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Abstract: In this paper, we propose robust optimisation models for the distribution network design
problem (DNDP) to deal with uncertainty cases in a collaborative context. The studied network
consists of collaborative suppliers who satisfy their customers’ needs by delivering their products
through common platforms. Several parameters—namely, demands, unit transportation costs,
the maximum number of vehicles in use, etc.—are subject to interval uncertainty. Mixed-integer
linear programming formulations are presented for each of these cases, in which the economic and
environmental dimensions of the sustainability are studied and applied to minimise the logistical
costs and the CO2 emissions, respectively. These formulations are solved using CPLEX. In this
study, we propose a case study of a distribution network in France to validate our models. The
obtained results show the impacts of considering uncertainty by comparing the robust model to the
deterministic one. We also address the impacts of the uncertainty level and uncertainty budget on
logistical costs and CO2 emissions.

Keywords: distribution network design problem (DNDP); robust optimisation; uncertainty budget;
mixed-integer linear programming; sustainability; horizontal collaboration

1. Introduction

In recent decades, companies have become more concerned about the economic and
environmental impacts of their logistics operations. Thus, they have begun searching for
a strategy that creates an efficient logistics system [1]. In this context, logistics collabo-
ration has gained increased attention as an efficient solution for network optimisation
and improved sustainability. There exist two main types of collaboration in the literature:
vertical collaboration (VC), and horizontal collaboration (HC) [2–4]. Ouhader and Kyal [5]
assert that the former occurs when members of the same logistics chain (supplier and
distributor) collaborate; generally, this type of collaboration is mainly limited to the sharing
of information between partners. However, horizontal collaboration takes place when
means and resources are shared between members at the same level in the logistics chain
(suppliers, distributors, or customers). VC has been widely studied in the literature, but the
performance of this type of collaboration can be optimised only by pooling; this involves a
massification of flows that consists of concentrating them on the same site to optimise the
supply and distribution circuits. This type of collaboration allows for increased frequency
of delivery, better service rates, improved vehicle fill rates and, therefore, reduced logistical
costs and greenhouse gas emissions [6]. An important issue that arises while dealing with
collaborative distribution network design problems is how to deal with uncertainty in the
data—especially when the logistical system parameters are variable. Thus, considering
deterministic approaches is unrealistic, particularly for long-term strategic decisions such
as the location of hub facilities related to some parameters (e.g., demands, transportation
costs, etc.). If the probability distributions of these parameters are known, then techniques
such as stochastic programming can be used to optimise the expected values of the con-
sidered objective functions. However, in other cases, the only available information is the
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specification of intervals containing the uncertain values of these parameters. To solve this
problem, the application of robust optimisation techniques, which can perform well even
in the worst case scenarios, is the best alternative [7]. According to [8], a robust solution
is a solution that can be maintained even if some of the input parameters change. This
solution is not necessarily optimal for the nominal objective function, but its feasibility and
cost are not affected heavily by changes in the parameters—at least for certain meaningful
realizations of the input data.

The main contributions of this study are as follows: We address four different robust
counterparts of a collaborative distribution network design problem. We examine uncertain
demands that can be caused by fluctuations in sales—especially in the context of the COVID-
19 pandemic, where some products (e.g., masks and hand sanitizer) are in high demand.
In addition, unit transportation costs are considered to be uncertain in order to cover the
cases where fuel prices are higher than usual. Moreover, the number of vehicles in use can
be influenced by the human factor (e.g., an absent driver); therefore, it is considered to be
an uncertain value lying in a known interval. Finally, we examine a case in which demands,
unit transportation costs, and the maximum number of vehicles in use are uncertain, and
the only available information is an interval of uncertainty. The objective of the examined
problem is to ensure sustainability by minimising the logistical costs and the CO2 emissions
in the worst-case scenario that may arise for the uncertain parameters.

For each of the proposed robust models, we present mathematical programming
formulations that are nonlinear due to the min–max nature of their objective functions
and some constraints. As a result, we use a dual transformation to reformulate them as
compact mixed-integer linear programming (MILP) with a polynomial number of variables
and constraints. Then, we solve these MILP formulations using a commercial solver to
highlight the impacts of the uncertainty and its budget on several parameters.

The remainder of the paper is organized as follows: Section 2 provides a literature
review on the topic of uncertainty. Section 3 describes the proposed robust counterparts.
Section 4 reports a case study and the conducted computational analysis. Finally, Section 5
presents some concluding remarks and prospects for future work.

2. Literature Review

The concept of the distribution network design problem was treated, in previous
studies, as the hub location problem (HLP) [9,10]. Its combination with horizontal collabo-
ration, especially in an uncertain context, is still underexamined in the literature. To the
best of our knowledge, there is only one paper addressing a collaborative hub location
problem under uncertainty [11], wherein the authors studied a capacitated hub location
problem under installation-cost uncertainty using two distribution networks to reduce the
costs generated by hub installations and transportation. They investigated not only three
cases of collaboration, but also four cost-sharing strategies. However, Contreras et al. [12]
proposed a stochastic model for the uncapacitated hub location problems to minimise
costs related to hub installations and transportation. They proved that these problems
are equivalent to their associated deterministic expected value problems (EVPs), where
random variables are replaced by their expectations. They studied uncertain parameters:
demands and transportation costs. To solve the transportation costs uncertainty case, a
solution was introduced that integrated the sample average approximation (SAA) coupled
with a Benders decomposition algorithm. Moreover, Adibi and Razmi [13] suggested a
model based on two-stage stochastic programming to deal with the uncapacitated multiple-
allocation p-hub location problem (UMAp-HLP). The authors presented three cases of
uncertainty: demand, transportation cost, and both simultaneously. Their objective was
to reduce the total transportation cost. On the other hand, Habibzadeh Boukani et al. [14]
studied robust capacitated single-allocation and multiple-allocation hub location problems,
dealing with fixed setup cost and hub capacity uncertainties. They used a minimax regret
model to minimise the setup and transportation costs. The obtained results show that
neglecting uncertainty can cause large losses and increase expenses. Furthermore, Meraklı
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and Yaman [15] introduced a robust capacitated multiple-allocation p-hub median problem
under demand uncertainty. A hose uncertainty model and a hybrid model were employed
to model demand uncertainty. The first model considers that the only available information
is an upper limit imposed on the sum of the inbound and outbound traffic adjacent to
each node. In addition, Kazemian and Aref [16] examined the same problem consider-
ing uncertain setup costs and demand by using the minimax regret model proposed by
Alumur et al. [17]. They investigated the effect of uncertainty on the obtained solutions
(the locations of the hubs) through the different developed modelling techniques. Their
main objective was to minimise the setup and transportation costs during a single period
for a three-echelon logistics chain using a homogeneous fleet of vehicles. Furthermore,
Zetina et al. [7] suggested robust counterparts for incapacitated multiple-allocation hub
location problems solved by applying a budget uncertainty model. Three cases of uncer-
tainty were investigated: demands, transportation costs, and both simultaneously. To solve
the obtained model, a branch-and-cut algorithm was implemented on a commercial solver.
The same problem was dealt with by Talbi and Todosijević [18], using a new approach that
quantifies the solution robustness by treating uncertain demands to reduce the transporta-
tion costs. Therefore, the approach introduced by [19] can be examined as a special case.
A heuristic approach, named the variable neighbourhood search (VNS), was also used
to solve large instances. Nevertheless, Correia et al. [20] developed a modelling frame-
work for multi-period stochastic capacitated multiple-allocation hub location problems.
Their proposed model took into consideration uncertain demands, and allowed costs to
be minimised. A robust optimisation for multiple-allocation hub location problems with
uncertain demand flows and fixed setup costs was suggested by Martins de Sá et al. [21],
where the level of conservatism was adjusted by an uncertainty budget. Transportation
and setup costs were evaluated using a Benders decomposition algorithm and a hybrid
heuristic approach to solve large-scale problems. Moreover, Ghaffarinasab [22] addressed a
robust multiple-allocation p-hub median problem under demand uncertainty by assessing
the transportation costs of a three-echelon distribution network. They established three
variants of uncertainty models—namely, the hose model; the hybrid model, which gen-
eralized the hose model by incorporating lower and upper bounds on individual traffic
demands; and the budget model, which employs an uncertainty budget representing the
maximum number of demand parameters outgoing from each node that can take a value
within an interval around their nominal values. In addition, Rahmati and Bashiri [23]
developed a robust incapacitated multiple-allocation hub location problem under different
uncertainties—namely, demands, fixed hub establishment costs, and inter-hub flow dis-
count factor. They evaluated the costs generated by transportation and by establishing hubs
through an uncertainty budget model. This problem was also studied by Lozkins et al. [24],
where only uncertain demands were investigated. A set of scenarios was used and a
probability of occurrence was assigned for each scenario in order to formulate a nonlinear
stochastic optimisation problem that minimises hub installation costs, expected transporta-
tion costs, and estimated absolute deviation of transportation costs. To solve the examined
problem, two Benders decomposition strategies were presented and compared. In the work
of Peiró et al. [25], the authors proposed a heuristic procedure for stochastic incapacitated
r-allocation p-hub location problems dealing with demand and cost uncertainties. They
also introduced another heuristic approach for the deterministic part in order to reduce
the total cost, including the allocation and the transportation costs. Moreover, Ben Mo-
hamed et al. [26] presented a methodology for the stochastic design problem of two-stage
distribution networks integrating uncertain demands using two models: The first was a
two-stage stochastic model of location and capacity allocation, where the location and ca-
pacity decisions of the distribution platforms are first-stage decisions. However, the second
was a two-stage stochastic flow-based capacity allocation model, where capacity decisions
are transformed into continuous scenario-dependent origin–destination links in the second
stage. The resolution of these models was performed by a Benders decomposition com-
bined with the sample average approximation (SAA) method. Moreover, Shang et al. [27]
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addressed a stochastic multimodal hub location problem with a direct link strategy and
multiple capacity levels for cargo delivery systems under demand uncertainty. They sug-
gested two resolution methods using solvers, for small instances, and a ‘memetic algorithm’
(MA) integrating genetic search and local search (LS) for realistically sized instances. Nev-
ertheless, Li et al. [28] presented a robust optimisation for single- and multiple-allocation
hub location problems with uncertain flows and hub setup costs. They applied nonlinear
integer program models solved using a solver to decrease the transportation and hub setup
costs. The obtained results prove the effectiveness of robust optimisation in protecting the
solution against the worst case of different uncertain parameters—especially in the case of a
high uncertainty budget. Moreover, Rahmati and Neghabi [29] studied an adjustable robust
optimisation with uncertain transportation costs in an uncapacitated multiple-allocation
balanced hub location problem. The authors proposed mixed-integer linear and nonlin-
ear programming formulations to minimise the logistical costs related to transportation,
hub establishment, and penalty. A Pareto-optimal-cut Benders decomposition algorithm
was used to solve the introduced models, and showed its superiority compared to the
classic algorithm.

The stochastic programming used in the previous publications has two main limi-
tations, cited by [18,30]: The first consists of the fact that the determination of the exact
distribution of the data and, thus, the enumeration of scenarios that capture this distribu-
tion, is rarely satisfied in practice. Second, the size of the optimisation model increases con-
siderably with the rise in the number of scenarios, which poses significant computational
problems that are difficult to solve. Hence, to overcome these limitations, Ben-Tal et al. [31]
used the robust approach. The reviewed studies are summarised in Table 1.

Table 1. Related papers.

Authors Periods Fleet of
Vehicles

Optimisation
Approach Uncertainty Type

Sustainability Resolution
TechniquesEconomic Level Environmental Level

[12] Single Homo 1 Stochastic Demand, Cost Transportation cost,
Opening cost

Sample average
approximation +

Bender
decomposition

[13] Single Homo 1 Stochastic Demand, Cost Commercial solver

[14] Single Homo 1 Robust Cost, Hub capacity Transportation cost,
Opening cost Commercial solver

[15] Single Homo 1 Robust Demand Transportation cost Bender
decomposition

[16] Single Homo 1 Robust Demand, Cost Transportation cost,
Opening cost Commercial solver

[18] Single Homo 1 Robust Demand Transportation cost

Commercial solver,
Variable

neighbourhood
search

[20] Multiple Homo 1 Stochastic Demand Transportation cost,
Opening cost Commercial solver

[7] Single Homo 1 Robust Demand, Cost, Demand
+ Cost

Transportation cost,
Opening cost Commercial solver

[21] Single Homo 1 Robust Demand, Opening cost Transportation cost,
Opening cost

Bender
decomposition,

Hybrid heuristic
approach

[22] Single Homo 1 Robust Demand Transportation cost Tabu search

[23] Single Homo 1 Robust
Demand, Cost,

Inter-hub flow discount
factor

Transportation cost,
Opening cost Commercial solver

[11] Single Homo 1 Robust Demand, Cost Transportation cost,
Opening cost Commercial solver

[24] Single Homo 1 Robust Demand Transportation cost,
Opening cost

Bender
decomposition

[25] Single Homo 1 Stochastic Demand, Cost Transportation cost,
Opening cost Heuristic
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Table 1. Cont.

Authors Periods Fleet of
Vehicles

Optimisation
Approach Uncertainty Type

Sustainability Resolution
TechniquesEconomic Level Environmental Level

[27] Single Hetero 2 Stochastic Demand Transportation cost,
Opening cost Memetic algorithm

[26] Multiple Homo 1 Stochastic Demand Transportation cost,
Opening cost

Bender
decomposition and

Sample average
approximation

[28] Single Homo 1 Robust Demand, Cost Transportation cost,
Opening cost Commercial solver

[29] Single Homo 1 Robust Transportation cost
Transportation cost,

Opening cost, Penalty
cost

Pareto-cut Bender
decomposition

This
paper Multiple Hetero 2 Robust

Demand,
Transportation cost,

Maximum number of
vehicles in use, Demand
+ Transportation cost +
Maximum number of

vehicles in use

Transportation cost,
Opening cost,
Handling cost,

Storage cost, Penalty
cost

Emissions due to
vehicle depreciation,
transportation and

hub construction and
hub operation

Commercial solver

1 Homogeneous; 2 Heterogeneous.

From this table, we conclude that most of the studies dealing with the distribution
network design problem under uncertainty have considered only the economic dimension
of sustainability, by reducing the logistical costs, and only uncertainties related to flow and
logistical costs were examined. In this paper, we examine not only the economic dimension
of the problem, but also the environmental aspect. We also consider—both independently
and jointly—uncertainties of demand, unit transportation costs, and the maximum number
of vehicles in use.

3. Robust Formulations

In this section, we deal with the DNDP under uncertainty. First, we consider that the
uncertainties affect the demands. Second, we study the uncertainty of the unit transporta-
tion costs. Then, we apply a robust optimisation model with uncertainty of the maximum
number of vehicles in use. Finally, we examine the uncertainty of all of these factors
simultaneously.

Our goal is to find robust solutions to the studied DNDP, which remain relatively
unchanged when exposed to data uncertainty. These sources of perturbations causing
data uncertainty, whose laws of probability are neither known nor described, may have
different natures.

To deal with these uncertainties, we apply the robust optimisation using the budget
model. The latter employs an uncertainty budget to allow decision-makers to indepen-
dently control the desired level of conservatism for both demand and transportation
costs [5]. We note that the proposed uncertainties are only applied to the economic formula-
tions, because the environmental ones do not depend on them. However, they impact both
of the objective functions. In fact, the CO2 emissions are influenced by the quantities of
goods transported and the number of vehicles used between the origin and the destination,
which means that they are affected indirectly by the uncertainties’ parameters.

We first introduce the deterministic model proposed by [32], which studies a distribu-
tion network consisting of suppliers who collaborate to deliver their products to retailers
through shared warehouses and distribution centres; its objectives are to determine the
number of these two types of hubs, their limited capacities and their locations, the fleet
size of each type of vehicle, the links between the different hubs, and the quantity of goods
transported on each arc. Furthermore, the model considers two aspects of sustainabil-
ity (the economic and the environmental aspects) by minimising the costs and the CO2
emissions, respectively.

In this paper, we consider a collaborative scenario presented in Figure 1. We assume
that each supplier is assigned to a single warehouse (single allocation; SA). In fact, a
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warehouse can serve multiple distribution centres (multiple allocation; MA), while each
retailer can be served only by a single distribution centre (single allocation; SA).
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To formulate the studied problem, the following notations are defined:

T1: Set of periods; t = 1, . . . , T1
P: Set of products; p = 1, . . . , P
N: Set of suppliers; I = 1, . . . , N
M: Set of warehouses; m = 1, . . . , M
K: Set of distribution centres; k = 1, . . . , K
J: Set of retailers; j = 1, . . . , J
V: Set of vehicles; v = 1, . . . , V
F: Set of nodes F = N ∪ M ∪ K ∪ J
H: Set of hubs H = M ∪ K
T2: Set of periods considering the flexibility in the delivery time:
T2 = T1 +{max(ap); ∀p ∈ P}; t = 1, . . . , T2
A1: Set of arcs in the upstream part between N and M
A2: Set of arcs in the midstream part between M and K
A3: Set of arcs in the downstream part between K and J
A: Set of arcs A = A1 ∪ A2 ∪ A3

The used parameters as well as the binary and continuous variables are presented in
Table 2.

The initial model is utilized to minimise two objective functions (F1 or F2) representing
the economic and environmental aspects of sustainability, respectively. The deterministic
mathematical model is formulated as follows:

min {F1; F2 } (1)

F1 = CT + CS + CD + CO + CH (2)

F1 = ∑
(i,j)∈A,t∈T2,v∈V

CTv
ijt + ∑

m∈W, p∈P,t∈T2

CSp
mt + ∑

p∈P, t∈T2

CDp
t + ∑

m∈H
CWm + ∑

m∈H, p∈P,t∈T2

CHp
mt (3)

CTv
ijt = dij(

Cv
q − Cv

o

Qv . ∑
p∈P

qpv
ijt + 2 · Cv

o ·Nv
ijt); ∀ t ∈ T2, v ∈ V, (i, j) ∈ A (4)
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CSp
mt = Ip

mt· Csp
m; ∀ t ∈ T2, p ∈ P, m ∈ M (5)

Ip
mt = ∑

i∈N,v∈V
qpv

imt − ∑
k∈K,v∈V

qpv
mkt + Ip

m(t−1); ∀ t ∈ T2, p ∈ P, m ∈ M (6)

CDp
t = Wdp

t · Cdp
t ; ∀ t ∈ T2, p ∈ P (7)

Wdp
t = ∑

j∈J
Wp

jt − ∑
k∈K,j∈J,v∈V

qpv
kjt + Wdp

(t−1); ∀ t ∈ T2, p ∈ P (8)

CWm = Am·Cwm; ∀ m ∈ H (9)

Am = α·AP. Cm; ∀ m ∈ H (10)

CHp
mt = ∑

i∈{N;M},v∈V
qpv

imt· cup + ∑
i∈{N;M},v∈V

qpv
imt·csp + ∑

j∈{K;J},v∈V
qpv

mjt· clp; ∀ t ∈ T2, p ∈ P, m ∈ H (11)

F2 = EV + EO + EC (12)

F2 = ∑
(i,j)∈A,t∈T2,v∈V

EVv
ijt + ∑

m∈H,t∈T2

ym·EOm,t + ∑
m∈H

ECm (13)

EVv
ijt = dij· (

Ev
q − Ev

o

Qv · ∑
p∈P

qpv
ijt + 2· (Ev

o + EMv)·Nv
ijt); ∀ t ∈ T2, v ∈ V, (i, j) ∈ A (14)

EOmt = Eomt·Wmt; ∀ t ∈ T2, m ∈ H (15)

ECm = Ecm· Am; ∀ m ∈ H (16)

Subject to

∑
i∈N,v∈V

qpv
imt + Ip

m(t−1) ≥ ∑
k∈K,v∈V

qpv
mkt; ∀ t ∈ T2, m ∈ M, p ∈ P (17)

∑
m∈M,v∈V

qpv
mkt = ∑

j∈J,v∈V
qpv

kjt; ∀ t ∈ T2, p ∈ P, k ∈ K (18)

Wp
jt = ∑

k∈K,v∈V

t+ap

∑
h=1

qpv
kjh −

t−1

∑
h=1

Wp
jh; ∀ t ∈ T1, p ∈ P, j ∈ J (19)

Sp
m.ym ≤ Ip

mt; ∀ t ∈ T2, p ∈ P, m ∈ M (20)

∑
i∈{N;M},p∈P,v∈V

qpv
ijt ≤ Cj; ∀ t ∈ T2, (i, j) ∈ {A1, A2} (21)

∑
i∈{N,M}

xim ≤ ym · Z; ∀ m ∈ {M; K}, (i, m) ∈ {A1, A2} (22)

ym ≤ ∑
i∈{M;K}

xim; ∀ m ∈ {M; K}, (i, m) ∈ {A1, A2} (23)

∑
m∈{M,K}

ym ≤ {|M|; |K|} (24)

qpv
imt ≤ xim · Z; ∀ t ∈ T2, p ∈ P, v ∈ V, (i, m) ∈ A (25)

∑
m∈M

xim = 1; ∀ i ∈ N (26)

∑
k∈K

gkj = 1; ∀ j ∈ J (27)

qpv
kjt ≤ gkj · Z; ∀ t ∈ T2, p ∈ P, v ∈ V, k ∈ K, j ∈ J (28)

∑
p∈P

qpv
imt

Qv ≤ Nv
imt; ∀ t ∈ T2, v ∈ V, (i, m) ∈ A (29)
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Nv
imt ≤ Nmaxv

im ; ∀ t ∈ T2, (i, m) ∈ A (30)

∑
i∈{N;M},v∈V,t∈T2

qpv
imt = ∑

k∈{K;J},v∈V,t∈T2

qpv
mkt; ∀ (i, m) ∈ {A1, A2}, (m, k) ∈ {A1, A3}, p ∈ P (31)

qpv
ijt ≥ 0; ∀ t ∈ T2, (i, j) ∈ A, v ∈ V, p ∈ P (32)

Ip
mt ≥ 0; ∀ t ∈ T2, m ∈ M, p ∈ P (33)

Cm ∈ N; ∀ m ∈ H (34)

Wdp
t ≥ 0; ∀ t ∈ T2, p ∈ P (35)

Nv
imt ∈ N ; ∀ t ∈ T2, (i, m) ∈ A, v ∈ V (36)

xim ∈ {0; 1}; ∀(i, m) ∈ A (37)

ym ∈ {0; 1}; ∀m ∈ H (38)

The economic objective function, represented by Equations (2) and (3), minimises
the total logistical costs related to five parts: The first part minimises the transportation
costs in the upstream, intermediate, and downstream parts of the distribution network.
In this part, warehouses and distribution centres are selected to be opened, and non-hub
nodes are assigned to the appropriate hubs. Moreover, the optimal quantities transported
between the different nodes are determined. In fact, minimising the transportation cost
in the downstream part improves the filling rate of vehicles by grouping goods with the
same destination in the same vehicles. The second part minimises the cost of storage in
warehouses, which guarantees a fast delivery in order to reduce the stock level. The third
part reduces the penalty cost due to late delivery by minimising the delayed quantities of
goods. The objective is to deliver goods at the right time. The fourth part minimises the
costs of opening hubs and, therefore, reduces the number of hubs to be opened and their
capacities. The last part’s objective is to reduce the handling costs—namely, the costs of
loading, unloading, and sorting. The transportation cost (Equation (4)) depends on the
transported quantity, the type of vehicle in use (capacity, unit cost), and the number of
required vehicles or trips. The downstream hubs represent the distribution centres with
zero storage time, so only upstream hubs are concerned by the storage cost (Equation (5)).
The inventory level in warehouse m is represented in Equation (6). The penalty cost
(Equation (7)) is evaluated in the last part of the distribution network (distribution centres—
retailers), due to delays in some deliveries. The delay in delivering a given quantity of
product p in period t is given by Equation (8). The cost of installing a hub m is obtained by
Equation (9). The area of the hub m is provided by Equation (10). The hubs’ capacities are
considered to be decision variables determined by the model resolution. The handling cost
(Equation (11)) concerns the loading, unloading, and sorting operations in the hubs.

The environmental objective function, given by Equations (12) and (13), reduces
the different CO2 emissions due to vehicles and hubs. The vehicle emissions (Equation
(14)) are due to two factors—namely, the transportation of goods, and the depreciation of
vehicles. As with the transportation cost, minimising the vehicles’ CO2 emissions allows
us to determine the optimal quantities to transport, select the appropriate hubs to be
opened, and assign non-hub nodes to the appropriate hubs. The CO2 emissions depend
on the amount of the carried goods and the type of vehicle used (capacity and unit cost).
In addition, the CO2 emissions from the shared warehouses are also classified into two
categories: those due to the hubs’ operations (Equation (15)), and those resulting from their
construction (Equation (16)). Reducing these types of emissions reduces the number and
the capacity of hubs to be opened. The quantity of CO2 emissions released by each material
is calculated based on [33].
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Table 2. The used parameters as well as the binary and continuous variables.

Notations Designations Units

Parameters used for the formulation of the economic indicators

Z A large constant
Wp

jt Quantity of product p requested by the retailer j in period t Pallets

Sp
m Safety stock of product p in hub m Pallets

Qv Vehicle capacity of type v Pallets
Cv

q Unit transport cost of a fully loaded v-type vehicle EUR/km
Cv

0 Unit transport cost of an empty v-type vehicle EUR/km
dij Distances travelled between origin i and destination j Km

Csp
mt Unit storage cost of product p in hub m at period t EUR/pallet

Cdp
t Unit penalty cost of product p at period t EUR/pallet

Cwm Unit opening cost of hubs m EUR/m2

AP European pallet surface m2

α Coefficient greater than or equal to 2
Cup Unit unloading cost of product p EUR/pallet
Clp Unit loading cost of product p EUR/pallet
Csp Unit sorting cost of product p EUR/pallet

Parameters used for the formulation of the environmental indicators

Ev
q Unit CO2 emissions from a fully loaded vehicle of type v g CO2/km

Ev
0 Unit CO2 emissions due to an empty vehicle of type v g CO2/km

Eomt Unit CO2 emissions due to the operation of hubs m at period t g CO2/KWh
Ecm Unit CO2 emissions due to the construction of hubs m g CO2/m2

Wmt Energy consumed by hub m at period t kwh
EMv CO2 emissions due to the manufacturing of v-type vehicle with depreciation g CO2

Continuous variables

qpv
ijt

Quantity of product p transported between origin i and destination j by the v- type
vehicle at period t Pallets

Ip
mt Inventory level of product p in hub m at period t Pallets

Wdp
t Quantity of product p delayed in period t Pallets

Am Hub m area m2

CTv
ijt Transportation cost between origin i and destination j by v-type vehicle at period t EUR

CSp
mt Storage cost of product p in hub m at period t EUR

CDp
t Penalty cost of product p at period t EUR

CWm Opening cost of hubs m EUR
CHp

mt Handling cost of product p in hub m at period t EUR
CT Total transportation cost EUR
CS Total storage cost EUR
CO Total opening cost EUR
CH Total handling cost EUR
CD Total penalty cost EUR

EVv
ijt

CO2 emissions from vehicles moving between origin i and destination j by the v-type
vehicle at period t g CO2

EOmt CO2 emissions due to the operation of hubs m at period t g CO2
ECm CO2 emissions due to the construction of hubs m g CO2
EV CO2 emissions from vehicles g CO2
EC CO2 emissions due to hub constructions g CO2
EO CO2 emissions due to hub operations g CO2

Discrete variables

Cm Hub m capacity Pallets
Nv

ijt Number of v-type vehicles at period t between origin i and destination j Vehicles

Binary variables

ym Is equal to 1 if the hub m is open, and to 0 otherwise
xij Is equal to 1 if there is a link between the two nodes i and j, and to 0 otherwise
gkj Is equal to 1 if the retailer j is affected to the distribution centre k, and to 0 otherwise
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Equation (17) ensures that the sum of the quantities delivered by the suppliers in
period t and the inventory level of the previous period (t − 1) is greater than the quantity
of goods delivered between the hubs. As there is no storage in the distribution centres,
Equation (18) guarantees that the quantity of goods delivered from warehouse m to dis-
tribution centre k in period t is exactly equal to the quantity delivered to the customers,
while considering the transport time. The demand for product p by the customer j in
period t is delivered at most in period (t + ap) thanks to Equation (19), where ap denotes the
number of periods allowed to deliver the requested quantity. According to Equation (20),
the inventory level of each product in the upstream hubs is always higher than the safety
stock. Equation (21) ensures that when hubs m or k are open, their capacities are higher
than the quantity of the incoming goods. Equations (22) and (23) indicate that a warehouse
is only open if at least one supplier is assigned to it, and that a distribution centre is only
open when there is a warehouse assigned to it. Equation (24) limits the number of upstream
and downstream hubs to be opened. Equation (25) limits the flow on the arcs (there are no
goods transported between unlinked nodes). Every supplier can only deliver to one shared
warehouse, which is guaranteed by Equation (26). Equation (27) ensures that a retailer can
only be assigned to one distribution centre. Equation (28) indicates that each distribution
centre k can only deliver to one retailer j when it is assigned to it. Equation (29) determines
the number of vehicles required in the three parts of the distribution network for each
period and for each type of vehicle. Equation (30) is used to limit the maximum number
of vehicles or trips for each vehicle type. Equation (31) is a flow conservation equation.
Finally, Equations (32)–(38) define the domain of each decision variable.

3.1. Demand Uncertainty

Customer demand cannot be estimated since, during the COVID-19 pandemic, some
companies have had a large variation in demand (decrease or increase in sales). Therefore,
they are given in the form of interval values. For each retailer j ∈ J, period t ∈ T2, and
product p ∈ P, the demand Wp

jt ∈
[
WpL

jt , WpL
jt + Wp∆

jt

]
, where WpL

jt is its nominal value

and Wp∆
jt ≥ 0 designates its deviation. The parameter Sw denotes a subset of uncertain

demands, and was defined by [16] as follows:

Sw = {w :Wp
jt ∈

[
WpL

jt , WpL
jt + Wp∆

jt

]
; ∀j ∈ J, t ∈ T2 , p ∈ P}

The uncertainty budget, chosen by decision-makers, is hw ∈ [0, 1]; it limits the number
of demands that can deviate from their nominal values. This condition is justified by the
fact that all parameters rarely deviate from their nominal values. Therefore, the adjustment
of this parameter provides some flexibility for decision-makers to choose more or less
conservative solutions [34].

The mathematical model with the economic objective of a robust collaborative distri-
bution network design problem with uncertain demands is as follows:

min

{
CT + CS + CO + CH + ∑

t∈T2 ,p∈P
(Wdp

(t−1) − ∑
k∈K,j∈J,v∈V

qpv
kjt).Cdp

t + ∑
t∈T2 ,p∈P

∑
j∈J

WpL
jt .Cdp

t + maxSw :|Sw |≤hw

{
∑

t∈T2 ,p∈P
∑
j∈J

Wp∆
jt .Cdp

t

}}
(39)

Subject to (17), (18), (20)–(38)

WpL
jt +

t−1

∑
h=1

WpL
jh + maxSw :|Sw |≤hw

{
Wp∆

jt +
t−1

∑
h=1

Wp∆
jh

}
= ∑

k∈K,v∈V

t+ap

∑
h=1

qpv
kjh; ∀ t ∈ T1, p ∈ P, j ∈ J (40)

Wdp
t = ∑

j∈J
WpL

jt + maxSw :|Sw |≤hw

{
∑
j∈J

Wp∆
jt

}
− ∑

k∈K,j∈J,v∈V
qpv

kjt + Wdp
(t−1); ∀ t ∈ T2, p ∈ P (41)

The objective of the inner maximisation of the objective function is to select the subset
Sw such that the perturbations increase the penalty cost. The binary variables up

jt ∈ {0, 1},
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vp
jt ∈ {0, 1}, and lp

jt ∈ {0, 1} for each retailer j ∈ J, product p ∈ P, and period t ∈ T2 are
defined to reformulate the previously applied model as follows:

min

{
CT + CS + CO + CH + ∑

t∈T2 ,p∈P
(Wdp

(t−1) − ∑
k∈K,j∈J,v∈V

qpv
kjt).Cdp

t + ∑
t∈T2 ,p∈P

∑
j∈J

WpL
jt .Cdp

t + max

{
∑

t∈T2 ,p∈P
∑
j∈J

Wp∆
jt .Cdp

t .up
jt

}}
(42)

Subject to Equations (17), (18), and (20)–(38):

∑
t∈T2,p∈P

∑
j∈J

up
jt ≤ hw (43)

0 ≤ up
jt ≤ 1 ; ∀j ∈ J, p ∈ P, t ∈ T2 (44)

WpL
jt +

t−1

∑
h=1

WpL
jh + max

{
Wp∆

jt .vp
jt +

t−1

∑
h=1

Wp∆
jh .vp

jh

}
= ∑

k∈K,v∈V

t+ap

∑
h=1

qpv
kjh ∀ t ∈ T1, p ∈ P, j ∈ J (45)

∑
j∈J

∑
t∈T2,p∈P

vp
jt ≤ hw (46)

t−1

∑
h=1

∑
j∈J

∑
p∈P

vp
jh ≤ hw (47)

0 ≤ vp
jt ≤ 1 ; ∀j ∈ J, p ∈ P, t ∈ T2 (48)

0 ≤ vp
jh ≤ 1 ; ∀j ∈ J, p ∈ P, h ∈ [1, t− 1] (49)

Wdp
t = ∑

j∈J
WpL

jt + max

{
∑
j∈J

Wp∆
jt . lp

jt

}
− ∑

k∈K,v∈V,j∈J
qpv

kjt + Wdp
(t−1); ∀ t ∈ T2, p ∈ P (50)

∑
j∈J

∑
t∈T2,p∈P

lp
jt ≤ hw (51)

0 ≤ lp
jt ≤ 1 ; ∀j ∈ J, p ∈ P, t ∈ T2 (52)

where Equations (43), (44), (46)–(49), (51) and (52) ensure that at most hw coefficients Wp
jt are

allowed to change. Note that in the last model, the requirement that the variables up
jt, vp

jt,

and lp
jt are binary can be relaxed. The resulting linear program will have the same optimal

solution as the initial binary program.
Taking the dual variables of the above-cited problem, the robust collaborative DNDP

under the budget demand uncertainty can be formulated by the following MILP model:

min

{
CT + CS + CO + CH + ∑

t∈T2,p∈P

(
Wdp

(t−1) − ∑
k∈K,v∈V,j∈J

qpv
kjt

)
·Cdp

t + ∑
j∈J

∑
t∈T2,p∈P

(λ
p
jt + WpL

jt ·Cdp
t ) + hw·µ

}
(53)

Subject to Equations (17), (18), and (20–38):

λ
p
jt + µ ≥Wp∆

jt ·Cdp
t ; ∀ t ∈ T2, p ∈ P, j ∈ J (54)

µ, λ
p
jt ≥ 0; ∀ t ∈ T2, p ∈ P, j ∈ J (55)

WpL
jt +

t−1

∑
h=1

WpL
jh + β

p
jt +

t−1

∑
h=1

β
p
jh + Γ·hw = ∑

k∈K,v∈V

t+ap

∑
h=1

qpv
kjh; ∀ t ∈ T1, p ∈ P, j ∈ J (56)

Γ + β
p
jt +

t−1

∑
h=1

β
p
jh ≥Wp∆

jt +
t−1

∑
h=1

Wp∆
jh ; ∀ t ∈ T2, p ∈ P, j ∈ J (57)
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Γ, β
p
jt ≥ 0; ∀ t ∈ T2, p ∈ P, j ∈ J (58)

Wdp
t = ∑

j∈J
WpL

jt + ∑
j

Γ
p
jt + α·hw − ∑

j∈J,k∈K,v∈V
qpv

kjt + Wdp
(t−1); ∀ t ∈ T2, p ∈ P (59)

Γ
p
jt + α ≥Wp∆

jt ; ∀ t ∈ T2, p ∈ P, j ∈ J (60)

α, Γ
p
jt ≥ 0; ∀ t ∈ T2, p ∈ P, j ∈ J (61)

where the µ, λ
p
jt,Γ, β

p
jt, α, and Γ

p
jt are the dual variables associated with Equations (43), (44)

and (46)–(52), respectively.

3.2. Unit Transportation Costs Uncertainty

Unit transportation costs vary depending on the fluctuating price of fuel, according
to several external factors, such as geopolitical tensions, epidemics, and global growth.
For each vehicle v ∈ V, the unit transportation cost for a fully loaded vehicle Cv

q ∈[
CvL

q , CvL
q + Cv∆

q

]
, where CvL

q is its nominal value and Cv∆
q ≥ 0 is its deviation, while the

unit transportation cost for an empty vehicle Cv
0 ∈

[
CvL

0 , CvL
0 + Cv∆

0
]
, where CvL

0 is its
nominal value and Cv∆

0 ≥ 0 is its deviation. The parameters SCq and SC0 denote the subsets
of uncertain unit transportation costs with full and empty vehicles, respectively; they are
defined as follows:

SCq =
{

Cq : Wp
jt ∈

[
CvL

q , CvL
q + Cv∆

q

]
; ∀v ∈ V

}
and SC0 =

{
Cq : Wp

jt ∈
[
CvL

0 , CvL
0 + Cv∆

0
]
;

∀v ∈ V}. The uncertainty budgets are: hCq ∈ [0, 1] and hC0 ∈ [0, 1].
First, we define the following two variables:

Cv
1 = ∑

(i,j)∈A,t∈T2

dij · ∑
p∈P

qpv
ijt ; ∀v ∈ V (62)

Cv
2 = ∑

i(i,j)∈A,t∈T2

dij

(
2 ·Nv

ijt −
1

Qv ∑
p∈P

qpv
ijt

)
; ∀v ∈ V (63)

The mathematical model with the economic objective of a robust collaborative dis-
tribution network design problem with uncertain unit transportation costs is formulated
as follows:

min

{
CS + CD + CO + CH + ∑

v∈V
CvL

q ·Cv
1 + ∑

v∈V
CvL

0 ·Cv
2 + maxSCq :|SCq |≤hCq

{
∑

v∈V
Cv∆

q ·Cv
1

}
+ maxSC0:|SC0|≤hC0

{
∑

v∈V
Cv∆

0 ·Cv
2

}}
(64)

Subject to Equations (17)–(38).
The objective of the inner maximization of the objective function is to select the

subsets SCq and SC0 such that the perturbations Cv∆
q and Cv∆

0 increase the transportation
cost. The binary variables uv ∈ {0, 1} and lv ∈ {0, 1} for each vehicle v ∈ V are defined
to reformulate the previous model as follows:

min

{
CS + CD + CO + CH + ∑

v∈V
CvL

q .Cv
1 + ∑

v∈V
CvL

0 .Cv
2 + max

{
∑

v∈V
Cv∆

q .Cv
1 .uv

}
+ max

{
∑

v∈V
Cv∆

0 .Cv
2 .lv

}}
(65)

Subject to Equations (17)–(38):

∑
v∈V

uv ≤ hCq (66)

∑
v∈V

lv ≤ hC0 (67)

uv ∈ {0, 1}; ∀v ∈ V (68)
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lv ∈ {0, 1}; ∀v ∈ V (69)

Equations (66) and (68) ensure that at most hCq coefficients Cv
q are allowed to change,

while Equations (67) and (69) apply to the hC0 and Cv
0 case. Note that, in the last model,

the requirement that the variables uv and lv are binary can be relaxed. The resulting linear
program will have the same optimal solution as the initial binary program.

As with the uncertain demands case, the robust collaborative DNDP under the budget
unit transportation costs uncertainty can be formulated as follows:

min

{
CS + CD + CO + CH + ∑

v∈V
CvL

q ·Cv
1 + ∑

v∈V
CvL

0 ·Cv
2 + ∑

v∈V
λv + hCq·µ + ∑

v∈V
βv + hC0·Γ

}
(70)

Subject to Equations (17)–(38):

λv + µ ≥ Cv∆
q ·Cv

1 ; ∀v ∈ V (71)

βv + Γ ≥ Cv∆
0 ·Cv

2 ; ∀v ∈ V (72)

µ, λv ≥ 0 ; ∀v ∈ V (73)

Γ, βv ≥ 0 ; ∀v ∈ V (74)

where µ, λv, Γ, and βv are the dual variables associated with Equations (66)–(68) and (70),
respectively.

To linearise Equations (71) and (72), we use McCormick envelopes, so we obtain the
following model:

min

{
CS + CD + CO + CH + ∑

v∈V
Av + ∑

v∈V
Bv + ∑

v∈V
λv + hCq·µ + ∑

v∈V
βv + hC0·Γ

}
(75)

Subject to Equations (17)–(38), (73) and (74):

λv + µ ≥ Av; ∀v ∈ V (76)

βv + Γ ≥ Bv; ∀v ∈ V (77)

0 ≤ Cv∆
q ≤ CvL

q ; ∀v ∈ V (78)

0 ≤ Cv
1 ≤ Cv

1upper ; ∀v ∈ V (79)

0 ≤ Cv∆
0 ≤ CvL

0 ; ∀v ∈ V (80)

0 ≤ Cv
2 ≤ Cv

2upper ; ∀v ∈ V (81)

Av ≥ CvL
q ·Cv

1 + Cv
1upper·Cv∆

q − Cv
1upper·CvL

q ; ∀v ∈ V (82)

Av ≥ 0 ; ∀v ∈ V (83)

Av ≤ CvL
q ·Cv

1 ; ∀v ∈ V (84)

Av ≤ Cv
1upper·Cv∆

q ; ∀v ∈ V (85)

Bv ≥ CvL
0 · Cv

2 + Cv
2upper· Cv∆

0 − Cv
2upper·CvL

0 ; ∀v ∈ V (86)

Bv ≥ 0 ; ∀v ∈ V (87)

Bv ≤ CvL
0 · Cv

2 ; ∀v ∈ V (88)

Bv ≤ Cv
2upper·Cv∆

0 ; ∀v ∈ V (89)

where we use Av = Cv∆
q ·Cv

1 and Bv = Cv∆
0 ·Cv

2 . Moreover, Cv
1upper and Cv

2upper are the upper
bounds for Cv

1 and Cv
2 , respectively.



Mathematics 2021, 9, 2318 14 of 27

3.3. Maximum Number of Vehicles in Use Uncertainty

Vehicles may break down during some periods, and sometimes a driver can be absent
(unexpected illness, etc.). Therefore, the maximum number of vehicles in use is uncertain.
For each vehicle v ∈ V, arc (i, m) ∈ A, and period t ∈ T2, the maximum number of vehicles
in use = Nmaxv

im ∈
[
NmaxvL

im − Nmaxv∆
im , NmaxvL

im
]
, where Nmaxv∆

im is its nominal value
and Nmaxv∆

im ≥ 0 corresponds to its deviation. The parameter Sn denotes the subset of the
maximum number of vehicles in use that is uncertain; it is defined as follows:

Sn =
{

Nmax : Nmaxv ∈
[

NmaxvL
im − Nmaxv∆

im , NmaxvL
im

]
; ∀t ∈ T2, (i, m) ∈ A, v ∈ V

}
The uncertainty budget is hn ∈ [0, 1].
The mathematical model with the economic objective of a robust collaborative dis-

tribution network design problem with uncertain maximum number of vehicles in use is
presented below:

min F1 = min

{
∑

a∈A,v∈V,t∈T2

CTv
at + ∑

t∈T2,m∈M,p∈P
CSp

mt + ∑
t∈T2,p∈P

CDp
t + ∑

m∈H
CWm + ∑

m∈H,p∈P,t∈T2

CHp
mt

}
(90)

Subject to Equations (17)–(28) and (30)–(38):

Nv
imt ≤ NmaxvL

im −maxSn :|Sn |≤hn

{
Nmaxv∆

im

}
; ∀ t ∈ T2, (i, m) ∈ A, v ∈ V (91)

The objective of the inner maximization of the objective function is to select the subset
Sn such that the perturbations Nmaxv∆

im increase the number of vehicles in use subtracted
from the total maximum number of these vehicles. The binary variable f v ∈ {0, 1} for
each vehicle v ∈ V is defined to reformulate the previously applied model, as follows:

min F1 = min

{
∑

a∈A,v∈V,t∈T2

CTv
at + ∑

t∈T2,m∈M,p∈P
CSp

mt + ∑
t∈T2,p∈P

CDp
t + ∑

m∈H
CWm + ∑

m∈H,p∈P,t∈T2

CHp
mt

}
Subject to Equations (17)–(28) and (30)–(38):

Nv
imt ≤ NmaxvL

im −max
{

Nmaxv∆
im · f v

}
; ∀ t ∈ T2, (i, m) ∈ A, v ∈ V (92)

∑
v∈V

f v ≤ hn (93)

f v ∈ {0, 1}; ∀v ∈ V (94)

where Equations (93) and (94) ensure that at most hn coefficients Nmaxv
im are allowed to

change. Note that, in the last model, the requirement that the variable f v is binary can be
relaxed. The resulting linear program will have the same optimal solution as the initial
binary program.

As with the previous cases of demands and unit transportation cost uncertainties, the
robust collaborative DNDP under the uncertainty of the maximum number of vehicles in
use can be formulated by the following MILP model:

min F1 = min

{
∑

a∈A,v∈V,t∈T2

CTv
at + ∑

t∈T2,m∈M,p∈P
CSp

mt + ∑
t∈T2,p∈P

CDp
t + ∑

m∈H
CWm + ∑

m∈H,p∈P,t∈T2

CHp
mt

}
Subject to Equations (17)–(28) and (30)–(38):

Nv
imt ≤ NmaxvL

im − λv − β·hn ; ∀t ∈ T2, (i, m) ∈ A, v ∈ V (95)

λv + β ≥ Nmaxv∆
im ; ∀v ∈ V, (i, m) ∈ A (96)

β, λv ≥ 0; ∀v ∈ V (97)



Mathematics 2021, 9, 2318 15 of 27

where β and λv are the dual variables associated with Equations (93) and (94), respectively.

3.4. Uncertainty of Demands, Unit Transportation Costs, and Maximum Number of Vehicles
in Use

In this subsection, we focus on the case where the demands, unit transportation
costs, and maximum number of vehicles are uncertain. As with the previous cases, the
demand Wp

jt ∈
[
WpL

jt , WpL
jt + Wp∆

jt

]
, the unit transportation cost of a full vehicle Cv

q ∈[
CvL

q , CvL
q + Cv∆

q

]
, the unit transportation cost of an empty vehicle Cv

0 ∈
[
CvL

0 , CvL
0 + Cv∆

0
]
,

the maximum number of vehicles in use Nmaxv ∈
[
NmaxvL

im − Nmaxv∆
im , NmaxvL

im
]
, and

hw, hCq , hC0 , and hn are the uncertainty budgets of each uncertain parameter.
We use the already-introduced variables Cv

1 and Cv
2 in the unit transportation costs

uncertainty case. The uncertainty does not influence the environmental objective function.
Therefore, the resulting mathematical model is formulated as follows:

Min
{

CS + CO + CH + ∑
v∈V

CvL
q ·Cv

1 + ∑
v∈V

CvL
0 ·Cv

2 + maxSCq :|SCq |≤hCq

{
∑

v∈V
Cv∆

q ·Cv
1

}
+ maxSC0:|SC0|≤hC0

{
∑

v∈V
Cv∆

0 ·Cv
2

}
+ ∑

t∈T2,p∈P
(Wdp

(t−1) − ∑
k∈K,j∈J,v∈V

qpv
kjt)·Cdp

t

+ ∑
t∈T2,p∈P

∑
j∈J

WpL
jt .Cdp

t + maxSw :|Sw |≤hw

{
∑

t∈T2,p∈P
∑
j∈J

Wp∆
jt ·Cdp

t

}} (98)

Subject to Equations (17), (18), (20)–(38), (40), (41) and (91):
To reformulate this inner problem as a mathematical program, we introduce the binary

variables α
p
jt ∈ {0, 1}, β

p
jt ∈ {0, 1}, and Γ

p
jt ∈ {0, 1} for each retailer j ∈ J, product p ∈ P,

and period t ∈ T2; and av ∈ {0, 1}, bv ∈ {0, 1}, and dv ∈ {0, 1} for each vehicle v ∈ V.
Consequently, the following model is obtained:

Min

{
CT + CS + CO + CH + ∑

t∈T2,p∈P
(Wdp

(t−1) − ∑
k∈K,j∈J,v∈V

qpv
kjt)·Cdp

t + ∑
t∈T2,p∈P

∑
j

WpL
jt ·Cdp

t

+ max

{
∑

t∈T2,p∈P
∑
j

Wp∆
jt ·Cdp

t .αp
jt

}
+ ∑

v∈V
CvL

q ·Cv
1 + ∑

v∈V
CvL

0 ·Cv
2 + max

{
∑

v∈V
Cv∆

q ·Cv
1 av
}

+ max
{

∑
v∈V

Cv∆
0 ·Cv

2 ·bv
}} (99)

Subject to Equations (17), (18) and (20)–(38):

∑
t∈T2,p∈P

∑
j∈J

α
p
jt ≤ hw ; ∀j ∈ J, p ∈ P, t ∈ T2 (100)

0 ≤ α
p
jt ≤ 1 ; ∀j ∈ J, p ∈ P, t ∈ T2 (101)

WpL
jt +

t−1

∑
h=1

WpL
jh + max

{
Wp∆

jt ·β
p
jt +

t−1

∑
h=1

Wp∆
jh ·β

p
jh

}
= ∑

k∈K,v∈V

t+ap

∑
h=1

qpv
kjh; ∀ t ∈ T1, t p ∈ P, j ∈ J (102)

∑
j∈J

∑
t∈T2,p∈P

β
p
jt ≤ hw (103)

t−1

∑
h=1

∑
j∈J

∑
p∈P

β
p
jh ≤ hw (104)

0 ≤ β
p
jt ≤ 1 ; ∀j ∈ J, p ∈ P, t ∈ T2 (105)

0 ≤ β
p
jh ≤ 1 ; ∀j ∈ J, p ∈ P, h ∈ [1; t− 1] (106)
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Wdp
t = ∑

j∈J
WpL

jt + max

{
∑
j∈J

Wp∆
jt . Γ

p
jt

}
− ∑

k∈K,v∈V,j∈J
qpv

kjt + Wdp
(t−1); ∀ t ∈ T2, p ∈ P (107)

∑
j∈J

∑
t∈T2,p∈P

Γ
p
jt ≤ hw (108)

0 ≤ Γ
p
jt ≤ 1 ; ∀j ∈ J, p ∈ P, t ∈ T2 (109)

∑
v∈V

av ≤ hCq (110)

av ≥ 0; ∀v ∈ V (111)

∑
v∈V

bv ≤ hC0 (112)

bv ≥ 0; ∀v ∈ V (113)

Nv
imt ≤ NmaxvL

im −max
{

Nmaxv∆
im ·dv

}
; ∀ t ∈ T2, (i, m) ∈ A, v ∈ V (114)

∑
v∈V

dv ≤ hn (115)

dv ≥ 0; ∀v ∈ V (116)

The obtained linear problem is written as follows:

Min
{

CS + CO + CH + ∑
v∈V

Dv + ∑
v∈V

Fv + ∑
v∈V

πv + hCq·ρ + ∑
v∈V

σv + hC0·τ

+ ∑
t∈T2,p∈P

(
Wdp

(t−1) − ∑
k∈K,j∈J,v∈V

qpv
kjt

)
·Cdp

t + ∑
j∈J

∑
t∈T2,p∈P

(δ
p
jt + WpL

jt ·Cdp
t ) + hw· ε

} (117)

Subject to Equations (17), (18) and (20)–(38):

πv + ρ ≥ Dv; ∀v ∈ V (118)

σv + τ ≥ Fv; ∀v ∈ V (119)

πv, σv, ρ, τ ≥ 0; ∀v ∈ V (120)

0 ≤ Cv∆
q ≤ CvL

q ; ∀v ∈ V (121)

0 ≤ Cv
1 ≤ Cv

1upper ; ∀v ∈ V (122)

0 ≤ Cv∆
0 ≤ CvL

0 ; ∀v ∈ V (123)

0 ≤ Cv
2 ≤ Cv

2upper ; ∀v ∈ V (124)

Dv ≥ CvL
q ·Cv

1 + Cv
1upper.C

v∆
q − Cv

1upper·CvL
q ; ∀v ∈ V (125)

Dv ≥ 0 ; ∀v ∈ V (126)

Dv ≤ CvL
q ·Cv

1 ; ∀v ∈ V (127)

Dv ≤ Cv
1upper·Cv∆

q ; ∀v ∈ V (128)

Fv ≥ CvL
0 · Cv

2 + Cv
2upper·Cv∆

0 − Cv
2upper·CvL

0 ; ∀v ∈ V (129)

Fv ≥ 0 ; ∀v ∈ V (130)

Fv ≤ CvL
0 · Cv

2 ; ∀v ∈ V (131)

Fv ≤ Cv
2upper · Cv∆

0 ; ∀v ∈ V (132)

δ
p
jt + ε ≥Wp∆

jt ·Cdp
t ; ∀ t ∈ T2, p ∈ P, j ∈ J (133)
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δ
p
jt, ε ≥ 0; ∀ t ∈ T2, p ∈ P, j ∈ J (134)

WpL
jt +

t−1

∑
h=1

WpL
jh + ξ

p
jt +

t−1

∑
h=1

ξ
p
jh + θ·hw = ∑

k∈K,v∈V

t+ap

∑
h=1

qpv
kjh; ∀ t ∈ T1, p ∈ P, j ∈ J (135)

θ + ξ
p
jt +

t−1

∑
h=1

ξ
p
jh ≥Wp∆

jt +
t−1

∑
h=1

Wp∆
jh ; ∀ t ∈ T1, p ∈ P, j ∈ J (136)

ξ
p
jt, θ ≥ 0; t ∈ T2, p ∈ P, j ∈ J (137)

Wdp
t = ∑

j∈J
WpL

jt + ∑
j∈J

ϑ
p
jt + µ·hw − ∑

k∈K, j∈J, v∈V
qpv

kjt + Wdp
(t−1); ∀ t ∈ T, p ∈ P (138)

ϑ
p
jt + µ ≥Wp∆

jt ; ∀ t ∈ T2, p ∈ P, j ∈ J (139)

µ, ϑ
p
jt ≥ 0; ∀ t ∈ T2, p ∈ P, j ∈ J (140)

Nv
imt ≤ NmaxvL

im −ωv − Γ ; ∀t ∈ T2, (i, m) ∈ A, v ∈ V (141)

−ωv − Γ ≤ −Nmaxv∆
im ; ∀v ∈ V (142)

Γ, ωv ≥ 0; ∀v ∈ V (143)

where δ
p
jt, ε, ξ

p
jt, θ, ϑ

p
jt, µ, πv, ρ, σv, τ, ωv, and Γ are the dual variables associated with Equa-

tions (100), (101), (103)–(107), (109)–(113), (115) and (116), respectively. We use Av = Cv∆
q .Cv

1
and Bv = Cv∆

0 ·Cv
2 . Moreover, Cv

1upper and Cv
2upper are the upper bounds for Cv

1 and Cv
2 , re-

spectively.

4. Computational Analysis

We apply our models to the distribution network represented in Figure 2. There are
34 nodes consisting of 7 suppliers delivering 7 food products to 13 retailers via shared
warehouses and distribution centres for 6 weeks. The maximum number of warehouses
and distribution centres to be opened is seven for each set. The number of hubs and their
storage capacities are determined from the mathematical model.
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The used distribution network is fictitious. The statistical data of CO2 emissions and
pallet characteristics are European. For this reason, we have chosen to treat a national
distribution network located in France. There are two types of data: the first are extracted
from statistical reports (unit emissions and warehouses’ unit opening costs); these data are
described in [33,35–37], etc. The other data are hypothetical, such as unit transportation
cost, customer demand, etc. The number of weeks allowed for late delivery for each
partner is shown in Table 3. The rest of the data are represented in Table 4. Similarly
to the approach applied by [38], we use nominal demands (WpL

jt ) that follow a uniform
distribution in the interval [0, 50]; these demands are given by Equation (144). The number
of periods processed is equal to six (weeks), and each supplier has only one type of product.
The used distances were calculated using Google Maps, and are shown in Appendix A.

WpL
jt = rand([0, 50]); ∀ t ∈ T1, j ∈ J, p ∈ P (144)

Table 3. Number of weeks allowed for late delivery.

Suppliers i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7

ap 1 0 0 1 0 2 1

Table 4. Other used data.

Parameters Values Data Sources

α 2
AP (m2) 0.96 Size of a European pallet (1.2 × 0.8)

Cdp
t (€/Pallet) 5

Csp, Clp, Cup (€/Pallet) 1
Csp

m (€/Pallet) 10
Cwm (€/m2) 400 [37,39]

Ecm
(
kg CO2/m2) 200 [33,40]

Eom,t (g CO2/kwh) 87.5 [33,40]
Wm,t(kwh) 50
Sp

m (Pallets) 0

We solved the resulting MILP formulations using IBM CPLEX 12.10 [41] on an Intel
Core i7 with 2.40 GHz CPU and 6 GB of RAM, taking 5% of the uncertain parameters as
the initial value of the uncertainty budget.

We used a heterogeneous fleet of vehicles to improve the vehicles fill rates, to select the
appropriate vehicle capacity for each shipment, and to reduce the total distance travelled.
According to [38], the employment of a heterogeneous fleet of vehicles can achieve an
economy of scale and minimise the unit transportation costs. In this case study, we utilized
three types of vehicles, with the data presented in Table 5.

Table 5. The required data for the vehicles in use.

Parameters
Values

Data Sources
v = 1 v = 2 v = 3

Qv (Pallets) 15 33 39

Benchmarking
Nmax 15 15 15

Payload (tons) 13 40 40
Cov (€/km) 0.3 0.5 0.7
Cqv (€/km) 0.5 1 1.2

Eov (g CO2/km) 511.2 772.68 772.68 [35]
Eqv (g CO2/km) 583.7 1096.09 1096.09 [35]
EMv (g CO2/km) 78 111 122 [36]
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The results obtained in each uncertainty case and the fixed deterministic case (or worst
case) are shown in Table 6. The fixed deterministic case means that the used parameter
values are those found in the worst case [20]. Therefore, the values of these parameters are
equal to their nominal values plus the deviations provided by solving the robust model.
S_eco represents the scenario dealing with the economic objective function, while S_env
corresponds to that examining the environmental objective function.

Table 6. Summary of the results obtained in the worst case and the robust cases.

Sustainability Indicators
Demands Uncertainty Case Unit Transportation Costs Uncertainty Case

Worst Case Robust Worst Case Robust

S_eco S_env S_eco S_env S_eco S_env S_eco S_env

Transportation cost (EUR 106) 9.511 11.564 9.733 11.590 9.115 11.294 9.843 11.61
Storage cost (EUR 104) 1.942 5.615 0.663 6.701 0.408 6.815 0.561 6.961

Handling cost (EUR 105) 1.172 1.172 1.172 1.172 1.134 1.134 1.134 1.134
Opening cost (EUR 106) 4.804 4.396 4.829 4.828 4.262 4.265 4.807 4.804
Penalty cost (EUR 104) 3.736 4.132 6.951 7.558 4.004 3.912 5.777 6.203

Costs (EUR 107) 1.449 1.616 1.476 1.667 1.354 1.578 1.483 1.666

CO2 emissions due to vehicles
(108 gCO2) 8.071 7.889 8.544 7.877 7.756 7.498 7.801 7.452

CO2 emissions due to hubs
(109 gCO2) 2.198 2.198 2.415 2.414 2.132 2.133 2.404 2.402

CO2 emissions (109 g CO2) 3.005 2.987 3.269 3.202 2.907 2.883 3.184 3.147

Maximum Number of Vehicles in Use in
Uncertainty Case

Demands, Unit Transportation Costs and
Maximum Number of Vehicles in Use in

Uncertainty Case

Worst Case Robust Worst Case Robust

S_eco S_env S_eco S_env S_eco S_env S_eco S_env

Transportation cost (EUR 106) 9.114 11.294 9.114 11.140 9.900 11.752 10.407 11.299
Storage cost (EUR 104) 0.408 6.739 0.408 5.919 1.073 4.780 1.013 5.569

Handling cost (EUR 105) 1.134 1.134 1.134 1.134 1.723 1.172 1.172 1.172
Opening cost (EUR 106) 4.262 4.265 4.262 4.262 4.397 2.251 4.899 4.842
Penalty cost (EUR 104) 4.005 3.912 4.005 3.742 4.104 4.090 6.953 7.323

Costs (EUR 107) 1.353 1.560 1.353 1.561 1.446 1.638 1.551 1.639

CO2 emissions due to vehicles
(108 gCO2) 7.758 7.498 7.758 7.529 8.589 8.032 8.035 8.685

CO2 emissions due to hubs
(109 g CO2) 2.132 2.132 2.132 2.132 2.198 2.210 2.450 2.421

CO2 emissions (109 g CO2) 2.907 2.883 2.907 2.884 3.057 3.013 3.254 3.289

4.1. The Impacts of Considering Uncertainty

To compare the results of the robust case with those of the worst case, we use a gap
calculated as follows:

GAP (%) =
ZS_robust − ZS_ worst case

ZS_worst case
· 100 (145)

where ZS_ worst case is the worst case optimal solution and ZS_robust denotes the robust case.
The obtained results are shown in Table 7. We note that, when 5% of the demands take

their worst case values, the total logistical cost of all scenarios is slightly higher in the robust
approach than in the worst case. The robust economic scenario shows a total logistical
cost and CO2 emissions with increases of 1.86% and 8.79%, respectively, compared to the
worst case. The robust environmental scenario also shows higher results, with 3.16% for
the costs and 7.2% for the emissions, than the worst case. For the other levels of uncertainty,
we always obtain gaps under 10%. When dealing with uncertain unit transport costs, the
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robust economic scenario shows a 9.53% increase from the worst case, for both costs and
emissions. Furthermore, in the case of an uncertain maximum number of vehicles in use,
the same finding is provided with gaps of 0% for the economic scenarios and 0.06% and
0.03% for the environmental ones. Finally, when all of the above-mentioned parameters are
uncertain, there is an average increase of 6.85% while examining the costs and 7.80% for the
minimisation of the CO2 emissions, with maximum gaps of 7.26% and 9.16%, respectively.
Despite the parameters’ disruptions, which generate additional costs and emissions, our
robust model allows us to find optimal solutions with values close to the worst case ones.
The proposed robust model is able to overcome the limits of the deterministic model,
since it offers flexibility by taking into account the variation of the parameters without
generating unmanageable costs and emissions. With this flexibility, real-life problems can
be examined.

Table 7. Reduction rates for the different studied cases (%).

Point of
View Robust

Worst Case

Demands Unit Transportation
Costs

Maximum Number of
Vehicles in Use

Demands, Unit
Transportation Costs, and

Maximum Number of
Vehicles in Use

S_eco S_env S_eco S_env S_eco S_env S_eco S_env

Eco
S_eco 1.86% - 9.53% - 0.00% - 6.77% -
S_env - 3.16% - 5.58% - 0.06% - 0.06%

Env
S_eco 8.79% - 9.53% - 0.00% - 6.05% -
S_env - 7.20% - 9.16% - 0.03% - 9.16%

To further evaluate the impact of uncertainty, we use Tables 8–10 to compare the
capacities of the hubs and the number of vehicles obtained in the robust and worst cases.
When dealing with uncertain demands, the quantities of goods transported increase,
improving the filling rate of vehicles, which means warehouses with bigger capacities.
For this reason, the number of vehicles used in the robust case (2526 vehicles for S_eco
and 2340 vehicles for S_env) is lower than that obtained in the worst case especially for
the vehicles of type 3, which have the highest costs and emissions compared to the other
vehicle types. Similarly, the capacities of the hubs are slightly higher in the robust case
with uncertain unit transportation costs. However, when minimizing the costs, the robust
approach presents a lower number of vehicles, which is reduced by the increase in the
filling rate.

By comparing the results obtained in the maximum number of vehicles in use un-
certainty case to those provided in the worst case, we note that when dealing with the
economic scenario we have 2418 for both cases, compared to 2308 and 2270 vehicles in
the environmental scenarios, constituting an increase of 1.67%. In the uncertainty case
where all parameters are considered variable, the results show higher hub capacities due to
variations in demand and unit transportation costs. However, since the transportation costs
and demands impact the logistical costs directly, and the maximum number of vehicles in
use reduces the total number of vehicles in use, the latter is lower in the robust economic
scenario than in the worst case. We can conclude that uncertainty gives better or close
results than the worst case, depending on the studied uncertain parameter.
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Table 8. Capacities of upstream hubs (pallets).

Parameter Approach Scenario
Capacity (Pallets)

m = 1 m = 2 m = 3 m = 4 m = 5 m = 6 m = 7

Demands
Robust

S_eco 0 0 435 0 916 1234 465
S_env 0 0 0 0 1334 1694 0

Worst
case

S_eco 0 0 0 0 1163 1547 0
S_env 0 0 475 723 426 771 413

Unit transportation costs
Robust

S_eco 0 0 0 0 1342 1698 0
S_env 0 0 0 0 1334 1230 465

Worst
case

S_eco 0 0 0 0 1248 1497 0
S_env 0 0 0 0 1211 1440 0

Maximum number of vehicles
in use

Robust
S_eco 0 0 0 0 1252 1493 0
S_env 0 451 452 0 1036 709 0

Worst
case

S_eco 0 0 0 0 1245 1499 0
S_env 0 0 0 0 1211 1440 0

Demands, unit transportation
costs, and maximum number of

vehicles in use

Robust
S_eco 0 435 0 0 1397 1267 0
S_env 0 435 0 421 771 1439 0

Worst
case

S_eco 0 464 0 0 1113 1242 0
S_env 0 0 506 0 1458 860 0

Table 9. Capacities of downstream hubs (Pallets).

Parameter Approach Scenario
Capacity (Pallets)

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

Demands
Robust

S_eco 0 0 0 1720 1518 0 0
S_env 0 0 733 1257 1269 0 0

Worst
case

S_eco 0 0 512 1133 1144 225 0
S_env 0 0 915 902 570 781 0

Unit transportation costs
Robust

S_eco 0 0 0 1710 1509 0 0
S_env 0 0 257 1460 1509 0 0

Worst
case

S_eco 0 0 0 1495 1086 223 0
S_env 0 0 0 1575 1323 0 0

Maximum number of vehicles
in use

Robust
S_eco 0 0 0 1507 1298 0 0
S_env 250 0 450 1542 0 660 0

Worst
case

S_eco 0 0 0 1504 1302 0 0
S_env 0 0 0 1575 1323 0 0

Demands, unit transportation
costs, and maximum number of

vehicles in use

Robust
S_eco 0 0 756 1016 986 523 0
S_env 0 0 745 967 1015 511 0

Worst
case

S_eco 225 0 225 1342 890 224 0
S_env 225 0 447 904 1145 210 0

4.2. Comparison of Economic and Environmental Scenarios’ Solutions

To compare the robust economic and environmental scenarios, the reduction rate is
used. The obtained results are shown in Table 11, describing first the case of uncertain
demands. Economically speaking, scenario S_eco is the best scenario, representing an
improvement of 6.57% over S_env. However, for the preservation of the environment,
scenario S_env is the most suitable, giving slightly better values (3.55%) than S_eco. For
the cases of unit transportation costs, the maximum number of vehicles in use, and the
combination of all uncertainty parameters, S_eco has the best economic results, while S_env
is the best environmentally speaking.
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Table 10. Number of vehicles in use.

Parameter Approach Scenario Type 1 Type 2 Type 3 Total

Demands
Robust

S_eco 610 606 1310 2526
S_env 509 522 1309 2340

Worst case
S_eco 610 613 1320 2543
S_env 516 548 1317 2381

Unit transportation costs
Robust

S_eco 581 562 1270 2413
S_env 497 514 1270 2281

Worst case
S_eco 583 564 1278 2425
S_env 497 511 1262 2322

Maximum number of
vehicles in use

Robust
S_eco 583 557 1278 2418
S_env 500 532 1276 2308

Worst case
S_eco 583 557 1278 2418
S_env 497 511 1262 2270

Demands, unit
transportation costs, and

maximum number of
vehicles in use

Robust
S_eco 604 624 1311 2539
S_env 590 616 1309 2515

Worst case
S_eco 609 632 1322 2563
S_env 512 539 1308 2359

Table 11. Gaps obtained in the two scenarios.

Demands Unit Transportation
Costs

Maximum Number of
Vehicles in Use

Demands, Unit
Transportation Costs, and

Maximum Number of
Vehicles in Use

S_eco S_env S_eco S_env S_eco S_env S_eco S_env

Eco
S_eco - −6.57% - −12.34% - −15.37% - −5.42%
S_env 6.57% - 12.34% - 15.37% - 5.42% -

Env
S_eco - 3.43% - 1.16% - 0.79% - −1.08%
S_env −3.55% - −1.18% - −0.80% - 1.06% -

Therefore, we can conclude that the economic scenario offers a good compromise
between the obtained costs and CO2 emissions; hence, it is the focus of the rest of this study.

4.3. The Impacts of the Uncertainty Level on the Network’s Optimal Configuration

We study the impact of the uncertainty level on the optimal configuration of the
distribution network, the total logistical cost, and the total CO2 emission quantities. First,
we present the optimal configurations obtained for the S_eco scenario illustrated in Figure 3.
We note that the optimal configuration of the uncertain demand case is different from that
of the unit transportation costs and number of vehicles in use cases, showing more open
warehouses due to the use of more resources when increasing the demand. Obviously, by
combining all of the uncertain parameters, the effect of demand uncertainty is highlighted,
and the configuration has more open warehouses and distribution centres.

Figure 4 reveals the influence of each level of uncertainty on both the economic and
environmental aspects. It is clear that the uncertainty of the unit transportation costs
has the highest total logistical cost. Indeed, it increases when combined with the other
levels of uncertainty. Therefore, from an economic point of view, the uncertainty of unit
transportation costs has the most important influence on the total logistical cost. When
dealing with the environmental aspect, the uncertainty of the maximum number of vehicles
in use affects the CO2 emissions slightly, because the decrease in this parameter’s value
reduces the emissions. However, the increase in transportation costs enhances the filling
rate of vehicles and, thus, increases the capacities of hubs, causing higher emissions.
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Moreover, when examining uncertain demands, there are more goods to deliver, which
makes the total travelled distance longer, and causes an increase in the number of vehicles
in use and the number of hubs; consequently, the CO2 emissions will increase. When
combining all of the uncertain parameters, the filling rate of vehicles increases and the
number of vehicles decreases, compared to the uncertain demands case. For this reason,
total emissions are lower than in the latter case.
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4.4. The Impacts of the Uncertainty Budget on Costs and CO2 Emissions

Our modelling approaches allow decision-makers to select the level of robustness
through uncertainty budgets. For some problems, it is unrealistic to assume that all
parameter values change, and it is necessary to guard against this possibility [42]. In the
following subsection, we will investigate the impacts of different uncertainty budgets on
the total logistical cost and total CO2 emissions; these effects are evaluated in Figures 5
and 6, respectively. The curves in Figure 5 show that the total logistical cost for the cases
of uncertain demand, unit transportation costs, and all of the parameters’ uncertainties
increases with the uncertainty budget due to the selection of more uncertain demand
parameters, unit transportation costs, and maximum number of vehicles in use. The
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uncertainty of all parameters is most sensitive to the increase in the budget. For the case of
uncertainty in the maximum number of vehicles in use from the 70% value of the budget,
the logistical cost becomes constant because of the uncertainty of all parameter budgets
below 70%.
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Figure 6 demonstrates the total CO2 emissions as a function of the variation in the
uncertainty budgets. With the increase in the latter, the number of parameters that can
deviate from their nominal values increases; demand has the highest CO2 emissions, as
more resources are exploited. Beyond 70% and 10% of the budget, the emissions with
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a maximum number of vehicles in use or uncertain unit transportation costs become
constant due to the choice of all of the parameters as variables at less than this value, the
non-dependence of emissions on transportation costs, and the decrease in the number
of vehicles in use. On the other hand, the increase in the uncertainty budgets of all
uncertain parameters—namely, demands, unit transportation costs, and maximum number
of vehicles in use—increases CO2 emissions due to the considerable effect of demands
on them.

5. Conclusions

In this study, we addressed the problem of designing a collaborative distribution
network under uncertainty. Our objective was to minimise the logistical costs and CO2
emissions. Four uncertain models were proposed, examining demands, unit transportation
costs, and maximum number of vehicles in use as uncertain parameters, both jointly and
separately. We considered an interval of uncertainty for demands, unit transportation
costs, and maximum number of vehicles in use, and used an uncertainty budget to control
the level of conservatism in solution networks. We introduced mixed-integer linear pro-
gramming formulations for each of the considered robust counterparts. To validate our
models, we solved them with a commercial solver using a case study. Then, we analysed
the obtained results by discussing the impact of uncertainty, the effects of the levels of
uncertainty from an economic and environmental point of view, and the effects of the
variation in the uncertainty budget, whose increase allowed the choice of more parameters
deviating from their nominal values. We noticed that, for the economic and environmental
scenarios, uncertainty made it possible to obtain results close to the worst case. Indeed,
despite the variation in the data, the robust approach presents better or close results while
dealing with the number of vehicles in use, depending on the uncertain parameter analysed.
Comparing the considered scenarios according to their objectives, we noticed that the eco-
nomic scenario offered a good compromise between the obtained values of costs and CO2
emissions. It was also obvious that the optimal configuration of the uncertain demands
case had more open warehouses. When dealing with the influence of the uncertainty levels,
the unit transport costs had the most important impact from the economic point of view,
unlike the environmental case, where the influence of the demands was the most dominant.
The studied problem in this paper is NP-hard; thus, as the size of the problem increases,
the use of a commercial solver can be considered as a factor leading to long computation
times. Heuristic methods such as genetic algorithms seem to be a promising approach to
cover large instances. Moreover, simultaneously minimising the logistical costs and the
CO2 emissions would be preferable to ensure sustainability.
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Appendix A

Table A1. Used distances between warehouses and both suppliers and distribution centres (km).

Suppliers Distribution Centres

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

Warehouses

m = 1 224 152 250 294 232 319 377 78 143 288 293 410 438 605
m = 2 282 210 308 264 211 247 307 95 156 201 206 323 351 531
m = 3 266 194 265 212 159 209 270 127 149 106 110 227 255 476
m = 4 279 206 237 183 131 119 178 195 217 168 135 182 210 422
m = 5 358 285 315 262 209 197 243 247 269 220 146 165 225 369
m = 6 378 305 336 282 229 217 184 335 357 308 179 132 192 286
m = 7 415 342 373 319 266 243 125 429 490 420 348 260 320 224

Table A2. Used distances between distribution centres and retailers (km).

Retailers

j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8 j = 9 j = 10 j = 11 j = 12 j = 13

Distribution
centres

k = 1 192 291 322 401 256 351 345 545 507 446 576 595 476
k = 2 130 229 255 333 246 341 336 568 529 468 598 618 498
k = 3 77 146 115 194 119 214 208 349 377 316 446 465 346
k = 4 205 273 223 280 123 213 208 307 269 208 338 357 238
k = 5 383 451 351 404 251 337 301 282 244 183 243 257 161
k = 6 411 406 334 342 234 275 238 220 182 121 183 202 101
k = 7 647 716 554 535 454 469 432 451 413 350 254 195 225
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