Supplementary Information

Crystal Structure of Na₂V₂(PO₄)₃, an Intriguing Phase Spotted in the Na₃V₂(PO₄)₃ – Na₁V₂(PO₄)₃ System

Sunkyu Park ^{1,2,3}, Ziliang Wang ⁴, Zeyu Deng⁴, Iona Moog ³, Pieremanuele Canepa ^{4,5*}, François Fauth ⁶, Dany Carlier ^{2,7}, Laurence Croguennec ^{2,7}, Christian Masquelier ^{1,7} and Jean-Noël Chotard ^{1,7,*}

 ¹Laboratoire de Réactivité et de Chimie des Solides, Université de Picardie Jules Verne, CNRS-UMR 7314, F-80039 Amiens Cedex 1, France
²CNRS, Univ. Bordeaux, Bordeaux INP, ICMCB UMR 5026, F-33600 Pessac, France
³TIAMAT, 15 Rue Baudelocque, 80000 Amiens
⁴Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
⁵Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585
⁶CELLS-ALBA Synchrotron, Cerdanyola del Vallès, E-08290 Barcelona, Spain
⁷RS2E, Réseau Français sur le Stockage Electrochimique de l'Energie, FR CNRS 3459,

F-80039 Amiens Cedex 1, France

Corresponding authors: *pcanepa@nus.edu.sg [&]jean-noel.chotard@u-picardie.fr

Figure S1. SEM images of the as-synthesized $Na_3V_2(PO_4)_3$ powder.

Figure S2. TGA data of the as-synthesized $Na_3V_2(PO_4)_3$ powder.

Figure S3. Rietveld refinement results of the as-synthesized Na₃V₂(PO₄)₃ powder at 298 K, highlighting that the α phase structure can be excluded here as reflection at 6.74° (a clear signature from the α phase) was not observed.

Figure S4. Wider 20 ranged *operando* SPXRD patterns of $Na_3V_2(PO_4)_3$ during first cycle with a voltage window of 1.0 - 3.75 V vs. Na^+/Na at the C-rate of 0.11 C (=1 Na^+ in 9 h). The same data with the counter plot with the narrower 20 range of $7.4 - 8.0^\circ$ is shown in Figure 2.

Figure S5. Comparison of a polarization between the first *in situ* cell (shown in Figure 2) and a normal coin cell cycled with the same C-rate of 0.11 C. The assembly of the normal coin cell is done with the same way as the *in situ* coin cell. The polarization of the *in situ* coin cell is about 150 mV while that of the normal coin cell is about 30 mV.

Figure S6 Top: *Operando* SPXRD measurements performed upon cycling of Na₃V₂(PO₄)₃ as positive electrode material in a half-cell versus Na metal, during six cycles at C-rates of 0.37 or 0.77 C. The voltage windows of each cycle are given in details in Table S2. Bottom: the SPXRD patterns containing the most Na₂V₂(PO₄)₃ phase during each cycle. Note that the Na₃V₂(PO₄)₃ phase during 2nd and 3rd discharge was not observed as data point missing (fewer data points) due to higher C-rate.

Cycle number	C-rate	Lower cut-off (V)	Upper cut-off (V)
1	0.37 C	2	4.3
2	0.77 C	1.8	4.4
3	0.77 C	1.65	4.5
4	0.77 C	1.65	4.5
5	0.37 C	2	4.3
6*	0.77 C	1.65	4.5

Table S1. Changes in voltage windows and C-rates during *operando* XRD measurements performedupon cycling of the second cell (Figure S5). The measurement was stopped in the middle of chargeduring the sixth cycle.

Figure S7. Rietveld refinement results of $Na_2V_2(PO_4)_3$ with the space group $R\overline{3}c$. The reflection at 3.85° is not explained with the current structural model.

Figure S8. Rietveld refinement results of $Na_2V_2(PO_4)_3$ with the space group C2/c. The reflection at 3.85° is not explained with the current structural model.

	Na ₄ V	2 (PO 4)3	Na	a₃V₂(I	PO ₄) ₃	N	a ₂ V ₂ (P	O 4)3	Na	a ₂ V ₂ (P	O 4)3		Na₁V	2(PO4)3
	F	13c		C2/	c	P2 1	<i>P</i> 2 ₁ / <i>c</i> (Model 1) <i>P</i> 2/ <i>c</i> (Model		del 2)	el 2) R3c		₹Īc		
V(1)	O(1)	2.065(14) x 3	V(1)	O(1)	1.89(3)	V(1a)	O(1b)	2.05(9)	V(1a)	O(1b)	1.98(9)	V(1)	O(1)	1.931(16) x 3
	O(2)	2.087(14) x 3		O(2)	2.00(4)		O(1d)	1.70(10)		O(1d)	1.62(9)		O(2)	1.88(2) x 3
				O(3)	2.01(3)		O(1e)	1.93(7)		O(1e)	1.87(6)			
				O(4)	2.04(4)		O(2b)	2.17(10)		O(2b)	2.18(10)			
				O(5)	2.09(3)		O(2c)	2.03(8)		O(2c)	1.801(5)			
				O(6)	2.06(4)		O(2f)	2.06(9)		O(2f)	2.06(8)			
						avg. V	/(1a)–O	1.99(9)	avg. V	(1a)–O	1.92(8)			
						V(1b)	O(1a)	2.04(9)	V(1b)	O(1a)	2.10(8)			
							O(1c)	1.85(10)		O(1c)	1.91(10)			
							O(1f)	2.17(7)		O(1f)	2.24(5)			
							O(2a)	2.01(10)		O(2a)	2.04(8)			
							O(2d)	1.82(8)		O(2d)	1.95(7)			
							O(2e)	2.08(11)		O(2e)	1.99(8)			
						avg. V	′(1b)–O	1.99(9)	avg. V	(1b)O	2.04(8)			
Avg.		2.076(14)			2.02(4)			1.99(9)			1.98(8)			1.91(2)

Table S2. V-O bond distances obtained from Rietveld refinement of the four compositions $Na_xV_2(PO_4)_3$ (x = 1, 2, 3, and 4).

Na ₂ V ₂ (PO ₄) ₃ Space group: P2/c (#13); Z =4								
a =15.2380(5) A; b = 8.6090(5) A; c = 8.7390(4); b = 126.289(5) V= 924.05(7) Å ³ : V/Z= 231.01(2) Å ³								
$R_{wp} = 12.8 \%; R_p = 18.0 \%; R_{bragg} = 7.50 \%$								
Atom	Wyckoff position	x/a	y/b	z/c	Uiso, Ų	Occ.		
V(1a)	4g	0.600(2)	0.243(4)	0.649(4)	0.026(3)	1		
V(1b)	4g	0.108(2)	0.741(4)	0.645(4)	0.026(3)	1		
P(1a)	4g	0.8498(10)	0.113(2)	0.932(2)	0.029(3)	1		
P(1b)	4g	0.3569(10)	0.605(2)	0.958(2)	0.029(3)	1		
P(2a)	2e	0	0.534(2)	0.25	0.029(3)	1		
P(2b)	2f	0.5	0.021(2)	0.25	0.029(3)	1		
O(1a)	4g	0.143(6)	0.149(10)	0.389(7)	0.012(3)	1		
O(1b)	4g	0.660(7)	0.643(10)	0.389(10)	0.012(3)	1		
O(2a)	4g	0.072(6)	0.451(10)	0.204(10)	0.012(3)	1		
O(2b)	4g	0.553(6)	0.888(5)	0.214(10)	0.012(3)	1		
O(3a)	4g	0.458(4)	0.678(10)	0.990(10)	0.012(3)	1		
O(3b)	4g	0.937(4)	0.184(7)	0.919(10)	0.012(3)	1		
O(4a)	4g	0.157(7)	0.064(2)	0.082(10)	0.012(3)	1		
O(4b)	4g	0.635(7)	0.573(2)	0.020(4)	0.012(3)	1		
O(5a)	4g	0.734(3)	0.840(10)	0.265(7)	0.012(3)	1		
O(5b)	4g	0.259(5)	0.325(10)	0.273(7)	0.012(3)	1		
O(6a)	4g	0.085(6)	0.364(10)	0.920(7)	0.012(3)	1		
O(6b)	4g	0.581(6)	0.882(10)	0.929(7)	0.012(3)	1		
Na(1)	4g	0.275(4)	0.280(7)	0.050(7)	0.030(13)	0.98(3)		
Na(2a1)	4g	0.695ª	0.937ª	0.603ª	0.030(13)	0.17(7)		
Na(2a ₂)	4g	0.172ª	0.446 ^a	0.570 ^a	0.030(13)	0.21(7)		
Na(2b1)	2e	0	0.916(10)	0.25	0.030(13)	0.63(11)		
Na(2b ₂)	2f	0.5	0.362(13)	0.25	0.030(13)	0.68(11)		

Table S3. Refined structural parameters of the intermediate phase $Na_2V_2(PO_4)_3$ using the spacegroup P2/c (Model 2). ^aRefined and fixed at the last stages of refinement.

Figure S9. Comparison of the space group $P_{2_1/c}$ and $P_{2/c}$ for the structural determination of $Na_2V_2(PO_4)_3$ phase. The same intensity for the possible (010) reflection (from the $P_{2/c}$ structural model) was observed in the XRD patterns of $Na_3V_2(PO_4)_3$, $Na_2V_2(PO_4)_3$, and $Na_1V_2(PO_4)_3$, suggesting it is not a peak but noisy background.

Figure S10. Rietveld refinement results of Na₄V₂(PO₄)₃. The XRD pattern was obtained from *operando* measurements. The contributions from Na metal and Al foil are removed

Table S4. Refined structural	parameters of the	Na ₄ V ₂ (PO ₄))₃ using the space	group R3c
------------------------------	-------------------	---	--------------------	-----------

Na ₄ V ₂ (PO ₄) ₃
Space group: <i>R</i> 3 <i>c</i> (#167); <i>Z</i> =6
a = 8.94302(10) Å; $c = 21.3609(4)$ Å; $c/a = 2.389$
<i>V</i> = 1479.51(4) ų; <i>V/Z</i> =246.585(7) ų
R_{wp} = 14.1 %; R_{p} = 19.5 %; R_{bragg} = 4.2 %

Atom	Wyckoff position	x/a	y/b	z/c	Uiso, Ų	Occ.
V(1)	12c	0	0	0.1467(3)	0.014(2)	1
P(1)	18e	0.2970(11)	0	0.25	0.021(4)	1
Na(1)	6b	0	0	0	0.031(9)	0.97(4)
Na(2)	18e	0.6461(14)	0	0.25	0.021(8)	0.92(2)
O(1)	36f	0.013(2)	0.2099(14)	0.1921(5)	0.020(5)	1
O(2)	36f	0.1827(14)	0.1713(14)	0.0833(7)	0.024(4)	1

Figure S11. Rietveld refinement results of Na₃V₂(PO₄)₃. The XRD pattern was obtained from *operando* measurements. The contributions from Na metal and Al foil are removed

$Na_{3}V_{2}(PO_{4})_{3}$ Space group: C2/c (#15); Z =4 a =15.4065(3) Å; b = 8.7288(2) Å; c = 8.8243(2); β = 126.1091(16) V= 958.73(4) Å ³ ; V/Z= 239.682(10) Å ³ R_{wp} = 11.2 %; R_{p} = 17.5 %; R_{bragg} = 7.17 %								
Atom	Wyckoff position	x/a	y/b	z/c	Uiso, Ų	Occ.		
V(1)	8f	0.6029(6)	0.253(3)	0.6500(14)	0.015(2)	1		
P(1)	8f	0.8514(11)	0.0999(14)	0.9620(14)	0.021(3)	1		
P(2)	4e	0	0.532(2)	0.25	0.021(3)	1		
O(1)	8f	0.138(2)	0.126(4)	0.357(3)	0.011(2)	1		
O(2)	8f	0.0763(18)	0.450(3)	0.221(3)	0.011(2)	1		
O(3)	8f	0.4510(18)	0.670(3)	0.987(4)	0.011(2)	1		
O(4)	8f	0.156(2)	0.076(2)	0.066(4)	0.011(2)	1		
O(5)	8f	0.7587(18)	0.828(4)	0.275(3)	0.011(2)	1		
O(6)	8f	0.073(2)	0.361(3)	0.919(3)	0.011(2)	1		
Na(1)	4c	0.25	0.25	0	0.059(9)	0.679(14)		
Na(2a)	8f	0.665(2)	0.927(5)	0.634(5)	0.059(9)	0.70(3)		

0.877(6)

0

0.25

0.059(9)

0.87(2)

Na(2b)

4e

Table S5. Refined structural parameters of the intermediate phase $Na_3V_2(PO_4)_3$ using the spacegroup C2/c. The XRD pattern was obtained from *operando* measurements.

Figure S12. Rietveld refinement results of Na₁V₂(PO₄)₃. The XRD pattern was obtained from *operando* measurements. The contributions from Na metal and Al foil are removed.

$Na_1V_2(PO_4)_3$ Space group: $R\overline{3}c$ (#167); Z =6 a = 8.42631(12) Å; c = 21.4772(6) Å; c/a = 2.549 $V = 1320.63(5) \text{ Å}^3; V/Z = 220.105(8) \text{ Å}^3$ $R_{wp} = 15.8 \%; R_p = 24.3 \%; R_{bragg} = 7.69 \%$								
Atom	Wyckoff position	x/a	y/b	z/c	Uiso, Ų	Occ.		
V(1)	12c	0	0	0.1450(4)	0.024(3)	1		
P(1)	18e	0.285(1)	0	0.25	0.023(4)	1		
Na(1)	6b	0	0	0	0.034(0)	0.96(4)		
O(1)	36f	0.187(2)	0.160(2)	0.087(1)	0.017(5)	1		
O(2)	36f	0.023(3)	0.198(2)	0.192(1)	0.014(5)	1		

Table S6. Refined structural parameters of the Na₄V₂(PO₄)₃ using the space group $R\overline{3}c$.