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Abstract: By creating new job opportunities and developing the regional economy, the transport of
goods generates significant costs, environmental and sanitary nuisances, and high greenhouse gas
(GHG) emissions. In this context, collaboration is an interesting solution that can be used to enable
companies to overcome some problems such as globalization, economic crisis, health crisis, issues
related to sustainability, etc. This study deals with the design of a multiperiod multiproduct three-
echelon collaborative distribution network with a heterogeneous fleet. By applying the mixed integer
linear problem (MILP) formulations, it was possible to study the three dimensions of sustainability
(economic, environmental, and social/societal). Since the examined problem was NP-hard, it was
solved using four metaheuristic approaches to minimize the different logistics costs or CO2 emissions.
The social/societal aspect evaluated the accident rate and the noise level generated by the freight
transport. Four algorithms were developed to achieve our objectives: a genetic algorithm, a simulated
annealing, a particle swarm algorithm, and a vibration damping optimization algorithm. Considering
a French distribution network, these algorithms overcame the limits of the exact solution method by
obtaining optimal solutions with reasonable execution time.

Keywords: distribution network design problem; hub location problem; collaboration; sustainability;
metaheuristic; mixed integer linear programming

1. Introduction

In 2019, 374 billion ton-kilometers of goods were transported in the French metropoli-
tan territory (including 11.8 billion by pipelines), a growth of 2.5% compared to 2018 [1].
These statistics show and highlight the importance of freight transport. However, it nega-
tively influences the three main sustainability levels by increasing the logistics costs, the
CO2 emissions, the depletion of nonrenewable resources, and the degradation of human
life. Therefore, improving the effectiveness of the logistics operations by optimizing the
distribution networks has been proved to be the best solution to face the companies’ dif-
ficulties. This effectiveness cannot be attained only by collaboration between companies.
This strategy is the cornerstone of managing an efficient supply chain. It reduces, on the
one hand, greenhouse gases, pollution, and congestion and, on the other hand, costs. In
addition, it allows the agility and resilience of a company [2]. According to Aloui et al. [3],
collaboration can be vertical (VC), horizontal (HC), and lateral. The VC is defined as a com-
mercial agreement between two partners or more, from different levels of the network, in
order to work together to take advantage of cooperation [4]. These partners (e.g., suppliers
and clients) share important information about demands, deliveries, capacity, etc. However,
the HC is based on sharing logistical resources between competitive partners who are at
the same level of the network, but they belong to different logistics chains [5]. This type of
collaboration improves the sustainability aspects through the reduction in logistics costs
and CO2 emissions and the enhancement of the well-being of citizens and inhabitants,
etc. [6,7]. Finally, lateral collaboration can be considered as the combination of the two
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other types of collaboration. As stated in Pan et al. [8], most studies deal with vertical
collaboration, yet the results can be further enhanced through horizontal collaboration.
Therefore, we are interested in the HC assuming that each partner applies a VC with its
customers by sharing information. The problems covered by the HC can be classified
according to the three levels of decision making: strategic, tactical, and operational [9].
The strategic level purpose is to satisfy the market demands. It often concerns long-term
decisions, and it is difficult to change [10]. Among the strategic decisions, we can mention
the design of distribution networks and the selection of partners [11]. On the other hand,
the tactical level concerns the decisions in the medium-term. These decisions make it
possible to satisfy predictable demands at the lowest production cost. Generally, they treat
problems related to resource management, especially the problem of planning activities
and the modalities of movement of goods in the structure designed at the strategic level.
As instances of these decisions, we may cite the vehicle routing problem and the problem
of sharing costs and CO2 emissions between partners [12]. Finally, the operational level
concerns decisions that ensure the management of the means, the daily operation, and the
flexibility of the supply chain in the short-term (the choice of the delivery and transport
schedule, the allocation of transport means to sites, route selection, etc.) [13].

In this study, we are interested in the horizontal collaboration that improves the
different sustainability levels. One of the main problems studied by the HC is the design
of the collaborative distribution networks. Indeed, it is essential to address this problem
by minimizing the impact of the different partners on the sustainability by reducing the
logistics costs, CO2 emissions, accident rate and noise level, enhancing the filling rate,
minimizing the travelled distances, etc.

The main contributions of this paper are the following: We propose four metaheuristics
to efficiently solve our distribution problem. A genetic algorithm (GA), a simulated
annealing (SA), a particle swarm algorithm (PSO), and a vibration damping optimization
(VDO) were introduced with an encoding adapted to our problem. In particular, the latter
is NP-hard and its exact mathematical resolution is limited in terms of computing time.
Thus, it is necessary to develop metaheuristic algorithms to find approximate solutions
with a minimum gap in an acceptable resolution time. Moreover, we treated two different
collaborative scenarios with different distribution policies. The parameters of our proposed
algorithms were set via a typical experimental method. Furthermore, our objectives were
to minimize the logistics costs or the CO2 emissions and evaluate the noise level and the
accident risk. To assess the effectiveness of the introduced algorithms, the latter were tested
on a fictitious distribution network. A sensitivity analysis was performed to explore the
impact of the problem’s size on the results through extensive computational experiments
that were performed on different instances to validate our proposals.

The remainder of the paper is organized as follows. Section 2 presents a literature
review about the resolution methods used in distribution networks. Section 3 introduces
the mathematical model, its description, and formulation. Section 4 describes the proposed
metaheuristics. Section 5 reports the experimental results of the case study. Section 6
presents the sensitivity analysis. Finally, Section 7 provides the conclusion and future work.

2. Literature Review

The distribution network design problem (DNDP) objectives are: (i) to identify the
optimal strategy (number and location of hubs), (ii) assign non-hub nodes (suppliers,
customers, etc.) to hubs, and (iii) determine the links between hubs and logistics routes [14].
According to O’Kelly [15], the DNDP can be defined as a general hub location problem
(HLP). Following the landmark studies of [16,17], HLP has been well studied in the litera-
ture [18–21]. Considering the cost or time in the objective function, the HLP can be divided
into the hub median problem (HMP) and the hub center problem (HCP) (See [22,23]).
Based on the type of allocation of non-hub nodes to hubs, we can distinguish two types of
allocation. In the case where a non-hub node is assigned to multiple hubs, we talk about
multiple allocation. However, when a non-hub node is allocated to a single hub, the alloca-
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tion type will be single allocation. Mathematical models dealing with HLP are NP-hard
and their exact resolution is limited in terms of computing time. Thus, it is necessary to
develop heuristic algorithms to find approximate solutions with a minimal gap during an
acceptable resolution time. For this reason, Rodríguez et al. [24] developed a simulated
annealing (SA) algorithm to study hub location problems with hubs’ capacity constraints
(CSAHLP). The proposed SA algorithm provided better solutions and improved the level
of service. In addition, Kratica et al. [25] examined an uncapacitated single allocation
p-hub location problem (USAp-HLP) with two evolutionary metaheuristics. Both genetic
approaches were introduced to solve the problem using new coding schemes and modified
genetic operators. The obtained results showed that the proposed approaches achieved all
the optimal solutions, even for large-sized problems. However, Randall [26] examined a
CSAHLP. They implemented an ant colony optimization metaheuristic (ACO) to determine
optimal solutions in a reasonable computing time. In addition, Ilić et al. [27] studied
an USAp-HLP with economic objectives. As the number of constraints and variables
increased exponentially with the size of the problem, a general variable neighborhood
search (GVNS) was employed to overcome the limitations of exact methods. The findings
provided by the GVNS were compared with those obtained by other heuristics and the
efficiency of this method in reducing the computational time was proven. Nonetheless,
Stanimirović et al. [28] presented a GA to address a capacitated single allocation p-hub
location problem (CSAp-HLP). Binary coding of individuals and modified genetic oper-
ators were also used to solve the problem. Thus, the GA was proved to be effective in
dealing with large-sized problems which cannot be solved with exact methods. On the
other hand, Lin et al. [29] studied a capacitated multiple allocation p-hub location prob-
lem (CMAp-HLP). They solved this problem applying a GA to overcome the limitations
of the mathematical model. In return, Yang et al. [30] proposed a hybrid algorithm to
deal with an USAp-HLP. This algorithm (GA-LS), which incorporated the GA and local
search (LS), showed better performance, compared to the classical version of the GA. The
authors developed another hybrid algorithm (PSO-LS) where the PSO and the LS [31]
were combined. PSO-LS was more efficient than the PSO and the GA in terms of quality,
solutions, and execution time. Similarly, Ghaderi and Rahmaniani [32] proposed two
hybrid metaheuristics based on PSO and VNS combined with the tabu search (TS) to
solve the studied problem. Comparing the introduced solutions with those obtained with
CPLEX, the two hybrid methods performed well, for all instances, in terms of computa-
tional efficiency and solution quality. In addition, two metaheuristics (SA and iterated
local search (ILS)) were proposed by Fazel Zarandi et al. [33] to reach optimal solutions
in a more negligible computational time, compared to the exact resolution, and with a
very high precision level. Moreover, Damgacioglu et al. [34] studied an uncapacitated
single allocation hub location problem (USAHLP). They introduced a GA to solve their
mathematical model in a reasonable time. The GA showed better results than the location–
allocation algorithm and discrete solutions but in longer resolution time. A mixed integer
programming model and a VNS algorithm were developed by Serper and Alumur [35]
to examine a HLP with different types of vehicles. The VNS algorithm was able to find
good quality solutions in a reasonable time. Furthermore, a mathematical formulation was
introduced by Rabbani et al. [36] to solve an USAp-HLP. Due to the nonlinear nature of the
proposed model, the authors applied a GA to overcome the limitations of the model and
solve large-sized problems in a reasonable time. On the other hand, a capacitated multiple
allocation hub location problem (CMAHLP) was studied by Mirabi and Seddighi [37] and
a new hybrid algorithm based on ACO and SA was also proposed to solve this problem.
The results of the mathematical model showed that the developed algorithm is efficient in
solving the problem. Moreover, Neamatian Monemi et al. [38] introduced a collaborative
mathematical model for an HLP between two logistics service providers. This model
was very difficult to be solved, even for very small instances. The authors introduced a
mathematical solution algorithm integrating lagrangian relaxation (LR) into a LS algorithm
that could be used to obtain good and acceptable solutions. Nevertheless, Ghaffarinasab
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et al. [39] addressed the same problem but with the two allocation strategies (single and
multiple). Mathematical formulations and algorithms based on SA were developed in order
to study the related problem. Moreover, Bashiri et al. [40] presented a mathematical model
to deal with multiperiodic HLP in a dynamic environment. The authors developed a GA
with an LS method and a SA algorithm. They found that the GA was more efficient than the
SA in dealing with real-world applications where demand is changing rapidly. Moreover,
a mathematical model was proposed by Lüer-Villagra et al. [41] for an USAp-HLP. This
model was difficult to solve, even for small instances. To overcome this weakness, the
authors generated a GA that effectively and quickly solved the problem. At the same time,
Özgün-Kibiroğlu et al. [42] suggested a mixed integer nonlinear programming (MINLP)
formulation to solve an uncapacitated multiple allocation hub location problem (UMAHLP)
using a PSO algorithm, which was applied to effectively solve the model. In addition, a
HLP was studied by Shang et al. [43] with a stochastic programming model formulated in
MILP to minimize distribution and opening costs. Due to the complexity of the compu-
tation, a memetic algorithm (MA) was introduced to solve the considered problem. This
algorithm combined genetic research and LS to find optimal solutions within a reasonable
computational time. Under these conditions, comparative results proved that the MA was
more efficient than the GA in terms of the quality of solution and the speed of calculation.
The same problem was addressed by Shang et al. [44] using a robust optimization model
that enabled the attainment of economic goals. The authors proposed a VNS algorithm and
a heuristic based on the population-and-searching (PAS) to find the optimal solutions. The
obtained findings showed that the PAS algorithm was the most efficient in dealing with
large instances, compared to the CPLEX software and the VNS algorithm. In addition, a
GA was introduced by Wang et al. [45] to select the optimal hub locations and to ensure
that the total network cost was minimized and products are delivered on time. The results
demonstrated that the proposed algorithm could reduce the total cost and improve the
efficiency of the network. The reviewed studies are summarized in Table 1.

Table 1. Related papers.

Authors Problem Periods Fleet of
Vehicles Products Collaboration

Sustainability Solution
Algorithm

Economic
Level

Environmental
Level

Social
Level

[25] USAp-HLP Single Hm 1 Single 4 GA
[24] CMApHLP Single Hm 1 Single 4 SA
[26] CSAHLP Single Hm 1 Single 4 ACO
[28] CSApHLP Single Hm 1 Single 4 GA
[27] USAp-HLP Single Hm 1 Single 4 GVNS
[29] CMAp-HLP Single Hm 1 Single 4 GA
[30] USAp-HLP Single Hm 1 Single 4 GA-LS
[31] USAp-HLP Single Hm 1 Single 4 PSO-LS
[33] SAHLP Single Hm 1 Single 4 SA, ILS

[32] USAp-HLP Single Hm 1 Single 4
PSO-TS,
VNS-TS

[34] USAp-HLP Single Hm 1 Single 4 GA
[35] CSAp-HLP Single Ht 2 Single 4 VNS
[36] USAp-HLP Single Hm 1 Single 4 GA
[37] CMAHLP Single Hm 1 Single 4 ACO-SA
[38] CMAp-HLP Single Ht 2 Multiple 4 4 LS-LR

[39] U(SA and
MA)p-HLP Single Hm 1 Single 4 SA

[40] USAp-HLP Multiple Hm 1 Single 4 GA, SA
[41] USAp-HLP Single Hm 1 Single 4 GA
[42] UMAHLP Single Hm 1 Single 4 PSO
[43] USAp-HLP Single Hm 1 Single 4 MA
[45] USAp-HLP Single Hm 1 Single 4 GA
[44] SAp-HLP Multiple Hm 1 Single 4 PAS, VNS

This Paper C(SA and
MA)p-HLP Multiple Ht 2 Multiple 4 4 4 4

GA, SA,
PSO, VDO

1 Homogeneous, 2 Heterogeneous.
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From this table, we can see that, in most of the studies dealing with HLP, the objective
function of the proposed metaheuristics was to minimize logistics costs (transportation,
storage, opening, etc.). However, none of these research works considered the three
sustainability levels when designing the distribution networks and not all introduced
models were flexible in terms of the delivery time. For these reasons, we present, in this
study, a model that addresses the economic level or the environmental level and evaluates
the social/societal level. On the other hand, the platforms’ capacities, in most of the existing
studies, were predefined, which led to a predefined opening cost that did not depend
on the warehouse area. Thus, it would be more optimal to consider the capacity of each
hub as a decision variable determined by the model depending on the quantity of goods
entering each warehouse. In addition, as demonstrated in most studies, a homogeneous
fleet of vehicles represents a weakness due to the variability of demand that requires a
flexible (heterogeneous) fleet with variable types of vehicles to ensure the customer’s
satisfaction. In this study, we use a heterogeneous fleet of vehicles that enabled modelling
of the economy of scale. As stated in [35], the main reason for employing different types
of vehicles in distribution networks is to achieve economies of scale and reduce the unit
transportation cost by using larger-capacity vehicles. Therefore, we introduce, in this paper,
meta-heuristic algorithms, namely a GA, a SA, a PSO and a VDO, to effectively solve the
studied problem. The GA and the PSO were based on the population generation, which
gives a larger research space. Moreover, the SA and the VDO are single solution algorithms
and they offer low execution time.

3. Description and Formulation of the Problem

In this section, we examine a collaborative distribution network design problem
that addresses three levels of sustainability. The targeted distribution network, shown
in Figure 1, contains suppliers who collaborate to deliver multiple products to retailers
through the shared warehouses and distribution centers. The distribution of these products
is carried out in a multiperiodic way and with several types of vehicles, which makes
the vehicle fleet heterogeneous. The problem is similar to the CS/MAp-HLP (capacitated
single/multiple allocation p-hub location problem), which is solved in the strategic decision
context. The problem has two main objectives. The first is to determine the number and
locations of the two types of hubs (warehouses and distribution centers). On the other
hand, the second aim consists in assigning suppliers and distribution centers to warehouses
and retailers to distribution centers. Moreover, the mathematical model determines the
capacities of hubs, which are limited and depend on the quantities of goods entering each
hub, the quantities delivered in each period in the three parts of the network (upstream,
intermediate and downstream), the level of stocks in the warehouses, the delayed quantities,
and the number and type of the used vehicles. As the upstream hubs are supposed to have
storage times, their role is to store goods. On the other hand, downstream hubs are like
cross-docking platforms in the sense that they have no storage time. The main functions of
these platforms are to sort goods and distribute them to retailers.

Today, sustainability has become one of the most important challenges. Therefore,
collaboration is one of the solutions that has proven its efficiency in achieving the main
goals of sustainability. It allows partners to benefit from certain advantages that contribute
to a green and sustainable distribution network by ensuring the massification of flows,
grouping together goods, and sharing resources and means. The three levels of sustainabil-
ity are assessed, in this study, by minimizing the logistics costs or the CO2 emissions and
evaluating the noise levels and the risk of accidents. The evaluated sustainability indicators
are shown in Figure 2.
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Figure 2. Evaluated sustainability aspects.

The examined mathematical model was first proposed by Mrabti et al. [46]. It consid-
ered two scenarios (see Figure 3). The first scenario (Sc1) imposed that each supplier was
assigned to a single warehouse (single allocation), which, could deliver to only one distri-
bution center (single allocation), and each retailer could be assigned to several distribution
centers (multiple allocation). However, the second scenario (Sc2) differed from the first
one at the levels of the assignments of warehouses to the distribution centers, on the one
hand, and retailers to distribution centers, on the other hand. Therefore, each warehouse
can deliver multiple distribution centers (multiple allocation) and a retailer can only be
assigned to one distribution center (single allocation).
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To formally introduce the studied problem, the following notations were used in the
remainder of this study.

Sets
T1: Set of periods
P: Set of products
N: Set of suppliers
M: Set of warehouses
K: Set of distribution centers
J: Set of retailers
V: Set of vehicles
F: Set of nodes F = N ∪ M ∪ K ∪ J
H: Set of hubs H = M ∪ K
T2: Set of periods considering the flexibility in the delivery time:
T2 = T1 +{max(ap); ∀p ∈ P}
A1: Set of arcs in the upstream part between suppliers and warehouses
A2: Set of arcs in the midstream part between warehouses and distribution centers
A3: Set of arcs in the downstream part between distribution and retailers
A: Set of arcs A = A1 ∪ A2 ∪ A3
Parameters
AP: European pallet surface
Wp

j,t: Quantity of product p requested by the retailer j in period t

Sp
m: Safety stock of product p in hub m

Qv: Unit transport cost of fully-loaded v-type vehicle
Cv

0 : Unit transport cost of an empty v-type vehicle
di,j: Distances travelled between origin i and destination j
CTv

i,j,t: Transportation cost between origin i and destination j by v-type vehicle at
period t

CSp
m,t: Storage cost of product p in hub m at period t

Csp
m,t: Unit storage cost of product p in hub m at period t

CDp
t : Penalty cost of product p at period t

Cdp
t : Unit penalty cost of product p at period t

CWm: Opening cost of hubs m
Cwm: Unit opening cost of hubs m
Cup: Unit unloading cost of product p
Clp: Unit loading cost of product p
Csp: Unit sorting cost of product p
CHp

m,t: Handling cost of product p in hub m at period t
α: Coefficient greater than or equal to 2
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Z: A large constant
EVv

i,j,t: CO2 emissions from v-type vehicle, while travelling from origin i to destination
j at period t

Ev
q : Unit CO2 emissions from fully-loaded v-type vehicle

Ev
0 : Unit CO2 emissions due to empty v-type vehicle

EOm,t: CO2 emissions due to the operation of hubs m at period t
ECm: CO2 emissions due to the construction of hubs m
Ecm: Unit CO2 emissions due to the construction of hubs m
EMv: CO2 emissions due to the manufacturing of v-type vehicle with depreciation
Wm,t: Energy consumed by hub m at period t
Rc, Rf, and Rn: Bodily, fatal and nonfatal Accident rate
Ac: Number of accidents caused by heavy vehicles
D: Total travelled distance
NL: Noise level
QVL, QPL: Representative flows in light or heavy vehicles
V: Speed
d: Distance to the platform edge
lc: Width of the road
θ: Angle under which we see the road
QHW

i,j,t : Flow rate of heavy goods vehicle that flows between origin i and destination j
at the period t

NLi,j,t: Noise level when transporting goods from origin i to destination j at the period t
pm: Percentage of mortality
E: Acoustic equivalence factor between light and heavy vehicles
Variables
qp,v

i,j,t: Quantity of product p transported from origin i to destination j by the v-type
vehicle at period t

Ip
m,t: Inventory level of product p in hub m at period t

Cm: Hub m capacity
Nv

a,t: Number of v-type vehicles at period t between origin i and destination j
Wdp

t : Quantity of product p delayed in period t
Am: Hub m area
ym: Binary variable equals to 1, if the warehouse m is open, and to 0 otherwise
xij: Binary variable equals to 1, if there is a link between the two nodes i and j, and to

0 otherwise
gkj: Binary variable equals to 1, if the retailer j is affected to the distribution center k,

and to 0 otherwise
Considering the above-described notations, the problem dealing with scenario Sc1

was formulated as follows:

min F1 = min

 ∑
(i,j)∈A,t∈T2,v∈V

CTv
i,j,t + ∑

m∈W, p∈P,t∈T2

CSp
m,t + ∑

p∈P, t∈T2

CDp
t + ∑

m∈H
Cwm + ∑

m∈H, p∈P,t∈T2

CHp
m,t

 (1)

CTv
i,j,t = di,j(

Cv
q − Cv

o

Qv · ∑
p

qp,v
i,j,t + 2 · Cv

o ·Nv
i,j,t); ∀ t ∈ T2, v ∈ V, (i, j) ∈ A (2)

CSp
m,t = Ip

m,t· Csp
m; ∀ t ∈ T2, p ∈ P, m ∈ M (3)

Ip
m,t = ∑

i∈N,v∈V
qp,v

i,m,t − ∑
k∈K,v∈V

qp,v
m,k,t + Ip

m,(t−1); ∀ t ∈ T2, p ∈ P, m ∈ M (4)

CDp
t = Wdp

t · Cdp
t ; ∀ t ∈ T2, p ∈ P (5)
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Wdp
t = ∑

j∈J
Wp

j,t − ∑
k∈K,j∈J,v∈V

qp,v
k,j,t + Wdp

(t−1); ∀ t ∈ T2, p ∈ P (6)

CWm = Am · Cwm; ∀ m ∈ H (7)

Am = α ·AP· Cm; ∀ m ∈ H (8)

CHp
m,t = ∑

i∈{N;M},v∈V
qp,v

i,m,t · cup + ∑
i∈{N;M},v∈V

qp,v
i,m,t · csp + ∑

j∈{K;J},v∈V
qp,v

m,j,t · clp; ∀ t ∈ T2, p ∈ P, m ∈ H (9)

minF2 = min

 ∑
(i,j)∈A,t∈T2,v∈V

EVv
i,j,t + ∑

m∈H,t∈T2

ym·EOm,t + ∑
m∈H

ECm

 (10)

EVv
i,j,t = di,j · (

Ev
q − Ev

o

Qv · ∑
p∈P

qp,v
i,j,t + 2· (Ev

o + EMv)·Nv
i,j,t); ∀ t ∈ T2, v ∈ V, (i, j) ∈ A (11)

EOm,t = Eom,t ·Wm,t; ∀ t ∈ T2, m ∈ H (12)

ECm = Ecm · Am; ∀ m ∈ H (13)

Rc =
Ac · 1000

365 · D
(14)

D = 2 · ∑
(i,j)∈A, t∈T2,v∈V

Nv
i,j,t · di,j (15)

R f = Rc · pm (16)

Rn = Rc − R f (17)

NL = 58 + 10 · log
(

QVL + E · QPL
)
+ 20 · log(V)− 12 · log

(
d +

lc
3

)
(18)

NLi,j,t = 2 ·
(

19.5 + 10 · log
(

4 · QHW
i,j,t

))
; ∀ t ∈ T2, (i, j) ∈ A (19)

QHW
i,j,t = ∑

v∈V
Nv

i,j,t; ∀ t ∈ T2, (i, j) ∈ A (20)

subject to

∑
i∈N,v∈V

qp,v
i,m,t + Ip

m,(t−1) ≥ ∑
k∈K,v∈V

qp,v
m,k,t; ∀ t ∈ T2, m ∈ M, p ∈ P (21)

∑
m∈M,v∈V

qp,v
m,k,t = ∑

j∈J,v∈V
qp,v

k,j,t; ∀ t ∈ T2, p ∈ P, k ∈ K (22)

Wp
j,t = ∑

k∈K,v∈V

t+ap

∑
h=1

qpv
k,j,h −

t−1

∑
h=1

Wp
j,h; ∀ t ∈ T1, p ∈ P, j ∈ J (23)

Sp
m·ym ≤ Ip

m,t; ∀ t ∈ T2, p ∈ P, m ∈ M (24)

∑
i∈{N;M},p∈P,v∈V

qp,v
i,j,t ≤ Cj; ∀ t ∈ T2, (i, j) ∈ {A1, A2} (25)

∑
i∈{N,M}

xi,m ≤ ym · Z; ∀ m ∈ {M; K}, (i, m) ∈ {A1, A2} (26)

ym ≤ ∑
i∈{M,K}

xi,m; ∀ m ∈ {M; K}, (i, m) ∈ {A1, A2} (27)
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∑
m∈{M,K}

ym ≤ {|M|; |K|} (28)

qp,v
i,m,t ≤ xi,m · Z; ∀ t ∈ T2, p ∈ P, v ∈ V, (i, m) ∈ A (29)

∑
m∈M

xi,m = 1; ∀ i ∈ N (30)

∑
j∈D

xm,j = ym; ∀ m ∈W (31)

∑
p∈P

qp,v
i,m,t

Qv ≤ Nv
i,m,t; ∀ t ∈ T2, v ∈ V, (i, m) ∈ A (32)

Nv
i,m,t ≤ Nmaxv

i,m ; ∀ t ∈ T2, (i, m) ∈ A (33)

∑
i∈{N,M},v∈V,t∈T2

qp,v
i,m,t = ∑

k∈{K,J},v∈V,t∈T2

qp,v
m,k,t; ∀ (i, m) ∈ {A1, A2}, (m, k) ∈ {A1, A3}, p ∈ P (34)

qp,v
i,j,t ≥ 0; ∀ t ∈ T2, (i, j) ∈ A, v ∈ V, p ∈ P (35)

Ip
m,t ≥ 0; ∀ t ∈ T2, m ∈ M, p ∈ P (36)

Cm ∈ N; ∀ m ∈ H (37)

Wdp
t ≥ 0; ∀ t ∈ T2, p ∈ P (38)

Nv
i,j,t ∈ N ; ∀ t ∈ T2, (i, j) ∈ A, v ∈ V (39)

xi,j ∈ {0; 1}; ∀(i, j) ∈ A (40)

ym ∈ {0; 1}; ∀m ∈ H (41)

The economic objective function (1) minimized the logistics costs linked to transporta-
tion, storage, late delivery penalties, the establishment of hubs, and handling represented
respectively by ((2), (3), (5), (7) and (9)). The inventory level in warehouse m was given
by (4). The delayed amount of product p at period t was shown in (6). The initial delayed
quantity was equal to zero. The area of a hub m to build was given by (8). The envi-
ronmental objective function (10) minimized the various CO2 emissions due to vehicles
(their manufacture and operation), represented by (11), and to hubs (their construction and
operation) demonstrated by (12) and (13). The accident rate per thousand km was given by
(14). The multiplication by two in (15) was done to consider the empty return. Knowing
that an accident injury can be fatal or nonfatal, the other two accident levels (nonfatal injury
and fatal injury) might be also assessed. The first level was given by (16). This mortality
rate was determined from statistical reports on road safety in France. The rate of nonfatal
accidents was given by (17). The noise level was obtained by (18). The acoustic equivalence
changed depending on the degree of the ramp and the type of track. The route chosen
by the authors was a motorway, which was a communication road with separate lanes
reserved for the rapid circulation of motor vehicles (cars, motorcycles, and heavy goods
vehicles). The motorway was made up of 4 express lanes (2 per direction); each of which
had a width of 3.5 m. The distance to the platform edge, measured by meter, was defined
as a distance between the edge of the road platform and the receiver (person and buildings,
etc.). The receiving point was assumed to be 30 m from the road. As far as the speed was
concerned, it was fixed at an average speed equal to 80 km/h. After simplification, (19) was
used to evaluate the noise level generated by the distribution of goods. The flows of heavy
goods vehicles were equal to the number of vehicles or the number of trips. They were
given by formula (20). Constraints (21) and (22) ensured the satisfaction of the retailers. In
fact, constraint (21) guaranteed that the sum of the quantities delivered by all the suppliers
in period t and the stock level of the previous period must be greater than or equal to
the quantity of goods delivered between the hubs. The initial inventory level was equal
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to zero. Constraint (22) ensured that the quantity of inter-hub goods delivered from the
warehouse to the distribution center in each period must be exactly equal to the quantity
delivered to retailers. Constraint (23) guaranteed the satisfaction of the requests during
the authorized periods. Indeed, for each product, the demand of the retailers in each
period must be delivered at most in period t + ap. In our case, ap designated the number
of periods authorized to deliver the product p. In other words, this parameter designates
the level of flexibility in terms of delivery time of each supplier. Constraint (24) indicated
that the stock level of each product in the upstream hubs must not be lower than that of
the safety stock. Constraint (25) showed that the incoming quantities must be less than
the capacities of the hubs. Constraints (26) and (27) demonstrated that a warehouse was
only open if, at least, one supplier was assigned to it and that a platform was only open
if at least one warehouse was assigned to it. Parameter Z was equal to a large constant.
Constraint (28) guaranteed that the number of platforms to be opened was always less than
that of candidates. Constraint (29) was used to limit the flow of flows on the arcs. Indeed,
no quantity of goods circulated between the nodes unless there was a link between them.
Constraint (30) ensured that a supplier was assigned to a single warehouse. Constraint (31)
revealed that a warehouse was assigned to a single distribution center. Constraint (32)
determined the number of vehicles required to transport the goods on the three parts of
the distribution network. Constraint (33) limited the number of vehicles used on each arc.
Constraint (34) was employed to conserve flows. The last constraints (35)–(41) provided
the domains of defining each decision variable.

The difference between the problem dealing with Sc2 and that dealing with Sc1 was
summarized by the following equations:

qp,v
k,j,t ≤ gk,j · Z; ∀ t ∈ T2, p ∈ P, v ∈ V, k ∈ K, j ∈ J (42)

∑
k∈K

gk,j = 1; ∀ j ∈ J (43)

Equation (42) ensured that each retailer was delivered by a single distribution center and
(43) guaranteed that each shared warehouse could deliver goods to many distribution centers.

4. Solution Approach

Since the considered problem was NP-hard, it could not be resolved with traditional-
solution approaches for large-sized instances, hence the importance of applying
metaheuristic approaches. So, we introduce and describe the encoding plan of all the
proposed metaheuristics.

4.1. Encoding Plan

To solve our studied problem, it is impossible to use traditional solutions. Generally,
each problem has its own data structure and individuals, in the literature, are represented
either by vectors [39] or by tables [47,48]. However, in this work, a candidate individual
was represented by a set of tables; each of which showed a given period. There were two
types of tables. The first type Af represented the links in the studied network. It was a
table containing four rows associated respectively with the indices of the four network sets.
The number of columns was the multiplication of the number of suppliers and retailers.
The first row demonstrated the supplier indices, the second and third rows described
warehouses and distribution centers, respectively, while the last line exposed retailers. This
table was represented only once since the assignment did not change during the periods.
For example, a simple case contained two suppliers, three warehouses, three distribution
centers, and three retailers. These elements are shown in Figure 4 and the links of the
example are described by part (A).
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The second type Qty, which represented the product quantities to be transported
between the suppliers and the retailers, was a table with the same size of Af. Each period
had its own table since the requests were multiperiodic. It was assumed that the three
retailers had the respective demands of products P1 and P2: {20 P1, 0 P2}, {18 P1, 0 P2}, and
{12 P1, 80 P2}. Part (B) contained the type Qty of this solution and it is shown in Figure 4.

4.2. Meta-Heuristic Algorithms
4.2.1. Genetic Algorithm

The GA was first proposed by [49] and successfully used in various optimization
problems. It mimics three genetic operations on a certain basic population (the selection, the
mutation, and the crossover) to synthesize the best characteristics of different individuals.
Genetic algorithms have been widely applied in the literature [30,34,36,40,41,50]. They are
of great potential for practical applications. Indeed, genetic algorithms provide excellent
performance at low costs. They make it possible to explore areas with many solutions.
In addition, they use four elements to find the extrema(s) of a function defined on a data
space. The pseudocode of GA is presented in Figure 5.

When starting the genetic algorithm, the programmer must provide an initial popula-
tion that respects the constraints of the studied problem. The algorithm starts by generating
some initial solutions, which represent the initial population, from the search space in a
random fashion. These solutions are presented in the form of chromosomes composed of
several genes. The initial population plays an important role in the convergence of the
final solution [51]. After generating the initial population, a score must be assigned to
each individual to distinguish the most promising ones who will participate in the im-
provement of this population in future generations. At each iteration, the algorithm selects,
from the current population, the individuals who will survive and reproduce to create an
intermediate population. The selection phase is crucial in determining the performance
and quality of the new generations. To diversify the population and explore the workspace,
diversification operators are used across the succeeding generations. Among these opera-
tors, we cited the crossover and mutation operators. In fact, the purpose of the former is to
exchange parts of the chains of two individuals, which allows the genetic mixing of the
population. However, the mutation ensures the exploration of the workspace. The purpose
of crossover is to enrich the diversity of the population by manipulating the structure of
chromosomes. In general, crossovers occur between two parents to produce two offspring.
The mutation operation allows the genetic algorithm to better scan the search space by
modifying a gene. In our case, the mutation operator used various modifications.
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Initialization: select the size of population 𝑛𝑃𝑜𝑝 , 
probability of crossover 𝑝𝑐 , probability of mutation 𝑝𝑚  and termination criterion  𝑛𝑟  = nPop × 𝑝𝑚  ; 𝑛𝑐  = nPop × 𝑝𝑐  
Create an initial population 
While termination criterion is not met 

 For k=1 : 𝑛𝑐 2ൗ  
   Select two parents  
   Apply the crossover operator 

              End 
 For k=1 : 𝑛𝑟  
   Select a parent 
   Apply the mutation operator 

              End 
              Add offsprings to the population 

 Evaluate the fitness of offsprings 
 Select the new population 

End 
Return the best solution S 

Figure 5. Pseudocode of the used genetic algorithm.

4.2.2. Simulated Annealing

The SA, proposed by Kirkpatrick et al. [52], is a technique that solves optimization
problems. It is a one-solution metaheuristic whose idea stems from the physical annealing
process of maximizing the temperature of a metal until it melts. Then, cooling is carried
out by lowering the temperature until the minimum energy is reached to obtain a stable
crystalline structure. If the cooling rate is fast, the metal will be brittle. The SA consists in
generating a random initial solution S, as explained in the following section, and looking
at each iteration for a feasible neighboring solution S′. If the new solution is improved,
an update of the solution is performed (S = S′). If not, the new solution can be accepted
in order not to be trapped in a local minimum with a certain probability of acceptance
represented by (44).

pacc = exp
(
− f (S′)− f (S)

T

)
(44)

where f is the objective function and T denotes a temperature parameter.
A uniform random number p in the interval [0, 1] is generated. If p is less than the

probability of acceptance, the new solution will be accepted. The chance of accepting
poor quality solutions diminishes gradually. At each iteration, the temperature decreases
regularly according to a cooling coefficient α such that T = α·T where α ∈ [0, 1]. The loop is
repeated until a termination criterion is met. The pseudocode of the simulated annealing
algorithm is shown in Figure 6.
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Figure 6. Pseudocode of the used simulated annealing algorithm.

4.2.3. Particle Swarm Optimization

The PSO, introduced by Eberhart and Kennedy [53], has been applied to solve several
real-world engineering problems. This optimization method is based on the collaboration
between individuals. It relies on the intelligence of swarms to exploit globally the search
space in order to find the optimum or, at the worst case, a best approximate solution in
a faster and less expensive way. It is inspired from the interaction and communication
between animals (a group of birds, fish, or bees) in search of food [48]. From a population,
each particle is viewed as a feasible solution that moves through the problem space to find
the best particle and ultimately converges to it. Initial position and velocity are considered
for each particle. In each iteration t, the position x and the velocity v of the particles are
modified and updated by the following equations:

vi
t+1 = ω·vi

t +∅1·ρ1·
(

Pib − xi
t

)
+∅2·ρ2·

(
Pgb − xi

t

)
(45)

xi
t+1 = xi

t + vi
t+1 (46)

where Pgb and Pib denote the global best position and the best position found by particle
i, respectively. ρ1 and ρ2 are randomly chosen parameters in the interval [0, 1] while ∅1
and ∅2 are weights associated to Pib and Pgb, respectively. The pseudocode of the PSO is
represented by Figure 7.
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                    𝑃𝑖𝑏  = 𝑥𝑡+1𝑖  
         End 
         If f(𝑥𝑡+1𝑖 ) < f(𝑃𝑔𝑏 ) Then 
                    𝑃𝑔𝑏  = 𝑥𝑡+1𝑖  
         End  
    End 
    t = t + 1 
   𝜔 = 𝜔 ∗  𝑤𝑑𝑎𝑚𝑝  
End 
Return the best Position 𝑃𝑔𝑏  

Figure 7. Pseudocode of the used particle swarm optimization algorithm.

4.2.4. Vibration Damping Optimization

The VDO algorithm is a metaheuristic originally introduced by Mehdizadeh and
Tavakkoli-Moghaddam [54]. It is inspired by the SA algorithm and imitates the process of
vibration damping in the physics field. There is a practical connection between the vibration
damping process and optimization. In the analogy between the vibration damping process
and optimization, the states of the oscillation system represent the feasible solutions of the
optimization problem. In addition, their energies correspond to the value of the objective
function computed at these solutions, while the minimum energy state represents the
optimal solution of the problem.

According to the explanation of Mehdizadeh and Tavakkoli-Moghaddam [54], when
using a VDO algorithm, a set of principal choices must be made. The algorithm starts with a
random choice of an initial solution. Then, its parameters, including the damping coefficient
γ, the initial amplitude A1, the standard deviation σ, and the number of neighborhoods
at each amplitude nmax, are initialized. In each iteration, a new solution S′ is created by a
heuristic perturbation on the current solution S. The neighborhood solution S′ becomes a
new solution if the change in an objective function is improved (i.e., ∆ = f (S′)− f (S) ≤ 0 in
our case, since it is a minimization problem). In the case where this change is not improved,
the neighborhood solution becomes a new solution if r, which is a random number in the
interval [0, 1], is less than or equal to an acceptance probability pacc (r ≤ pacc) (represented
by (47)). Thus, it is possible to find a global optimal solution from a local optimum. For the
high amplitude (at the beginning of the search), there is some flexibility to move from a
good solution to a bad one. However, for the lowest amplitude (later in the search), this
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flexibility decreases. As the procedure proceeds, the amplitude minimizes using (48). The
loop is repeated until a stopping criterion is satisfied, as shown in the pseudocode of the
VDO algorithm demonstrated in Figure 8.

pacc = 1− e
−At

2

2σ2 (47)

At = A0e
−γt

2 (48)
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    It = 1 
    While It ≤ 𝑛𝑚𝑎𝑥  
            Generate a random neighbor S’of S 
            Calculate ∆f = f(S’) – f(S) 
            If (∆f ≤ 0) Then 
                 Accept the solution S’; S = S’ 
            Elseif generate a random number r ∈ [0, 1] 
                 If (𝑟 ≤ 𝑝𝑎𝑐𝑐 ) Then 
                           Accept the solution S’; S = S’ 
                 Elseif 
                           Refuse the solution S’ 
                 End 
            End     
     It = It +1 
     End 𝑡 = 𝑡 + 1 𝐴𝑡 = 𝐴0𝑒−γt 2ൗ  
End 
Return the best solution S 

Figure 8. Pseudocode of the used vibration damping optimization algorithm.

5. Computational Results

In this section, a case study, including parameter settings of the proposed algorithms
and a comparison of the performance and effectiveness of these algorithms, is presented.
First, an illustrative example of a French distribution network is presented. The network
contains seven suppliers that collaborate to satisfy 13 retailers via shared warehouses and
distribution centers. For each set, the maximum number of warehouses and distribution
centers to be opened is seven. However, the number of hubs and their storage capacities
will be determined by applying the proposed model. The attributed distribution network
is shown in Figure 9.
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The objective of upstream and downstream collaboration is to consolidate flows by
grouping goods, facilitating the transportation of a large amount of freight. For this reason,
two types of vehicles (having capacities of 33 and 39 pallets) were used in upstream and
downstream parts of the network. As retailers are increasingly demanding in terms of
delivery frequency to reduce their stocking levels, a third type of vehicle with a capacity
equal to 15 pallets was employed. Therefore, the capacity of the utilized vehicles varies
between 15, 33, and 39 pallets. The required data for the used vehicles are represented in
Table 2.

Table 2. The required data for the used vehicles.

Parameters
Values

Data Sources
v1 v2 v3

Qv (pallets) 15 33 39 [55]
Nmax 15 15 15

BenchmarkingPayload (tons) 13 40 40
Cov(€/km) 0.3 0.5 0.7
Cqv (€/km) 0.5 1 1.2

Eov (g CO2/km) 511.2 772.68 772.68 [56]
Eqv (g CO2/km) 583.7 1096.09 1096.09 [56]
EMv (g CO2/km) 78 111 122 [57]

The used distances are given in Appendix A using Google Maps. The authorized
delivery time for each partner is shown in Table 3.

Table 3. Level of flexibility in the delivery time of each supplier.

Suppliers i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7

ap 1 0 0 1 0 2 1

To satisfy the retailer’s demands, we used the same method applied in [35]. In fact, for
each product, the retailer demands in each period were randomly selected using uniform
distributions in the interval [0, 50] pallets. Some additional data about the used parameters
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are presented in Table 4. The used data were the same for all scenarios, i.e., they do not
vary from one scenario to another.

Table 4. Other used data.

Parameters Values Data Sources

Ac (accidents/year) 2768
α 2

AP (m2) 0.96 European pallet size (1.2 × 0.8)
Cdp

t 5 €/pallet
Csp, Clp, Cup 1 €/pallet
Csp

m (€/pallet) 10
Ecm, Eck (kg CO2/m2) 200 [58,59]

Eom,t, Eok,t (g CO2/kwh) 87.5 [58,59]
Sp

m (Pallet) 0 pallet

5.1. Parameters Setting

To ensure an efficient implementation of the proposed algorithms and optimize its
performance, its parameters should be well chosen and adequately set. Moreover, the choice
of the optimal parameters affects considerably the algorithm exploration. To optimize
this choice, several methods can be applied. The classical technique consists in running
the proposed algorithms several times with different parameters and keeping the good
parameters associated with the best solutions. This method was utilized in the performed
experiments since it enables obtaining good results. The different values or levels for all
the parameters are shown in Appendix A.

For example, the results of the population size setting (nPop), obtained by the genetic
algorithm in both scenarios, are given in Appendix A (each algorithm was run five times
independently) and their representation is provided in Figure 10. pc and pm were set to 0.85
and 0.3, respectively and uniform crossover and Swap mutation were used to determine
the best population size that was generated by the levels used in Appendix A (population
size between 50 and 300). As demonstrated in Figure 10, the best performance of the genetic
algorithm is obtained for a population size of 150 (nPop = 150).
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Figure 10. Representation of the population size setting for the GA.

Similarly, the best levels for the parameters of all the proposed algorithms (GA, SA,
PSO and VDO), helping to achieve the best solutions, were obtained by following the steps
explained above. These parameters are shown in Table 5.
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Table 5. The best levels of the parameters of the proposed metaheuristics.

Parameters
Algorithm

GA SA PSO VDO

nPop 150 - 100 -
pc 0.85 - - -
pm 0.3 - - -

Crossover Uniform - - -
Mutation/neighborhood Swap Swap - Swap

Selection Roulette Wheel - - -
T0 - 1100 - -
α - 0.95 - -

nmax - 100 - 100
∅1 - - 1.5 -
∅2 - - 2 -
ω - - 1 -

wdamp - - 0.99 -
γ - - - 0.1

A1 - - - 4
σ - - - 1.5

5.2. Numerical Results

In this section, we solve the single objective model (economic or environmental) using
the IBM CPLEX 12.10 solver to obtain the exact optimal solution. Due to the variation in
solutions given by the algorithms, we computed the average value of the objective function
from five runs (e.g., to determine the population number). We used MATLAB software on a
computer with an Intel® Core ™ i5-8300HQ CPU (2.30 GHz) with 8 GB of RAM. The results
of the Sc1_eco, Sc1_env, Sc2_eco, and Sc2_env scenarios are summarized in Appendix B,
respectively. Sc1_eco and Sc2_eco denote, respectively, the first and second solved scenarios
with an economic objective function that reduces the logistics costs. On the other hand,
Sc1_env and Sc2_env designate, respectively, the first and the second scenarios solved with
an environmental objective function reducing CO2 emissions.

The GAP line in the tables represents the relative percentage difference between the
approximate solution and the optimal solution. The GAP formula was obtained by the
following equation:

GAP =
Algsol −Minsol

Minsol
(49)

where Algsol and Minsol are, respectively, the objective value obtained by the considered
algorithm and the minimum objective value found by using the linear program solved
with CPLEX for each scenario. It is obvious that a minimum GAP value is desirable.

The accident risk was calculated with respect to the accident risk caused by a reference
distance Dre f equal to 2 × 105 km. Therefore, to compute the reference accident risk, the
following formula was applied:

Rcre f =
Ac× 1000
365× Dre f

(50)

To evaluate our study, we compared the performance of the different scenarios, based
on several sustainability indicators, and that of the four used algorithms in solving the
studied problem.

Based on the results provided by the genetic algorithm shown in Figure 11, we note
that the Sc2_eco scenario represented the best scenario from the economic point of view.
For example, the total logistics costs for the Sc2_eco scenario and the Sc1_eco scenario
werere 14.321 M€ and 14.322 M€, respectively. However, the Sc2_env scenario was the most
suitable to protect the environment. It gave better values than Sc1_env for all resolution
methods, as shown in Figure 11. For example, the total CO2 emissions obtained with
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simulated annealing were 3.23 × 109 g CO2 for the Sc2_env scenario against 3.26 × 109 g
CO2 for the Sc1_env scenario. From the results of the two scenarios, we can conclude that
scenario Sc2 was better than Sc1 because it offers a good compromise between the two
economic and environmental objectives.
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Figure 11. Results of the different scenarios. (a) Economic results; (b) Environmental results.

The results of the social/societal aspect of sustainability are represented in Figure 12.
The distribution of goods via the Sc1_eco scenario generated the lowest accident rate and
the lowest fatal accident rate. In addition, the Sc1_env scenario showed the best noise
results, compared to the other scenarios. Therefore, from a social/societal point of view,
Sc1 scenario is the best.
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Figure 12. Social/Societal results obtained in the different scenarios. (a) Accident risk reduction rate; (b) Noise level.

Based on the findings shown in Figure 13, we noticed that the genetic algorithm could
provide the best solutions and even almost the exact optimal values with a GAP lower than
1% for all scenarios. It proved its excellent performance in solving the problem from the
economic and environmental point of view. Moreover, comparing all the obtained results,
we concluded that the two best metaheuristics were the GA and the SA with average GAP
values of 0.73% and 2.47%, respectively, which was valid for most of the economic and
environmental scenarios.
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Figure 13. Performance results of the proposed algorithms. (a) Average GAP values; (b) average execution time values.

Regarding the resolution time, the average required time of GA, SA, PSO, and VDO
in seconds were respectively equal to 34.42, 16.81, 45.90, and 18.94, as shown in Figure 13.
Moreover, the highest convergence speeds were obtained by the SA and VDO algorithms
with a running time of 16.81 s and 18.94 s, respectively. In addition, the average values
of the running time show that all the algorithms gave better results compared to those
provided by the exact resolution of the linear program (CPLEX), while ensuring a very fast
convergence for all scenarios. For example, using CPLEX, the Sc2_eco scenario gave 21,600 s
against 36 s obtained when applying the genetic algorithm. Therefore, the total resolution
time was reduced by 99.84%. We present the obtained optimal network configurations of
the Sc2 scenario using the GA in Figure 14.
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Figure 14. Optimal network configurations of Sc2 scenario using the GA. (a) Sc2_eco; (b) Sc2_env.

6. Sensitivity Analysis

In this section, we study the sensitivity analysis of the performance of the proposed
algorithms for the two scenarios in several cases by varying the number of suppliers,
warehouses, distribution centers (DCs), retailers, and vehicles. Table 6 shows the ten
used instances.
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Table 6. The examined instances.

Instances Instance 1 Instance 2 Instance 3 Instance 4 Instance 5

Suppliers 6 7 8 9 10
Warehouses 6 7 6 7 8

DCs 6 7 6 7 8
Retailers 10 13 20 22 25
Vehicles {12;12;12} {15;15;15} {20;20;20} {25;25;25} {30;30;30}

Number of nodes 28 34 40 45 51

Instances Instance 6 Instance 7 Instance 8 Instance 9 Instance 10

Suppliers 11 12 13 14 15
Warehouses 9 10 12 12 15

DCs 9 10 12 12 15
Retailers 28 30 30 35 40
Vehicles {35;35;35} {40;40;40} {45;45;45} {50;50;50} {55;55;55}

Number of nodes 57 62 67 73 85

The results of the linear program solved by the commercial solver CPLEX and the
proposed algorithms programmed using MATLAB for both economic and environmental
scenarios are shown in Appendix C.

To verify the effectiveness of the introduced algorithms on large instances, we repre-
sent the results of Appendix C by the curves in Figures 15 and 16.
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Figure 15. Comparison between the algorithms used in the different instances of the economic scenarios. (a) Execution time
of Sc1_eco; (b) GAPs of Sc2_eco; (c) Execution time of Sc2_eco; (d) GAPs of Sc2_eco.
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Figure 16. Comparison of the algorithms used in the different instances of the environmental scenarios. (a) Execution time
of Sc1_env; (b) GAPs of Sc2_env; (c) Execution time of Sc2_env; (d) GAPs of Sc2_env.

These curves show that the GA had the best performance with a GAP less than 2%,
for the economic scenario, and less than 4% for the environmental one, for all instances.
Sometimes, the SA gave better GAPs than all the other algorithms. The example of the I5
instance was considered for the economic and environmental cases of scenario 2 because
of the oscillating nature of this algorithm. However, the worst values were obtained by
applying the PSO in both economic and environmental scenarios.

Using the curves in Figures 15 and 16, it was obvious that the execution time increased
with the rise of the size of the studied instance (i.e., the size of the examined problem). In
fact, the SA algorithm was the most efficient in terms of the execution time as it enabled
reaching the optimum faster than the other metaheuristics. Therefore, we concluded that
the best metaheuristics were the GA and the SA.

The results provided for the different instances were consistent with those of the
illustrative example. Indeed, scenario 2 remained the best option, and the proposed
metaheuristics gave good solutions with a reasonable execution time.

7. Conclusions

To solve problems caused by the pandemic, the scarcity of natural resources, and the
rise in pollution rates, the actors in a logistics system found themselves forced to find an
effective solution. In this context, collaboration is the best alternative that may improve
the logistics operations and deal with issues related to the different decision levels. In our
study, we examined the problem of designing a multiproduct multiperiod, three-echelon
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distribution network with a heterogeneous fleet of vehicles. This problem belongs to
the strategic decision level, which is a critical matter that orients the general orientations
of companies.

In this study, we proposed several metaheuristics to solve our model that minimized
the logistics costs or CO2 emissions and evaluated the noise level as well as accident
rate through the incorporation of two different scenarios. Those metaheuristics were the
genetic algorithm, simulated annealing, the particle swarm optimization, and the vibration
damping optimization. In addition, to show the performance of our proposed methods,
we developed an illustrative example of a distribution network located in France. In
order to calibrate the parameters of the introduced metaheuristics, a typical experimental
study was carried out. The analysis of the obtained results demonstrated that the genetic
algorithm was the best one in terms of GAP in both scenarios. However, when dealing
with the computational time, simulated annealing gave the best values within the shortest
convergence time.

For future work, it would be interesting to integrate Artificial Intelligence algorithms
to improve the results since they enable processing a particularly large amount of data. It is
also essential to present other scenarios that take into account the problem of collaborative
vehicle routes. Moreover, the consideration of uncertainty in the parameters of problems is
very important to imitate reality. Finally, it is necessary to combine the economic objective
with the environmental one to select solutions that offer a good compromise between the
two objectives. For this reason, we intend to propose a multiobjective simulated annealing
(MOSA), a multiobjective particle swarm optimization (MOPSO), and a non-dominated
sorting genetic algorithm II (NSGA-II).
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Appendix A

Table A1. Distances between suppliers (i) and warehouses (m) in km.

Warehouses

Suppliers

m = 1 m = 2 m = 3 m = 4 m = 5 m = 6 m = 7

i = 1 224 282 266 279 358 378 415
i = 2 152 210 194 206 285 305 342
i = 3 250 308 265 237 315 336 373
i = 4 294 264 212 183 262 282 319
i = 5 232 211 159 131 209 229 266
i = 6 319 247 209 119 197 217 243
i = 7 377 307 270 178 243 184 125
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Table A2. Distances between warehouses (m) and distribution centers (k) in km.

Distribution Centers

Warehouses

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

m = 1 78 143 288 293 410 438 605
m = 2 95 156 201 206 323 351 531
m = 3 127 149 106 110 227 255 476
m = 4 195 217 168 135 182 210 422
m = 5 247 269 220 146 165 225 369
m = 6 335 357 308 179 132 192 286
m = 7 429 490 420 348 260 320 224

Table A3. Distances between distribution centers (k) and retailers (j) in km.

Retailers

Distribution
centers

j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8 j = 9 j = 10 j = 11 j = 12 j = 13

m = 1 192 291 322 401 256 351 345 545 507 446 576 595 476
m = 2 130 229 255 333 246 341 336 568 529 468 598 618 498
m = 3 77 146 115 194 119 214 208 349 377 316 446 465 346
m = 4 205 273 223 280 123 213 208 307 269 208 338 357 238
m = 5 383 451 351 404 251 337 301 282 244 183 243 257 161
m = 6 411 406 334 342 234 275 238 220 182 121 183 202 101
m = 7 647 716 554 535 454 469 432 451 413 350 254 195 225

Table A4. Possible levels for the parameters of the proposed algorithms.

Parameters Possible Levels

nPop 50, 75, 100,150,200, 250, 300
pc 0.7, 0.75, 0.8, 0.85, 0.9, 0.95
pm 0.1, 0.15, 0.2, 0.25, 0.3

Crossover One-point [49], Two-point [60], Uniform [61], Arithmetic [62]

Mutation Swap [63], Displacement [64], Scramble [65], Inversion [66], Insertion [67],
Multi non uniform [49], Non uniform [49]

Selection Roulette Wheel, Tournament, Uniform
T0 900, 1000, 1100, 1200, 1300, 1400, 1500, 1750, 2000
α 0.93, 0.94, 0.95, 098

nmax 100, 200, 300, 400, 500, 600, 700
∅1 1.75, 2, 2.25
∅2 1.75, 2, 2.25
ω 0.8, 1, 1.2

wdamp 0.93, 0.94, 0.95, 098
γ 0.05, 0.1, 0.15, 0.2, 0.25

A1 2, 4, 6, 8, 10, 12, 14, 16, 18, 20
σ 1, 1.5, 2, 2.5, 3, 3.5
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Table A5. Setting the population size for the applied genetic algorithm.

nPop 50 75 100 150 200 250 300 500

Total logistics cost in scenario 1 (107 €)

Execution 1 1.4874 1.4840 1.4466 1.4498 1.4569 1.4535 1.4766 1.4808
Execution 2 1.4846 1.4787 1.4773 1.4556 1.4581 1.4599 1.4731 1.4685
Execution 3 1.4748 1.4578 1.4534 1.4550 1.4548 1.4672 1.4702 1.4756
Execution 4 1.4885 1.4584 1.4694 1.4516 1.4561 1.4787 1.4526 1.4627
Execution 5 1.4846 1.4766 1.4656 1.4567 1.4635 1.4871 1.4786 1.4704

Average 1.4840 1.4711 1.4624 1.4537 1.4579 1.4693 1.4702 1.4716

Total logistics cost in scenario 2 (107 €)

Execution 1 1.4413 1.4300 1.4387 1.4368 1.4369 1.4423 1.4374 1.4311
Execution 2 1.4592 1.4713 1.4341 1.4318 1.4328 1.4332 1.4315 1.4339
Execution 3 1.4840 1.4482 1.4305 1.4300 1.4296 1.4309 1.4339 1.4356
Execution 4 1.4377 1.4353 1.4420 1.4315 1.4474 1.4418 1.4417 1.4466
Execution 5 1.4345 1.4601 1.4450 1.4409 1.4329 1.4388 1.4425 1.4405

Average 1.4513 1.4490 1.4381 1.4342 1.4359 1.4374 1.4374 1.4375

Appendix B

Table A6. Results of Sc1 for the different used methods.

Indicators
Deterministic

Model
(CPLEX)

GA SA PSO VDO

Eco Env Eco Env Eco Env Eco Env Eco Env

Economic

Transportation cost
(106 €) 9.2678 10.8276 9.2799 9.9472 9.6313 10.0434 9.9121 9.9778 9.7843 10.3750

Storage cost (103 €) 6.2650 58.3450 5.3900 6.3700 5.6100 5.5100 5.7000 5.9500 7.1700 4.6700
Handling cost (105 €) 1.1341 1.1341 1.1341 1.1341 1.1341 1.1341 1.1341 1.1341 1.1341 1.1341
Opening cost (106 €) 4.8445 4.8115 4.8929 4.7908 4.8538 4.8246 4.9444 4.9943 4.8822 4.8084
Penalty cost (104 €) 5.6650 6.1470 2.9880 3.1030 3.0815 3.0270 3.0170 3.1345 2.9120 3.1410
Total logistics cost

(107 €) 1.4289 1.5871 1.4322 1.4889 1.4635 1.5017 1.5006 1.5122 1.4816 1.5333

Environmental

CO2 emissions due to
vehicles (108 g CO2) 9.0200 8.1000 9.1800 8.4700 8.8000 8.5200 8.6800 8.5000 8.7600 8.6900

CO2 emissions due to
hubs (109 g CO2) 2.4200 2.4100 2.4400 2.3900 2.4000 2.4100 2.4700 2.4900 2.4400 2.4000

Total CO2 emissions
(109 g CO2) 3.3200 3.2100 3.3600 3.2400 3.2800 3.2600 3.3700 3.3400 3.3100 3.2700

Social
Accident risk rate (%) 16.28 19.01 16.20 18.95 14.07 18.85 17.14 18.01 17.94 18.61
Fatal accident rate (%) 2.44 2.85 2.43 2.84 2.11 2.83 2.57 2.70 2.69 2.79

Noise level (104 dB) 2.38 1.28 2.38 1.3 1.89 1.29 1.87 1.24 1.88 1.29

Execution time (s) 1820 28,800 35.71 36.09 18.66 30.93 47.34 35.47 22.57 13.68
GAP (%) 0.23 0.90 2.42 0.83 5.02 4.08 3.69 1.78
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Table A7. Results of Sc2 for the different used methods.

Indicators
Deterministic

Model
(CPLEX)

GA SA PSO VDO

Eco Env Eco Env Eco Env Eco Env Eco Env

Economic

Transportation cost
(106 €) 9.2093 10.5547 9.3199 10.0713 9.6507 10.8156 9.7274 10.1350 9.6612 9.9193

Storage cost (103 €) 5.6150 71.1000 5.4600 5.8500 5.7000 5.9900 5.3200 6.0900 6.5300 4.9200
Handling cost (105 €) 1.1341 1.1341 1.1341 1.1341 1.1341 1.1341 1.1341 1.1341 1.1341 1.1341
Opening cost (106 €) 4.8069 4.7977 4.8522 4.8438 4.8269 4.7977 5.0226 4.9452 4.9206 4.8430
Penalty cost (104 €) 5.7770 6.2395 3.0410 3.0440 3.0365 2.9190 2.9440 3.1055 3.0450 3.0635
Total logistics cost

(107 €) 1.4193 1.5599 1.4321 1.5065 1.4627 1.5762 1.4898 1.5231 1.4732 1.4911

Environmental

CO2 emissions due to
vehicles (108 g CO2) 7.8000 7.4000 8.1800 7.4700 8.2800 8.3000 8.2600 8.1700 8.3500 8.2200

CO2 emissions due to
hubs (109 g CO2) 2.4000 2.4000 2.4300 2.4200 2.4100 2.4000 2.5600 2.4700 2.4600 2.4200

Total CO2 emissions
(109 g CO2) 3.1800 3.1400 3.2400 3.1700 3.2400 3.2300 3.3900 3.2900 3.3000 3.2400

Social
Accident risk rate (%) 20.03 20.08 19.88 21.70 19.75 18.44 19.84 18.80 19.75 20.38
Fatal accident rate (%) 3.00 3.01 2.98 3.26 2.96 2.77 2.98 2.82 2.96 3.06

Noise level (104 dB) 1.56 1.47 1.56 1.46 1.49 1.45 1.45 1.3 1.55 1.48

Execution time (s) 21,600 14,400 36.09 34.97 17.91 51.02 49.78 20.05 19.47
GAP (%) 0.90 0.96 2.88 4.97 4.80 3.80 3.34

Appendix C

Table A8. Results of the instances in the scenarios obtained by the different resolution methods.

Instance Scenario Evaluated Indicators CPLEX GA SA PSO VDO

Eco Env Eco Env Eco Env Eco Env Eco Env

I1

Sc1

Objective fonction
(106 €/109 g CO2) 8.86 2.04 8.91 2.04 8.94 2.04 8.98 2.10 8.95 2.08

Execution time (s) 310 5200 16 20.17 9.1 9.95 22.5 30.10 13.2 13.52
GAP (%) 0 0 0.56 0 0.90 0 1.28 2.94 1 1.96

Sc2

Objective fonction
(106 €/109 g CO2) 8.67 1.97 8.81 1.98 8.87 1.99 8.96 2.04 8.90 2.03

Execution time (s) 212 869 18.2 21.08 10.7 10.15 24.8 31.02 15.6 15.02
GAP (%) 0 0 1.6 0.50 2.13 1.01 3.27 3.55 2.58 3.04

I2

Sc1

Objective fonction
(107 €/109 g CO2) 1.36 3.18 1.37 3.18 1.39 3.19 1.4 3.21 1.4 3.19

Execution time (s) 363 2765 26.12 27.15 14.22 12.12 31.55 35.33 19.20 16.17
GAP (%) 0 0 0.73 0 2.46 0.31 3.00 0.94 2.78 0.31

Sc2

Objective fonction
(107 €/109 g CO2) 1.32 3.05 1.35 3.08 1.36 3.11 1.37 3.16 1.36 3.13

Execution time (s) 240 693 27.45 28.19 15.9 13.45 31.88 36.11 17.80 18.07
GAP (%) 0 0 1.9 0.98 2.73 1.96 3.40 3.60 2.81 2.62

I3

Sc1

Objective fonction
(107 €/109 g CO2) 2.61 5.87 2.63 5.88 2.64 5.90 2.69 5.96 2.65 5.92

Execution time (s) 901 9256 29.54 30.30 15.54 18.17 32.01 40.78 18.40 20.00
GAP (%) 0 0 0.74 0.17 1.26 0.51 3.05 1.53 1.52 0.85

Sc2

Objective fonction
(107 €/109 g CO2) 2.55 5.57 2.58 5.60 2.6 5.63 2.63 5.80 2.62 5.70

Execution time (s) 1432 5899 30.03 32.31 14.95 19.22 33.22 43.44 17.95 18.92
GAP (%) 0 0 1.20 0.53 2.01 1.07 2.95 4.12 2.55 2.33
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Table A8. Cont.

Instance Scenario Evaluated Indicators CPLEX GA SA PSO VDO

I4

Sc1

Objective fonction
(107 €/109 g CO2) 3.30 7.33 3.32 7.35 3.38 7.34 3.4 7.50 3.39 7.52

Execution time (s) 10,852 10,952 30.57 34.55 15.09 21.00 33.66 50.22 17.08 24.88
GAP (%) 0 0 0.62 0.27 2.58 0.13 2.95 2.31 2.64 2.59

Sc2

Objective fonction
(107 €/109 g CO2) 3.24 6.89 3.25 6.95 3.28 6.90 3.34 7.11 3.3 6.97

Execution time (s) 2252 4796 29.95 36.45 15.52 22.88 37.01 55.54 19.02 26.46
GAP (%) 0 0 0.25 0.78 1.18 0.14 3.03 3.20 1.80 1.16

I5

Sc1

Objective fonction
(107 €/109 g CO2) 4.27 9.40 4.35 9.48 4.33 9.59 4.42 9.85 4.3 9.70

Execution time (s) 12,198 17,555 38.09 40.08 20.01 28.12 45.66 60.86 22.32 35.49
GAP (%) 0 0 1.87 0.84 1.52 2.02 3.52 4.88 2.34 3.19

Sc2

Objective fonction
(107 €/109 g CO2) 4.19 8.88 4.22 8.98 4.21 9.19 4.35 9.48 4.3 9.15

Execution time (s) 5296 9998 39.95 39.85 23.22 30.09 52.02 65.42 25.66 33.32
GAP (%) 0 0 0.71 1.12 0.47 3.50 3.81 6.75 2.62 3.04

I6

Sc1

Objective fonction
(107 €/109 g CO2) 5.36 1.18 5.49 1.23 5.50 1.20 5.64 1.28 5.57 1.25

Execution time (s) 25,999 15,033 50.23 49.46 29.52 32.25 65.55 63.58 35.77 42.15
GAP (%) 0 0 2.42 4.02 2.61 1.70 5.19 8.47 4.01 5.93

Sc2

Objective fonction
(107 €/109 g CO2) 5.26 1.11 5.36 1.15 5.48 1.19 5.60 1.21 5.52 1.20

Execution time (s) 21,265 10,005 52.25 52.55 32.89 34.55 70.05 70.19 40.01 43.16
GAP (%) 0 0 1.91 3.60 4.18 7.20 6.46 9.00 4.94 8.10

I7

Sc1

Objective fonction
(107 €/109 g CO2) NF 1 NF 1 6.69 1.28 6.73 1.29 6.78 1.30 6.76 1.32

Execution time (s) NF 1 NF 1 59.72 60.25 38.45 40.56 77.22 75.57 45.63 50.56
GAP (%) NF 1 NF 1 - - - - - - - -

Sc2

Objective fonction
(107 €/109 g CO2) NF 1 NF 1 6.52 1.20 6.59 1.22 6.69 1.25 6.63 1.30

Execution time (s) NF 1 NF 1 60.12 62.66 37.51 42.57 75.07 78.98 44.44 52.55
GAP (%) NF 1 NF 1 - - - - - - - -

I8

Sc1

Objective fonction
(107 €/109 g CO2) NF 1 NF 1 7.18 1.33 7.24 1.48 7.36 1.59 5.32 1.60

Execution time (s) NF 1 NF 1 75.35 76.68 42.23 50.65 90.01 98.12 50.08 65.89
GAP (%) NF 1 NF 1 - - - - - - - -

Sc2

Objective fonction
(107 €/109 g CO2) NF 1 NF 1 7.09 1.25 7.22 1.27 7.35 1.36 5.30 1.48

Execution time (s) NF 1 NF 1 73.86 74.89 40.18 49.98 85.52 100.01 47.98 67.89
GAP (%) NF 1 NF 1 - - - - - - - -

I9

Sc1

Objective fonction
(107 €/109 g CO2) NF 1 NF 1 7.72 1.58 7.78 1.64 7.82 1.68 7.80 1.66

Execution time (s) NF 1 NF 1 90.17 88.88 60.16 59.52 102.15 105.55 75.45 78.89
GAP (%) NF 1 NF 1 - - - - - - - -

Sc2

Objective fonction
(107 €/109 g CO2) NF 1 NF 1 7.09 1.38 7.09 1.47 7.09 1.39 7.09 1.55

Execution time (s) NF 1 NF 1 89.89 90.36 61.73 60.66 110.14 111.12 77.76 80.15
GAP (%) NF 1 NF 1 - - - - - - - -
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Table A8. Cont.

Instance Scenario Evaluated Indicators CPLEX GA SA PSO VDO

I10

Sc1

Objective fonction
(108 €/109 g CO2) NF 1 NF 1 1.10 2.38 1.15 2.42 1.18 2.68 1.16 2.52

Execution time (s) NF 1 NF 1 240.69 220.00 95.23 96.33 389.91 349.98 130.25 145.46
GAP (%) NF 1 NF 1 - - - - - - - -

Sc2

Objective fonction
(108 €/109 g CO2) NF 1 NF 1 1.02 2.12 1.09 2.22 1.15 2.57 1.12 2.51

Execution time (s) NF 1 NF 1 180.45 200.12 96.59 98.87 302.12 341.45 120.88 144.42
GAP (%) NF 1 NF 1 - - - - - - - -

1 Not Found.
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