴ହ(𝑅ହ௜ ,))  (30) 

In the following, we have to split the region 3 into two separated regions: the one facing region 5 (the coil), named region 35 (right side 

of field-shaper); and the one facing region 1 (the tube), named region 31 (left side of field-shaper). We then take the same physical 

principles inside sections of regions 35 and 31 (Eq. (31) & (32)) and onto the external limits of regions 35 and 31 (Eq. (33) & (34)). 

−𝐼ଷ = −𝜎ଷ𝑍ଷହ𝑖𝜔 ∫ 𝐴ଷହ(𝑟, 𝜔)𝑑𝑟
ோయ೐

ோయ೐షభబయ
 (31) 

𝐼ହ − 𝐼ଷ =
௓యఱ

ఓయ
(

஺యఱ(ோయ೐,)

ோయ೐
+ 𝜕௥𝐴ଷହ(𝑅ଷ௘ ,))  (32) 

𝐼ଷ = −𝜎ଷ𝑍ଷଵ𝑖𝜔 ∫ 𝐴ଷଵ(𝑟, 𝜔)𝑑𝑟
ோయ೔ାଵ଴య

ோయ೔
 (33) 

𝐼ଷ − 𝐼ଵ =
௓యభ

ఓయ
(

஺యభ(ோయ೔ ,)

ோయ೔
+ 𝜕௥𝐴ଷଵ(𝑅ଷ௜,))  (34) 

Finally, the same physical principles inside the tube section and onto the external limit of the tube give equations (35) and (36): 

−𝐼ଵ = −𝜎ଵ𝑍ଵ𝑖𝜔 ∫ 𝐴ଵ(𝑟, 𝜔)𝑑𝑟
ோభ೐

ோభ೔
  (35) 

𝐼ଷ − 𝐼ଵ =
௓భ

ఓభ
(

஺భ(ோభ೐,)

ோభ೐
+ 𝜕௥𝐴ଵ(𝑅ଵ௘ ,)) (36) 

Each region has a finite corrected length Zk along the z axis. 

3.3. Alternative solution with the reduced magnetic vector potential Ai as a function of the voltage source V 

The solution of the equation (9) in the coil regions is found thanks to equation (12) and the coefficients variation principle. We thus 

look for the following solution given by Eq. (37): 

𝐴௜(𝑟, 𝜔) = 𝐶(𝑟)𝐽ଵ(𝛼ଵ𝑟) + 𝐷(𝑟)𝑌ଵ(𝛼ଵ𝑟) (37) 

Introducing it inside Eq. (9), C’(r) and D’(r) must obey the following system: 
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ቊ
𝐽ଵ(𝛼ଵ𝑟)𝜕௥𝐶 + 𝑌ଵ(𝛼ଵ𝑟)𝜕௥𝐷 = 0

𝜕௥𝐶𝜕௥𝐽ଵ(𝛼ଵ𝑟) + 𝜕௥𝐷𝜕௥𝑌ଵ(𝛼ଵ𝑟) =
ఓఙ∆௏

ଶగ௥

ቋ (38) 

Using the Wronskien, the solutions are: 

𝐶(𝑟) = ቆ𝐶 +
ఓఙ∆௏

ସఈభ
൫𝑌଴(𝛼ଵ𝑟) − 𝑌଴(𝛼ଵ𝑅௜)൯ቇ (39) 

𝐷(𝑟) = ቆ𝐷 −
ఓఙ∆௏

ସఈభ
൫𝐽଴(𝛼ଵ𝑟) − 𝐽଴(𝛼ଵ𝑅௜)൯ቇ (40) 

where C and D are constants that can be determined by fixing the limit conditions (see next part). In the following, we will consider 

the whole regions, numbered from 0 to a maximum of 5. As a consequence, previous homogeneous Eq. (12) and non-homogeneous Eq. 

(37) solutions can be identified for each region with its number in index. Air regions cannot be avoided this time. 

The solution to this problem can be found by computing a N*N matrix equation given in the Appendix B.2. for each of the following 

case (N=3, 8 or 15 depending on the number of regions; i.e. 2, 4 or 6 regions). 

3.3 .1 .  Inductor  w ithout  f i e ld -shaper nor tube  

This case corresponds to case (a) of Figure 4 and Figure 5. 2 regions are considered: the coil (region 1) and the air (region 0). 

We propose to use four limit conditions to determine the four coefficients C0, D0, C1 and D1: the value of the magnetic potential at r=0 

equals 0 (Eq. (41)), the magnetic potential and the tangential component of the magnetic field H must be continuous at r=R1i (Eq. (42) 

and (43)), finally the circulation of the magnetic field H equals the current I1=I in the coil (i.e. the flux of the current density j) (Eq. (44)): 

𝐴௜଴ = 0
⬚
⇔ 𝐷଴ = 0 (41) 

𝐴௜଴(𝑅ଵ௜ , 𝜔) = 𝐴௜ଵ(𝑅ଵ௜ , 𝜔)   (42) 

(
ಲ೔బ(ೃభ೔)

ೃభ೔
ାడೝ஺೔బ(ோభ೔))

ఓబ
=

(
ಲ೔భ(ೃభ೔)

ೃభ೔
ାడೝ஺೔భ(ோభ೔))

ఓభ
  (43) 

(
ಲ೔భ(ೃభ೔)

ೃభ೔
ାడೝ஺೔భ(ோభ೔))

ఓభ
= ∫ ቀ−

ఙభ∆௏

ଶగ

௓

௓భ
− 𝑖𝜎ଵ𝜔𝐴௜ଵቁ 𝑑𝑟

ோభ೐

ோభ೔
 (44) 

3.3 .2 .  Inductor  w ithout  f i e ld -shaper bu t  tube  

This case corresponds to case (b) of Figure 4 and Figure 5. Four regions are considered: the coil (region 3), the airgap between the 

coil and the tube (region 2), the tube (region 1) and the air region inside the tube (region 0). 

We propose to use nine limit conditions to determine the eight coefficients C0, D0, C1, D1, C2, D2, C3 and D3 and the secondary current 

(-I1) in region 1. Thanks to the reduced magnetic vector potential, we do not make any assumption (done with the total magnetic potential) 

on the magnitude and the phase shift of the current in the tube; the ones which were highlighted by Jablonski and Winkler (1978). 

First the value of the magnetic potential at r=0 equals 0. The magnetic potential is continuous at r=R1i, r=R1e, r=R3i. Then the tangential 

component of the magnetic field H must be continuous at r=R1i, r=R1e, r=R3i. Finally, the circulation of the magnetic field H around the 

tube equals the current (-I1) in the tube (Eq. (45)) and around the coil equals the current I3=I in the coil. 

(
ಲ೔భ(ೃభ೐)

ೃభ೐
ାడೝ஺೔భ(ோభ೐))

ఓభ
−

(
ಲ೔భ(ೃభ೔)

ೃభ೔
ାడೝ஺೔భ(ோభ೔))

ఓభ
 =

ିூభ

௓భ
 (45) 

3.3 .3 .  Inductor  w ith  f ie ld -shaper  and  tube  

This case corresponds to case (c) of Figure 4 and Figure 5. Six regions are considered: the coil (region 5), the airgap between the coil 

and the field-shaper (region 4), the field-shaper (3), the airgap between the field-shaper and the tube (region 2), the tube (region 1) and 

the air region inside the tube (region 0). 

We propose to use sixteen limit conditions to determine the fourteen coefficients C0, D0, C1, D1, C2, D2, C31, D31, C35, D35, C4, D4, C5 

and D5, the secondary current (-I1) in region 1, and the intermediate current (-I3) in region 3. In this case too, we do not make any 

assumption on the magnitude and the phase shift of the currents in the field-shaper and in the tube. 



 

 

First the value of the magnetic potential at r=0 equals 0. Then this potential and the tangential component of H must be continuous at 

r=R1i, R1e, R3i, R3e and R5i. Finally, the circulation of the field H around the tube equals the current (-I1) in the tube, around the field-shaper 

equals zero (-I3+I3) (Eq. (46)) (which contains the 2 parts 31 and 35 of field-shaper) and around the coil equals the current I5=I in the coil. 

(
ಲ೔య(ೃయ೐)

ೃయ೐
ାడೝ஺೔య(ோయ೐))

ఓయ
𝑍ହ −

ቆ
ಲ೔య൫ೃయ೔൯

ೃయ೔
ାడೝ஺೔య(ோయ೔)ቇ

ఓయ
𝑍ଵ  = 0 (46) 

3.4. Derivation of local fields and densities 

All the following physical quantities are derived from the unique magnetic vector potential in each region k. The magnetic flux density 

B, proportional to H, both in the z direction, is derived from either the total or reduced magnetic vector potential as follow: 

𝐵௞(𝑟) = 𝜇௞𝐻௞(𝑟) = (
஺ೖ

୰
+ 𝜕௥𝐴௞(r))   (47) 

𝐵௞(𝑟) = 𝜇௞𝐻௞(𝑟) = (
஺೔ೖ

୰
+ 𝜕௥𝐴௜௞(r))  (48) 

The current density j, proportional to the electric field E, both in the  direction, is also derived from the magnetic potentials as follow: 

𝑗௞(𝑟) = 𝜎௞𝐸௞(𝑟) = −𝑖𝜎௞𝜔𝐴௞(𝑟)  (49) 

𝑗௞(𝑟) = 𝜎௞𝐸௞(𝑟) = −𝑖𝜎௞𝜔𝐴௜௞(𝑟) −
ఙೖ∆௏

ଶగ௥
  (50) 

The Lorentz force density f and the Maxwell stress tensor b, both in the r direction, are finally derived as follow: 

𝑓௞(𝑟) = 𝑟𝑒𝑎𝑙൫𝑗௞(𝑟)𝐵௞
∗(𝑟)൯  (51) 

௕௞(𝑟) = −
஻ೖ(௥)஻ೖ

∗ (௥)

ଶఓೖ
  (52) 

3.5. Coils’ parameters with approximation functions 

In this section, we will focus on global coil parameters. First the definition of each parameter will be introduced, then the method to 

calculate these parameters will be explained. Finally, analytical formulae will be proposed thanks to exact values or good approximations 

of the base functions in the appendix. This might be very useful to make the sizing process and the feeding optimisation easier. The whole 

approximate analytical formulae, taking the frequency dependent skin depth into account, are given in the Appendix C. 

3.5 .1 .  Maximum induction  and  induct ion  co ef f ic ien t  

The first performance criterion of a pulse inductor is the maximum magnitude of the induction Bk,max generated in the airgap between 

the coil or the field-shaper numbered k (k = 3) and the tube. It is evident that Bk,max is proportional to the current per unit length (I/Z). We 

thus suggest defining the maximum induction (Eq. (53)) and the induction coefficient (Eq. (54)) as follow. 

𝐵௞,௠௔௫ = 𝑚𝑎𝑥(|𝐵௞|) (53) 

𝐾௕ =
஻ೖ,೘ೌೣ

൫ூ
௓ൗ ൯

≈ |𝐾஼௞𝛼ଵ௞𝐽଴(𝛼ଵ௞𝑅௞௜) + 𝐾஽௞𝛼ଵ௞𝑌଴(𝛼ଵ௞𝑅௞௜)| (54) 

The physical unit of Kb is given by k. 

3.5 .2 .  Magnet ic  energy and  equ iva len t  inductance  

Then we focus on the stored magnetic energy Wmk (Eq. (55)) of each region k and the equivalent inductance L (Eq. (56)), including the 

whole self and mutual inductances. Some authors proposed to calculate these inductances but never including eddy currents. Yu and Han 

(1987) calculated the quasi-static self-inductance of air core circular coils with a rectangular cross section. Conway (2007) gave the 

calculation for non-axial coils. Ravaud et al. (2010) added the calculation of the mutual inductance between two axial coils. Now, we 

propose to calculate the total inductance with the stored magnetic energy in the whole regions (k = 0 - 5), even in the presence of eddy 

currents. Due to the magnetic field damping in the skin depth of conducting regions, the inductance can be approximated by the one 

mainly due to the magnetic energy in air regions (k even = 0, 2, 4). 

𝑊௠௞ = 2𝜋𝑍௞ ∫
஻ೖ஻ೖ

∗

ଶఓೖ
𝑟𝑑𝑟

ோೖ೐

ோೖ೔
 (55) 

𝐿 =
ଶௐ೘

ூమ
=

ଶ ∑ ௐ೘ೖೖ

ூమ
= ∑ 𝐿௞௞ = 
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෍
𝜋𝑍௞

𝜇௞𝑍ଶ

௞

න |𝐾஼௞𝛼ଵ௞𝐽଴(𝛼ଵ௞𝑟) + 𝐾஽௞𝛼ଵ௞𝑌଴(𝛼ଵ௞𝑟)|ଶ𝑟𝑑𝑟
ோೖ೐

ோೖ೔

≈ 

∑
గ∆ோೖ

మ௓ೖ

ఓೖ௓మ௞ ௘௩௘௡ |𝐾஼௞𝛼ଵ௞𝐽଴(𝛼ଵ௞𝑅௞௘) + 𝐾஽௞𝛼ଵ௞𝑌଴(𝛼ଵ௞𝑅௞௘)|ଶ (56) 

The physical unit of L is given by (Rk
2/Zk)k. 

3.5 .3 .  Joule  losses  and  equiva len t  res i s tanc e  

𝑃௝௞ = 2𝜋𝑍௞ ∫
௝ೖ௝ೖ

∗

ଶఙೖ
𝑟𝑑𝑟

ோೖ೐

ோೖ೔
  (57) 

𝑅 =
2𝑃௝

𝐼ଶ
=

2 ∑ 𝑃௝௞௞

𝐼ଶ
= ෍ 𝑅௞

௞

≈ 

∑
గఙೖఠమ௓ೖ

௓మ௞ ௢ௗௗ ∫ |𝐾஼௞𝐽ଵ(𝛼ଵ௞𝑟) + 𝐾஽௞𝑌ଵ(𝛼ଵ௞𝑟)|ଶ𝑟𝑑𝑟
ோೖ೐

ோೖ೔
 (58) 

Then we focus on the Joule power losses Pjk (Eq. (57)) of each region k (k odd = 1, 3, 5) and the equivalent resistance R (Eq. (58)), 

including the resistance Rk of each region k. The physical unit of R is given by (kZk)-1. 

3.5 .4 .  Loren tz force and  force coef f i cien ts  

Now we focus on the surface maximum Lorentz force density Fk (Eq. (59)) and the global magnetic pressure (i.e. the integrated Lorentz 

force density) responsible for the deformation Pfk (Eq. (61)), at the surface and inside the volume of each region k. We show that both 

depend on the product between the squared current per unit length (I/Z)2 and the square root of the angle velocity . This leads us to 

define the following corresponding force coefficients: 

𝐹௞ = 𝑚𝑎𝑥(|𝑓௞(𝑟)|) = |𝑓௞(𝑅௞௜)| 𝑜𝑟 |𝑓௞(𝑅௞௘)|  (59); 𝐾௙௞ =
ிೖ

√ఠቀ
಺

ೋ
ቁ

మ  (60) 

𝑃௙௞ = ∫ 𝑓௞(𝑟)𝑑𝑟
ோೖ೐

ோೖ೔
  (61); 𝐾௜௞ =

ห௉೑ೖห

√ఠቀ
಺

ೋ
ቁ

మ  (62) 

The physical units of Fk (Eq. (59)) and Pfk (Eq. (61)) are given by (k/k)(I/Z)2 and (kRk/k)(I/Z)2 respectively. The physical units of 

Kfk (Eq. (60)) and Kik (Eq. (62)) are given by (k
1/2k

3/2) and (k
1/2k

3/2Rk) respectively. 

3.5 .5 .  Maxwell  s tress  t ensor  and  coef f ic ien t s  

Finally, we study the maximum magnitude of the Maxwell stress tensor along the radius Psk (Eq. (63)) at the surface of each region k. 

This depends on the squared current per unit length (I/Z)2. This leads to the corresponding and following stress coefficient (Eq. (64)): 

𝑃௦௞ = 𝑚𝑎𝑥(|௕௞(𝑟)|) = |௕௞(𝑅௞௜)| 𝑜𝑟 |௕௞(𝑅௞௘)|  (63) 

𝐾௦௞ =
௉ೞೖ

൫ூ
௓ൗ ൯

మ ≈
|௄಴ೖఈభೖ௃బ(ఈభೖோೖ೔)ା௄ವೖఈభೖ௒బ(ఈభೖோೖ೔)|మ

ఓೖ
      (64) 

The physical units of Pfk are given by k(I/Z)2. The physical units of Ksk are given by k. 

3.6. Simulation results without field-shaper 

In this section, we compare the main calculation results to both 2D and 3D numerical simulations performed with the Finite Element 

Method. The first test case (TESTCASE 1) studied contains a 1-turn massive coil with or without a tube but no field-shaper. The value of 

the input variables such as the geometry and the material properties are given in the Appendix D.1. 

First, 2D and 3D models take more time to compute (1 hour and 1 week minimum respectively) than the 1D models (1 minute at 

maximum). The results in Table 1 give similar values. In 3D the terminals, connectors and the base can be modeled. 2D and 3D 

calculations of the impedance (R, L) and the voltage (V) give closer values (<15%) when we limit the calculation inside the ring part of 

the coil in 2D and in 3D, results show higher discrepancies (>15%) when adding the base, the terminals and the connectors only in 3D 

(this is not possible in 2D). The maximum force density has been compared on the 3D(=90°) and 2D axis respectively (see Figure 2). 

Only 15 % discrepancies were noticed comparing 2D and 3D results for different axis (3D(=180°)). These inaccuracies might mainly due 

to the  dependences and the slot and would require a complete 3D analysis. 



 

 

3.6 .1 .  Fields  and  dens it i e s wi th  and  wi thout  a  tube  

Providing the current I (with the total magnetic potential A model) or the voltage V (with the reduced magnetic potential Ai model) 

and the angle velocity  or the frequency f; the magnetic field, current density and force density can be computed (see Figure 6). 

Table 1: Current (kA), voltage (V) and maximum force density (GN.m-3) results without field-shaper (TESTCASE 1). 

 1D (A) 1D (Ai) 2D 3D 

Vwithout tube 2494ei1.5 2800 2705ei1.5 2778ei1.5 

I3, without tube 825 813e-i1.5 825 825 

Vwith tube 797ei1.12 800 970ei1.17 1287ei1.28 

I3, with tube 825 795e-i1.14 825 825 

I1, with tube 696e-i3.13 633e-i0.98 710e-i3.1 678e-i3.1 

F1, with tube 1187 978 1116 965 

 

Figure 6. (top) Radial distribution of magnetic flux density B (a), current density j (b) and Lorentz force density fr. (c) (bottom) Inductance L (d) resistance R 
(e) and maximum force density coefficients Kp and Km (f) (Z  16.5 mm) (TESTCASE 1). Worse discrepancies stay below 25% and best ones stay below 5%. 

Curves (a), (b) and (c) of Figure 6 are important to check the coherence in qualitative shape and skin depth of calculated field B and 

densities j and fr distributions with different models. The coil generates a magnetic flux in the air with a quasi-constant induction while it 

exponentially decreases in the coils’ skin depth (33 = 4.5 mm). The tube acts as a screen for this flux such that it stops and is created only 

in the air gap between the coil and the tube. Therefore, the flux density also rapidly decreases in the tube’s skin depth (31 = 1.59 mm). 

Both skin effects are due to eddy currents in the conducting regions, induced by the flux variations. This leads to a total current density 

located mainly at the internal surface of the coil and the external surface of the tube. 

3.6 .2 .  Frequency  dependent  co il s’  parameters  

Curves (d), (e) and (f) of Figure 6 and Table 2 give the main coil parameters, computed either with the 3D, the 2D or the 1D model. 

The inductance comes from the magnetic energy in air (mainly dependent on the geometry no matter what frequency) and a small amount 

of energy in the skin depth of conducting regions (the latter depending on the frequency). The higher the frequency, the lower the coils 

surface and the inductance. The tube is behaving like a secondary coil in short circuit with a mutual inductance that has to be subtracted 
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from the self-inductance. As a result, the total equivalent inductance L with a tube is lower. The resistance comes from the Joule losses 

with dependence on the coil circumference and skin depth (so frequency dependent). The higher the frequency the smaller the skin depth 

and the conductance G=1/R. The tube, as another conducting region, introduces an additional resistance. As a result, the total resistance 

R with a tube is higher. Adding the resistance of the terminals will also result in a higher total resistance. R value given in 3D is the mean 

value of the ring part of the coil (see large range of 3D values in Figure 6 (e) and (f)). The limiting error is only acceptable for L, Kp and 

Km. The latter seem to be more influenced by what happens in the turning parts around the tube than determined by the coils ends. 

Fortunately, the voltage and the force are much more dependent on the inductive part (from 80 to 98% of the voltage) rather than the 

resistive part (from 2 to 20% of the voltage). The maximum induction coefficient (maximum induction, created by the coil in the useful 

airgap near the tube, per Ampere per unit length) is higher with a tube due to field sources in two regions instead of one. 

Table 2: Equivalent resistance R (), inductance L (nH), maximum induction coefficient Kb (T/(kA/mm)) and maximum force coefficients Kp in the coil and Km 

in the tube (MN.m-3.s1/2/(kA/mm)2) results without and with tube (@ 20 kHz) for TESTCASE 1. 

 Without tube With tube 

1D 2D 3D 1D 2D 3D 

R 200 226 290 400 462 446 

L 24 27 26.7 7 8.6 11.9 

Kb 0.6 0.59 0.54 1 1.01 0.93 

Kp 0.63 0.55 0.50 1.77 1.5 1.31 

Km    4.25 4.0 3.5 

3.6 .3 .  Air -Gap S ens it iv i ty  analy sis  

The major advantage of reduced analytical models is to speed the calculations especially in a sensitivity analysis when varying several 

parameters. For the couplings of electromagnetic, electrical and mechanical parts the most critical parameter we must take into account 

is the air gap g between the coil and the tube. It is very important to correctly estimate the varying resistance R(g), inductance L(g) and 

force coefficient Km(g). We can save time by relying on 2D FEM simulations, that has been previously validated thanks to a 3D FEM 

simulation. As shown in Figure 7, the typical values and tendencies of R(g), L(g) and Km(g) as a function of the increasing air gap g are 

described with both the 2D and 1D models and are coherent with each other. Because the distance between the two parts becomes bigger, 

interactions and eddy currents inside the tube become weaker. It is logical to see that both the resistance R and the force coefficient Km 

decrease as a function of g. Meanwhile, because the negative mutual effect is also weakened, the equivalent inductance L will increase as 

a function of g. The first derivative gL of this last function will play an important role. 

Figure 7. Variation of resistance R, inductance L and force coefficient Km as a function of the airgap g between coil and tube (TESTCASE 1). 

3.7. Simulation results with field-shaper 



 

 

The second test case (TESTCASE 2) studied contains a 1-turn massive coil and a field-shaper with or without a tube. The value of the 

input variables such as the geometry and the material properties are given in the Appendix D.2. Results of Table 3 are close and coherent. 

The 3D computation with field-shaper does not provide fast enough as good of result as 2D or 3D computations without field-shaper. 

This is mainly due to the tremendous number of nodes required to get a mesh fine enough in the four very thin cylindrical parts. That’s 

also why we investigate an analytical model which will give accurate enough results much faster and less time and memory consuming.  

Table 3: Current (kA), voltage (V) and maximum force density (GN.m-3) results with field-shaper (TESTCASE 2) 

 1D (A) 1D (Ai) 2D 

Vwithout tube 4153ei1.4 3600 3780ei1.4 

I5, without tube 825 840e-i1.33 825 

Vwith tube 1670ei1.15 2500 1962ei1.13 

I5, with tube 825 770e-i1.04 825 

I1, with tube 648e-i3.13 603e-i1.22 670e-i3.1 

F1, with tube 944 880 967 

3.7 .1 .  Fields  and  dens it i e s wi th out  and  wi th tub e  

Providing the current I (or the voltage V) and the angle velocity ; the induction B, current density j and force density fr are computed 

(focus on the second airgap between the field-shaper and the tube, curves (a), (b) and (c) of Figure 8). The field-shaper is acting as a 

secondary coil that stops the induction and concentrates it in the first air gap between the coil and the field-shaper; but re-submit the tube 

to the flux imposed by the coil. Therefore, the flux density is also rapidly decreasing inside the field-shaper’s skin depth (33 = 2 mm). 

Figure 8. (top) Radial distribution of magnetic flux density B (a), current density j (b) and Lorentz force density fr. (c) (bottom) Equivalent inductance L (d), 

resistance R (e) and maximum force density coefficients Kp, Kf and Km (f) (Z  16.5 mm) (TESTCASE 2). 

3.7 .2 .  Frequency  dependent  co il s’  parameters  

Curves (d), (e) and (f) of Figure 8 and Table 4 give the coil parameters, computed with either the 2D or the 1D model. The 

dependencies of the parameters on the frequency are unchanged due to the same physical phenomenon as stated previously: the frequency 

dependent skin effect. The field-shaper, as a third conducting region, introduces an additional resistance. To form the same tube, due to a 
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bigger coils’ section, the inductance L is also bigger with a field-shaper than without. The mutual force coefficient Km is weakened by the 

two airgaps using a field-shaper, which is only useful to adapt the radius of a given coil to form a tube with a different lower radius. 

Table 4: Equivalent resistance (), inductance (nH), maximum induction coefficient Kb (T/(kA/mm)) and maximum force coefficients Kp in the coil, Kf in the 

field-shaper and Km in the tube (MN.m-3.s1/2/(kA/mm)2) results without and with tube (@ 20 kHz) for TESTCASE 2. 

 Without tube With tube 

1D 2D 1D 2D 

R 820 730 998 1000 

L 39 36 14 17.2 

Kb 0.54 0.56 0.93 0.99 

Kp 0.65 0.5 0.8 0.64 

Kf 1.13 1.07 3.5 3.2 

Km   3.6 3.7 

4. Transient coupling considerations and comparisons 

As shown previously, the main parameters of the coil depend on the natural frequency fn of the current pulse and of the changeable 

air-gap g=g2 between the coil and the tube (i.e. linked to the deformation). We also show that n=2fn depends on the coil parameters, 

and so on the deformation too. As a consequence, electrical, mechanical and electromagnetic phenomena should be coupled as follow. 

4.1. Equivalent electrical circuit coupling 

The coil with or without a field-shaper, and with or without tube is considered as an inductor with an equivalent inductance L(g,), an 

equivalent electrical resistance R(g,) and an equivalent mechanical resistance Rm(g,g’,) when the tube is deformed. A simple equivalent 

electrical circuit is proposed in Figure 9. Once the capacitor C of the generator is charged at a given voltage V0, a switch is closed to let 

a current pulse circulate in cables of equivalent resistance R1 and inductance L1 towards the inductor. 

Figure 9. Equivalent electrical circuit of magnetic pulse system. 

Considering first a constant position of the tube without deformation (g’=0), the natural angle velocity n =2fn and the phase angle  

between the current I and the voltage V1 pulses must obey the following equations proposed by Otin et al. (2011) (65): 
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  and 𝛽 = tanିଵ(𝜏𝜔௡) (65) 
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Once the natural oscillating frequency is determined, it is then possible to deduce the equivalent electrical components of the coil (with 

or without the field-shaper or/and the tube). The inductance L and the resistance R are given in equations (56) and (58). The equivalent 

mechanical resistance Rm, which is also proposed by Lal and Hillier (1968), can be deduced from L(g) by the following relationship (66): 
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Given the initial conditions on the voltage and the current (V(t=0) = V0, I(t=0) = 0), it is then possible to calculate the voltage and 

current pulses from time to time with the help of the following ordinary differential equations (67): 

ቐ
𝑉ଵ = (𝑅ଵ + 𝑅௠ + 𝑅)𝐼 + (𝐿ଵ + 𝐿)
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The natural frequency and the equivalent components R, L and Rm can change from time to time if the airgap g change. 

4.2. Mechanical coupling solution(s) 

The maximum force induced by the current pulse inside the coil and the tube can be estimated thanks to equation (59) by its transient 

expression Eq. (68). The global magnetic pressure responsible for the deformation Eq. (61) is equivalently given by Eq. (69). 

Due to the shape of the pseudo-harmonic solution and the square root of ; both the force and the strength can be derived from the 

squared current I(t)/Z per unit length thanks to the fractional derivative operator (.)/t1/2. (x) is the gamma function defined by an 

extension of the factorial function with its argument shifted down by 1: (x)=(x-1)!=u>0(ux-1e-u)du 
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The magnetic pressure Pfk(t) is counterbalanced by the mechanical stress s(t), which depends on the mechanical deformation (t) and 

the deformation speed ’(t) as follows Eq. (70). The law of Johnson and Cook (1983), whose relevance has been demonstrated by (Shang 

et al., 2012), is proposed for high speed forming processes but still neglecting the visco-plastic energy dissipation. 

𝑠 = 𝑚𝑖𝑛 ቆ𝐸𝜀, (𝑆ଵ + 𝑆ଶ𝜀௡) ቀ1 + 𝑆ଷ ln
ఌᇲ

ఌబ
ᇲ ቁቇ (70) 

Where E is the Young modulus. S1, S2, S3, n and 0
’ are mechanical properties of the material (see Appendix E.). When considering the 

field-shaper and the coil, only the young modulus and elastic deformations are taken into account. 

Then the material will deform itself following the physical dynamical Eq. (71) inspired from various authors. Jablonski and Winkler 

(1978) included a similar mechanical equation while analysing the electromagnetic forming process. Daehn et al. (2008) used an 

analogous law but for magnetic pulse welding of sheet connections. Hahn et al. (2016) had to consider the same dynamical equation when 

interpreting experiments with simulations. The proposed 1D Eq. (71) gives the acceleration g’’ of airgap g time variations. 
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Where sk is the mechanical stress, k is the volume mass density of the material and ek=(Rke-Rki) is the thickness, of region k (tube, 

field-shaper or coil depending on the case). Eq. (71) is usable only for the forming and crimping processes. The welding process 

conditioned by an impact angle and analysed by Raoelison et al. (2012) cannot be simplified by an equivalent 1D problem like for the 

forming and crimping process, it requires a 2D model with the two variables (r,z). 

4.3. Flow-chart of the coupling solution 

Each modelling tool has been previously defined (the mechanical model, the electrical model, the natural resonant frequency model 

and the electromagnetic model). The coupling procedure is shown on the flow chart of Figure 10. It is then possible to carry out the 

transient calculation of the voltage, the current, the force, the deformation and the speed of deformation. 

4.4. Simulations Results 

The aim of the 1D model is to estimate with accuracy the forces induced inside the coil and the tube and the current pulse needed. The 

force in the coil is the main cause of the self-damaging process. The force in the tube is useful for the forming process. The energy of the 

first pulse is important in the process and it is described by the 1D model that gives results close to the 2D one (see Figure 11). 
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Figure 10. Flow-chart of the coupling solution with electromagnetic, electrical and mechanical problems. 

Figure 11. (a. LEFT) Current, voltage and maximum force simulation as a function of time for the coil without field-shaper nor tube (TESTCASE 1). (b. 
RIGHT) Current, voltage and maximum force simulation as a function of time for the coil without field-shaper but tube (TESTCASE 1). 

5. Experimental and numerical results 

Experiments measurements have been carried out on two inductors, dedicated to industrial applications. The first prototype 

(TESTCASE 3) is a 1-turn massive or bulk coil made of steel without field-shaper (see the Appendix E.1, with normalized data due to a 

non-disclosure agreement). The second prototype (TESTCASE 4) is a 1-turn massive or bulk coil with a field-shaper, both made of copper 

alloys materials partly studied by some authors. Arnaud et al. (1985) studied the electrical and mechanical properties of copper alloys. 

Lockyer and Noble (1999) proposed some fatigue mechanisms inside similar copper alloys (CuNiSi). Two new materials named the 

Siclanic and Cuprofor materials (@ Le Bronze Alloys) have been used in the present paper with a known electrical conductivity but 

no complete characterisations yet (description is in the Appendix E.2.). 

5.1. TESTCASE 3: coil without field-shaper 

5 .1 .1 .  Coils  e lec tr ica l  paramete rs  

The first step is to compute L and R with or without the tube as a function of the frequency and the air gap. Results on TESTCASE 3 

are given in Figure 13. The two models are in agreement with each other. The resulting current-voltage characteristics which are computed 

in the transient working condition with respect to the equivalent components of Figure 13 also fit the measurements (see Figure 12). We 

can obtain an approximate for the current and voltages pulses measured from the equations of Eq. (72). 

     
         
     













 

tf2sintexpItI

tf2sintexpILLRtV

tf2sintexpVtV

np

np
2

n
2

n
1

n001






 (72) 



 

 

Ip  V0C0
2n

-1 is the current peak parameter (dependent on the initial voltage V0, C, f0 and fn),  = tan-1((Ln)/(R-L/)) is the phase 

angle between I and V,  is the time decay constant and fn is the natural frequency. Finally, it has to be mentioned that despite the usual 

magnetic properties of steel, high energy measurements with enormous peak currents will induce a magnetic saturation. As a result, the 

steel is considered as a non-magnetic material ( = 0) like most of the conducting materials usually used for this purpose. 

5.1 .2 .  Trans ien t  el ec t r ica l  behaviour  

In Figure 12, the total transient current I is enforced. It is given by Eq. (72) with a current peak parameter Ip=175.6 kA (with tube) and 

165.7 kA (without tube), a time constant =41.7 s (with tube) and 43.5 s (without tube), with no phase angle and a natural frequency fq 

= 27.5 kHz (with tube) and 27 kHz (without tube). 

The current and voltages have been measured (Figure 12). The model allows the computation of the pulses with a good accuracy 

except for the smaller voltage V with the tube (see next and Figure 14 for improvements), but neglects higher frequencies mainly due to 

the spark gaps between the generator and the inductor. 

5.1 .3 .  Trans ien t  loca l  force w i thout  de format ion  

In Figure 13, the total transient current I is given by Eq. (72) with a peak current Ip = 774 kA, a time constant  = 50 s, with no phase 

angle and a natural frequency fq = 22 kHz (with tube, 1 = 30 % IACS). We compare the force density at time steps 7 s and 10 s and 

estimate the discrepancies between the 2D (axis 2D) and the 3D model (average of axis 3D(=90°) and 3D(=180°)) to be below 10%. 

5.2. TESTCASE 4: coil with field-shaper 

The second test case (TESTCASE 4) measured contains a 1-turn massive coil and a field-shaper with or without a tube. The confidential 

variables such as the geometry and the material properties are defined and normalised in the Appendix E.2. 

5.2 .1 .  Coil  parameters  

Table 5 Gives the experimental identification and calculation of parameters R and L. We observe important inaccuracies especially in 

case (b) (coil + field-shaper). The measurement data contains lots of dispersion (from 20 to 40 % for L and 30 to 60 % for R). Case (a) 

(coil) and (c) (coil + field-shaper + tube) are however correctly described with coherent values inside the dispersion range. 

Figure 12. Transient current I and voltage V1 or V pulses as a function of time with and without tube for the TESTCASE 3 @ BASIS EP. 
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Figure 13. (LEFT) Calculation of equivalent resistance and inductance for TESTCASE 3. Comparison between 1D and 2D models (Z  12.5 mm))) 
(RIGHT) Calculation of transient local Lorentz force density as a function of normalised radius in tube at various time step. Comparison between 2D models 

(@ESIEE) and 3D model (@UTC) for TESTCASE 3. 

Figure 14. 1D calc. & meas. of the current (a), the voltage (b) and the impedance (c), with field-shaper & tube @ V0 = 7500 V (Z  4 mm) (TESTCASE 4). 



 

 

Table 5: Electrical parameters calculation and identification of TESTCASE 4. 

case Method R () L (nH) f(kHz)  (s) 

(a) 

coil 

Model 203 84 24.4 49.8 

Meas. 200 - 380 75  15 24.8  0.3 48.9  4 

(b) 

coil+field-shaper 

Model 1840 53 25.6 39.5 

Meas. 45 - 1545 50  13 25.8  0.4 42.2  5 

(c) 

coil+field-shaper+tube 

Model 2400 29 26.8 34.5 

Meas. 1 - 2440 25  10 27.2  0.6 38.5  7 

Results have been identified with equations (73) and (74), or calculated with equations (58) and (56). 
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Figure 15. (a. LEFT) Absolute surface and maximum force density (TESTCASE 4). Comparison between 1D, 2D and 3D models (LS Dyna) (@PFT 

Innovaltech). (b. RIGHT) Transient elastic strain or deformation (TESTCASE 4). Comparison between 1D and 3D models (LS Dyna) (@PFT Innovaltech) 

5.2 .2 .  Resu l t s  w ithou t pla st i c  de format ion  

Figure 14 shows the current-voltage characteristics of the coil that are measured and calculated. The corresponding impedance is 

calculated and given below the current and voltage pulses. Only one capacitors bank has been used, with initial voltage from 2500 V to 

7500 V (V0 = 2.5 / 3.5 / 4.5 / 5.5 / 7.5 kV respectively, i.e. Energy = 0.86 / 1.2 / 1.55 / 1.9 / 2.58 kJ), to stay below the plastic strain. 

Electrical features of the generator are given in the Appendix E.2. The model allows the computation of the transient pulses and of the 

impedance (R and X=Ln) changeable when a deformation occurs. The linear assumption is confirmed by both the measurements and the 

computations: R and X do not depend on the voltage, but only on the changeable airgap g. This last dependence is very weak with small 

elastic deformation but might become more significant with strong plastic deformation. The general decaying oscillating shape of both 

the current and the voltage is correctly described, but still neglects high frequency disturbances mainly due to the spark gaps. Maximum 

values, natural periods and decaying factors are well found for the voltage and the current pulses, giving rise to the force pulse and hence 

a strain and the elastic deformation. Figure 15 represents the surface Lorentz force density acting on the tube’s external surface (Figure 

15, LEFT) and the tube deformation (Figure 15, RIGHT) as a function of time during the first current pulse (from 0 to 13 s). Despite a 

time-delay between the 1D or 2D model and the 3D model on both the force and the displacement, the peak values attained, the one 

responsible for the end forming state, are very similar. Results on the force are better than the ones for the displacement because the 

mechanical model does not take the 2D effects into account (around 5% error for the peak force and 25% error for the peak displacement). 
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5.2 .3 .  Resu l t s  w ith  tube and p las t ic  deformat ion  

Now the five capacitors banks have been used, with an initial voltage of V0 = 5 kV, to attain the plastic strain but stay below the ultimate 

tensile strength. Both measurements and computations have been done with four field-shapers made of different materials (Steel, CuBe, 

Siclanic and Cuprofor @Le Bronze Alloys). Peak values and natural frequencies are correctly found for the current pulses (see ). The 

final and most important result is the prediction of the end forming state shown in Figure 17. The model gives the end deformation with 

a final diameter which is at the lower limit measured on samples, with a weak over-estimation coherent with  Figure 15. 

Table 6: Current pulse needed and natural frequency with initial voltage V0 = 5 kV (i.e. 8.6 kJ from generator) for various field-shapers’ material. 

Material Method Ipeak (kA) f (Hz) 

Steel 

8 % IACS 

Model 320 20250 

Meas. 340 20500 

CuBe 

25 % IACS 

Model 340 21315 

Meas. 360 21700 

Siclanic 

46 % IACS 

Model 350 21700 

Meas. 370 21800 

Cuprofor 

85 % IACS 

Model 355 21975 

Meas. 375 21900 

5.3. Forecasting, Energy Balance sheet and discussions 

Thanks to coupled models, the model can be an interesting forecasting tool for the forming and crimping processes in industrial 

applications (see Figure 17). Raoelison et al. (2012) proposed something similar by analysing the conditions for an efficient welding 

process. Cui et al. (2016) carried out a sensitivity analysis of the magnetic pulse welding as a function of the tube thickness. The present 

tool can be used to estimate the energy balance and the global efficiency of the process as shown in Figure 16, with possibilities to vary 

geometrical, physical and process parameters for optimisation purposes. The aim is to enhance the mechanical energy used to form the 

tube, i.e. to change from the initial diameter to the end lower diameter. This can help the design of efficient coils and flux concentrators 

for pulsed high magnetic fields like in Wilson and Srivastava (1965) but taking the whole geometry and process into account. 

Figure 16. Energy balance with initial voltage V0 = 5 kV (i.e. total energy 8.6 kJ from generator) for the field-shaper made with the Cuprofor material. 

6. Conclusion and perspectives 

In this paper, we propose an analytical modelling of the 1-turn bulk coil with a cut, made of conducting steel or copper alloys, and 

used in the magneto-forming processing technology. The basic electromagnetic theory is first summarised and the One-Dimensional (1-

D) axi-symmetrical approximation is discussed (part 2). The goal is to be able to determine the magnetic vector potential A diffusion that 



 

 

will lead to all the interesting parameters sought to characterise, qualify, feed and optimize the use of the coil. The pseudo-harmonic 

solution to the 1D-problem is expanded with the help of Bessel basis functions, including some specific limit conditions and constraints 

(part 3). It is shown that it is then possible to estimate with reasonable time and accuracy the main coils parameters, that are 

electromagnetic (magnetic field, flux and current densities), magnetic (magnetic energy, equivalent inductance), electrical (energy loss, 

equivalent resistance) and mechanical (maximum Lorentz force density, self and mutual coefficients). The results obtained from 

calculations are compared to numerical 2-D and 3-D computations performed thanks to the Finite Element Method in certain test cases 

with and without a tube, which will be shaped. Significant discrepancies due to the 2D effects are compensated thanks to a 2D correction 

factor determined by FEM simulations. Moreover, as long as the frequency is high enough to give a skin depth very small compared to 

the coil radius, the proposed model does not only give the final numerical value of each characteristic, but it also provides complete 

analytical formulae, with explicit dependences upon some key geometrical and physical input variables (such as the changeable air gap 

between the coil and the tube, linked to the deformation). The use of a pseudo harmonic working condition is justified by comparing it to 

the transient working condition for which the model is improved and experimental measurements are carried out with and without a tube 

but with no deformation (part 4). The results are close and coherent with each other when performing an equivalent electrical circuit and 

the electro-mechanical coupling solution, which can be used with deformation in the transient working conditions (part 5). This model 

might ease either the transient calculation or the coupling with electrical and mechanical physics. It takes up less memory space, is less 

time consuming and above all it allows us to quickly estimate the main coil parameters and so optimise its conception (geometry, 

materials). It has been used in this paper to forecast the end deformation of a tube but should be developed to contribute to estimate the 

damaging strain and deformation, aging and life time of a field-shaper and a coil. 

Figure 17. End deformation with V0 = 5 kV and various field-shapers @Le Bronze Alloys. Comparison with measurements @ PFT Innovaltech. 
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Appendix A Initial data 

A.1 The coil geometry (TEST CASE 1) 

Table 7: Parameters of the coil geometry of Test-Case 1. 

Name Value significance 

R1i 17.5 mm internal tube radius 

R1e 19 mm external tube radius 

g2 1 mm airgap between coil and tube 

R3i 20 mm internal coil radius 

R3ie 30 mm intermediate coil radius 

R3e 100 mm external coil radius 

Z 30 mm useful length of coil 

Zt 50 mm total end length of coil 

A.2 The materials (TEST CASE 1) 

Table 8: Parameters of the materials (@20°C) of Test-Case 1. 

Name Value significance 

0 4.10-7 H.m-1 Air magnetic permeability 

1 75 % IACS* Tube electrical conductivity 

1 0 Tube magnetic permeability 

3 10 % IACS* Coil electrical conductivity 

3 0 Coil magnetic permeability 

Cu 5.8 107 S.m-1 Copper conductivity 

*IACS: International Annealed Copper Standard (100 % = Cu) 

Appendix B Solutions 

B.1 Total magnetic vector potential 

For each conducting region k, the total magnetic vector 
potential will be of the following form: 

𝐴௞(𝑟, 𝜔) = 𝐶௞𝐽ଵ(𝛼ଵ௞𝑟) + 𝐷௞𝑌ଵ(𝛼ଵ௞𝑟)  (a1) 

 𝐵௞(𝑟, 𝜔) = 𝐶௞𝛼ଵ௞𝐽଴(𝛼ଵ௞𝑟) + 𝐷௞𝛼ଵ௞𝑌଴(𝛼ଵ௞𝑟) (a2) 

𝑗௞(𝑟, 𝜔) = −𝑖𝜎௞𝜔𝐶௞𝐽ଵ(𝛼ଵ௞𝑟) − 𝑖𝜎௞𝜔𝐷௞𝑌ଵ(𝛼ଵ௞𝑟) (a3) 

𝑓௞(𝑟) = 𝑟𝑒𝑎𝑙൫𝑗௞(𝑟)𝐵௞
∗(𝑟)൯    (a4) 

௕௞(𝑟) = −
஻ೖ(௥)஻ೖ

∗ (௥)

ଶఓೖ
    (a5) 

We use J0k and Y0k for k=1 and k=3 defined by: 

∆𝐽଴୩ = 𝐽଴(𝛼ଵ୩𝑅௞௘) − 𝐽଴(𝛼ଵ୩𝑅௞௜) (a6) 

∆𝑌଴୩ = 𝑌଴(𝛼ଵ୩𝑅௞௘) − 𝑌଴(𝛼ଵ୩𝑅௞௜) (a7) 

In each region k, the coefficients Ck and Dk are proportional to 
(I/Z) and can be written as follows (Ck and Dk have got the same 

unit as the potential A [T.m] and KCk and KDk have got the same 
unit as an inductance L [H]). 

𝐶௞ = 𝐾஼௞ ቀ
ூ

௓
ቁ (a8) and 𝐷௞ = 𝐾஽௞ ቀ

ூ

௓
ቁ (a9) 

B.1.1 Coil on its own 

Region 1: the coil 
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B.1.2 Coil with tube 

Region 1: the tube 

Region 3: the coil 
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B.1.3 Coil with field-shaper and tube 

Region 1: the tube 

Region 3: the field-shaper 

Region 5: the coil 
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B.2 Reduced magnetic vector potential 

For each region k, the reduced magnetic vector potential will be 
of the following form in air, in conducting regions with no source 
and in conducting regions with a source respectively: 

𝐴௜௞(𝑟) = 𝐶௞𝑟 +
஽ೖ

௥
  (b1) 

𝐴௜௞(𝑟, 𝜔) = 𝐶௞𝐽ଵ(𝛼ଵ௞𝑟) + 𝐷௞𝑌ଵ(𝛼ଵ௞𝑟) (b2) 
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B.2.1 Coil on its own 

Region 0 = the interior air; Region 1 = the coil 
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B.2.2 Coil with tube 

Region 0 = the interior air; Region 1 = the tube; Region 2 = the airgap between the coil and the tube; Region 3 = the coil 
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B.2.3 Coil with field-shaper and tube 

Region 1 = the tube; Region 3 = the field-shaper; Region 5 = the coil 
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Appendix C Parameters 

The local potential, fields and densities can be built with the 
Bessel functions. These must be calculated for a reference radius 
small enough (Rref = 5 or 10 mm) in order to make the matrix 
system solutions converge. We use an affinity transformation on 
the radial position: rr(Rref/R). The current source is unchanged 
but the voltage become VV(Rref/R). Then, thanks to the 
properties of Bessel functions and the skin depth of the material, 
the functions obtained with the reference radius can simply be 
moved as a function of the actual radius of the tube, the field-
shaper or the coil, obtained by the affinity transformation. 

Global performance parameters such as the induction and force 
coefficients or the inductance and the resistance can be determined 
either with the exact Bessel functions or its approximations given 
by (c1) and (c2), providing that r >> 1. 
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C.1 Resistances 

For each conducting region k=2p+1 
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C.2 Inductances 

For each air region k=2p 
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The magnetic energy stored in air regions is proportional to the 
coil magnetic permeability and the surface of flux in air. 

For each conducting region k=2p+1 
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C.3 Induction coefficient 

C.3.1 Without field-shaper 

Without tube:  𝐾௕଴ ≈ 𝜇ଵ ቀ
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ቁ   (c6) 

With tube:  𝐾௕ଶ ≈ (1 + 𝛽)𝜇ଷ ቀ
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C.3.2 With field-shaper 

Without tube 𝐾௕଴ ≈ 𝛽ଷହ𝜇ଷ ቀ
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௓య
ቁ   (c8) 

With tube: 𝐾௕ଶ ≈ 𝛽ଷହ(1 + 𝛽ଵଷ)𝜇ଷ ቀ
௓

௓య
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The unit of Kb is [H.m-1]=[T/(A.m-1)]. 

(with Z = Zk for a semi-infinite coil or very large Z) 

C.4 Force coefficients 

C.4.1 Self-force onto the coil and field-shaper 

For the coil or field-shaper region k=1, 3 or 5 
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C.4.2 Mutual force onto the tube 

For the tube region k=1 
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The unit of Kp, Kf and Km is [H.m-2.s1/2]=[N.m-3.s1/2/(A.m-1)2]. 

C.5 Maximum stress coefficient 

For each conducting region k=1, 3 or 5 
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Appendix D Simulations 

D.1 Without field-shaper (TESTCASE 1) 

D.1.1 The coil geometry 

Table 9: Parameters of the coil geometry of TESTCASE 1. 

Name Value significance 

R1i 17.5 mm internal tube radius 

R1e 19 mm external tube radius 

g=g2 1 mm airgap between coil and tube 

R3i 20 mm internal coil radius 

R3ie 30 mm intermediate coil radius 

R3e 100 mm external coil radius 

Z 30 mm useful length of coil 

Zt 50 mm total length of coil 

D.1.2 The materials 

Table 10: Parameters of the materials (@20°C) of TESTCASE 1. 

Name Value significance 

1 75 % IACS* Tube electrical conductivity 

1 0 Tube magnetic permeability 

3 10 % IACS* Coil electrical conductivity 

3 0 Coil magnetic permeability 

E 210 GPa Young modulus of tube 

S1 950 MPa Johnson Cook coefficient 1 

S2 1250 MPa Johnson Cook coefficient 2 

S3 0.083 Johnson Cook coefficient 3 

n 0.43 n.u. Johnson Cook exponent 

0
’ 1 %.s-1 Reference speed 

*IACS: International Annealed Copper Standard (100 % = Cu) 

D.1.3 Other electrical parameters 

Transient simulations are done superimposing the current pulse, 
i.e. its peak value Ipeak and its natural frequency fn. Pseudo-
harmonic approximations are assumed. 

Natural frequency: fn = 20 kHz 

Peak current: Ipeak = 825 kA (if Z = 30 mm) 

Peak current: Ipeak = 825*Z[mm]/30 kA (if Z  30 mm) 

 

 

D.2 With field-shaper (TESTCASE 2) 

D.2.1 The coil and field-shaper geometry 

Table 11: Parameters of the coil geometry of TESTCASE 2. 

Name Value significance 

R1i 17.5 mm internal tube radius 

R1e 19 mm external tube radius 

g=g2 1 mm airgap between coil and tube 

R3i 20 mm internal field-shaper radius 

R3ie 30 mm mid field-shaper radius 

R3e 44.4 mm external field-shaper radius 

g4 0.6 mm airgap field-shaper - coil 

R5i 45 mm internal coil radius 

R5e 100 mm external coil radius 

Z 30 mm useful length of field-shaper 

Zt 50 mm total length of coil 

D.2.2 The materials 

Table 12: Parameters of the materials (@20°C) of TESTCASE 2. 

Name Value significance 

1 75 % IACS* Tube electrical conductivity 

1 0 Tube magnetic permeability 

3 50 % IACS* Field-shaper conductivity 

3 0 Field-shaper permeability 

5 10 % IACS* Coil electrical conductivity 

5 0 Coil magnetic permeability 

*IACS: International Annealed Copper Standard (100 % = Cu) 

The mechanical properties of the tube (E, S1, S2, S3, n, 0
’) haven’t 

been changed and are given in Table 10. 

D.2.3 Other electrical parameters 

Transient simulations are done superimposing the current pulse, 
i.e. its peak value Ipeak and its natural frequency fn. Pseudo-
harmonic approximations are assumed. 

Natural frequency: fn = 20 kHz 

Peak current: Ipeak = 825 kA (if Z = 30 mm) 

Peak current: Ipeak = 825*Z[mm]/30 kA (if Z  30 mm) 

 

  



 

 

Appendix E Experience 

E.1 First experiment (TESTCASE 3) 

E.1.1 The coil geometry 

Table 13: Parameters of the coil geometry of TESTCASE 3. 

Name Value* significance 

R1i 0.876 internal tube radius 

R1e 0.942 external tube radius 

g=g2 0.0578 airgap between coil and tube 

R3i 1 internal coil radius 

R3ie 1.98 intermediate coil radius 

R3e 6.6 external coil radius 

Z 1.98 useful length of coil 

Zt 3.3 total length of coil 

*Values normalized as a function of reference value R3i=1. 

E.1.2 The materials 

Table 14: Parameters of the materials (@20°C) of TESTCASE 3. 

Name Value significance 

1 30 % IACS Tube electrical conductivity 

1 0 Tube magnetic permeability 

3 8 % IACS Coil electrical conductivity 

3 0 to 50000 Coil magnetic permeability 

E 69 GPa Young modulus of tube 

S1 350 MPa Johnson Cook coefficient 1 

S2 440 MPa Johnson Cook coefficient 2 

S3 0.083 Johnson Cook coefficient 3 

n 0.43 n.u. Johnson Cook exponent 

0
’ 1 %.s-1 Reference speed 

E.1.3 Other electrical parameters 

Transient computations can be done by coupling the 
electromagnetic model to the mechanical behaviour and the 
electrical circuit. 

The capacitor of the generator is charged such that its maximum 
initial voltage is: V0 = 8500 V, i.e. maximum energy E = 25 kJ. 

The equivalent components of the pulse generator are: 

Generator capacitance: C = 690 F  

Generator and cables resistance: R1 = 2.4 m 

Generator and cables inductance: L1 = 44 nH 

The number of modules connected in parallel is 5. 

 

E.2 Second experiment (TESTCASE 4) 

E.2.1 The coil and field-shaper geometry 

Table 15: Parameters of the coil geometry of TESTCASE 4. 

Name Value* significance 

R1i 0.823 internal tube radius 

R1e 0.926 external tube radius 

g=g2 0.0742 airgap between coil and tube 

R3i 1 internal field-shaper radius 

R3ie 2.292 mid field-shaper radius 

R3e 3.292 external field-shaper radius 

g4 0.042 airgap field-shaper - coil 

R5i 3.333 internal coil radius 

R5e 6.583 external coil radius 

Z 1.25 useful length of field-shaper 

Zt 2.5 total length of coil 

E.2.2 The materials 

Table 16: Parameters of the materials (@20°C) of TESTCASE 4. 

Name Value significance 

1 30 % IACS Tube electrical conductivity 

1 0 Tube magnetic permeability 

3 46 % IACS** Field-shaper conductivity 

3 0 Field-shaper permeability 

5 46 % IACS Coil electrical conductivity 

5 0 Coil magnetic permeability 

**(Steel: 8%, CuBe: 25%, Siclanic: 46% to Cuprofor: 85%). 

The mechanical properties of the Al tube (E, S1, S2, S3, n, 0
’) 

haven’t been changed and are given in Table 14. 

E.2.3 Other electrical parameters 

Transient computations can be done by coupling the 
electromagnetic model to the mechanical behaviour and the 
electrical circuit. 

The capacitor of the generator is charged such that its initial 
voltage is: V0 = 2500 / 3500 / 4500 / 5500 / 7500 V respectively. 

The equivalent components of the pulse generator are: 

Generator capacitance: C = 138 F / module 

Generator and cables resistance: R1 = 12 m / module 

Generator and cables inductance: L1 = 220 nH / module 

The maximum number of modules in parallel is 5. 


