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Abstract: Similar to environmental factors, EDCs (endocrine-disrupting chemicals) can influence
gene expression without modifying the DNA sequence. It is commonly accepted that the transgen-
erational inheritance of parentally acquired traits is conveyed by epigenetic alterations also known
as “epimutations”. DNA methylation, acetylation, histone modification, RNA-mediated effects and
extracellular vesicle effects are the mechanisms that have been described so far to be responsible for
these epimutations. They may lead to the transgenerational inheritance of diverse phenotypes in
the progeny when they occur in the germ cells of an affected individual. While EDC-induced health
effects have dramatically increased over the past decade, limited effects on sperm epigenetics have
been described. However, there has been a gain of interest in this issue in recent years. The gametes
(sperm and oocyte) represent targets for EDCs and thus a route for environmentally induced changes
over several generations. This review aims at providing an overview of the epigenetic mechanisms
that might be implicated in this transgenerational inheritance.

Keywords: endocrine-disrupting chemicals; transgenerational inheritance; non-genetic inheritance;
epigenetics; embryo; sperm; oocyte

1. Introduction

Endocrine-disrupting chemicals (EDCs) are exogenous chemicals or mixtures of chem-
icals interfering with any aspect of hormone action as defined by The Endocrine Society [1].
It is now established that more than 1000 products are considered as endocrine disruptors
(https://endocrinedisruption.org, accessed on 26 January 2022). EDCs are environmental
stressors able to activate or block hormone receptors. Their consequences can be deleteri-
ous, leading to cancer, malformations, or autistic disorders [2]. In particular, EDCs have
been proved to have negative effects on male and female reproduction. Gametogenesis
is a process tightly regulated by hormones, so is extremely sensitive to EDC. Androgens
and estrogens play a key role in germ cell proliferation, development and survival. In the
testis, minimal LH activity leading to the minimal production of testosterone by Leydig
cells, first during “mini-puberty” in the postnatal period and then during puberty, is crucial
to initiate and maintain complete spermatogenesis in adulthood [3]. Any anti-androgenic
exposure may reduce plasma testosterone concentration, which might cause spermatogene-
sis dysfunction. Spermatogenesis is also modulated at every level by estrogen, from the
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hypothalamus–pituitary–gonadal axis to the testis cells constituted by Leydig, Sertoli and
germ cells [4]. In the ovary, estrogen and progesterone are key steroid hormones in the
complex regulation of female reproductive functions [5].

EDCs are able to dysregulate the endocrine pathways essential for hormonal home-
ostasis. Overdoses of testosterone administered to developing male ovine fetuses alter gene
expression in the liver during adolescence, highlighting that prenatal androgen excess is a
determinant of lifelong male metabolic health [6]. The whole life span of an individual may
be affected by any disruption of homeostasis. The periconceptional time is a particularly
sensitive period for environmental exposure, due to the major epigenetic processes that
take place during gametogenesis and fertilization.

Both hormones and EDCs cause epigenetic changes either on DNA methylation,
histone modifications or microRNA expression. EDCs interfere with the action of hormones
and disrupt homeostasis. The timing of exposure is very important, particularly during
early development, and any alteration in the germline during prenatal period will be
transmitted to subsequent generations [7]. For example, the analysis of DNA methylation
in potentially EDC-responsive genes revealed differential gene methylation within their
promoter and/or gene body regions in the next generation [8].

If the classic notion of inheritance is based on the DNA molecule, new epigenetic actors
are emerging [9]. Oocytes and spermatozoa are particular cells able to transmit information
from one generation to the next. If an epigenome is altered, it will be transmitted to the
embryonic stem cell and then to all adult cells. Moreover, the precursors of the gametes,
named primordial germ cells (PGC) are prone to a fine and precise epigenetic regulation
very sensitive to environmental factors [10]. Imprinted genes are epigenetic targets during
gametogenesis able to retain and transfer environmental messages. Any gamete exposure
to EDC has consequences on epigenetic markers and may interfere with the inheritance
of specific features to the offspring. Several transgenerational studies demonstrate the
transmission of phenotypes in the absence of direct exposure via the germline [11,12].
Moreover, several environmental toxicants were shown to promote the transgenerational
transmission of increased disease susceptibility, infertility, general health conditions, the
onset of disorders in the testis, prostate and kidney in males, and an increased incidence of
obesity, polycystic ovaries, and reduced oocyte number in females [13]. Several players
implicated in this non-genetic inheritance have been described so far: DNA and RNA
methylation, histone modifications, non-coding RNAs and extracellular vesicles. The
effects of EDCs in human gametes through epigenetic modifications are analyzed in this
review and the potential transgenerational epigenetic effects are discussed.

Non Genetic Inheritance Players

(a) Methylation

DNA methylation regulates gene expression and genome activity without modifica-
tion of the coding sequence (Figure 1). DNA methylation is technically easy to investigate
and therefore the most documented epigenetic mark. DNA methylation involves methyl
groups that are attached to a DNA molecule. The attachment of a methyl group to DNA
is performed by DNA methyltransferase (DNMT) at a cytosine base just adjacent to a
guanine residue, which results in 5-methylcytosine (5mC). Four human DNMTs have been
characterized: DNMT1, DNMT2, DNMT3a and DNMT3b. De novo DNA methylation
patterns are established early in development by DNMT3a and DNMT3b and maintained
by DNMT1 [14]. When methylation affects a promoter region, it is associated with gene
silencing. When it involves a transcribed region, it increases transcriptional activity. DNA
methylation is essential for mammalian development. It is particularly involved in gene
silencing, X-chromosome inactivation, parent-of-origin imprinting, and transposon silenc-
ing [15]. Genomic regions with a different DNA methylation status are called differentially
methylated regions (DMRs). The epigenetic regulatory sites associated with DMRs may in-
fluence distal gene expression through non-coding RNA and are termed epigenetic control
regions (ECR). According to Skinner’s definition, the altered epigenetic marks at a specific
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DNA site in response to an environmental factor to influence gene expression are termed
an “Epimutation” [13]. The ability of an environmental factor to directly act and alter
epigenetic processes to promote gene expression and phenotype alterations is defined as
“Environmental Epigenetics”. Therefore, environmentally altered epigenetic sites that influ-
ence genome activity are epimutations [13]. Most of the epimutations reported in humans
are somatic and erased in germ cells; however, cases of the secondary epimutation of a rare
disease, present in three generations and maintained in germ cells, are described [16]. The
DMRs identified have a low CpG density and exist in CpG deserts [17]. Other nucleic acid
modifications have recently been described, namely DNA N6-methyladenine and RNA
N6-methyladenosine, but the transmission of this epigenetic information across generations
is still unclear [18].
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Figure 1. Schematic representation of the diversity of inheritance players, without modification
of the DNA sequence. They are involved in the modification of gene expression. These mod-
ifications include histone sumoylation, methylation, acetylation, ubiquitination, miRNA, DNA
methylation, RNA methylation and other non-coding RNAs. miRNA may be transported by ex-
tracellular vesicles. When the gene promotor is targeted by epigenetic changes, it directly affects
gene expression. Such epigenetic modifications may affect both spermatozoa and oocytes. (miRNA:
microRNA, piRNA: piwi-interacting RNA, tRNA: transfer RNA, lncRNA: long non-coding RNA,
mRNA: messenger RNA).

(b) Histone Modifications

Histones serve to package and to organize DNA within the nucleus to form chromatin.
In eukaryotes, the unit of organization of chromatin consists of a nucleosome with a protein
core, which is an octamer containing two molecules each of histones H2A, H2B, H3, and H4.
The DNA molecule is wrapped twice around a histone octamer. A linker histone H1 binds
to the linker DNA, modulating the chromatin structure. Histone variants are characterized
by a distinct protein sequence and a selection of designated chaperone systems and chro-
matin remodeling complexes that regulate their localization in the genome [19]. According
to their composition of hydrophobic or hydrophilic amino acids, histone variants are prone
to being associated with an open chromatin state by stabilizing nucleosomes, or a repressive
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chromatin state by destabilizing nucleosomes. For example, H2A.Z and H3.3 coincide with
active gene expression, while macroH2A is found in transcriptionally inert chromatin [20].
In addition, histone variants can be enriched with specific post-translational modifications,
which in turn can provide a scaffold for the recruitment of variant-specific interacting
proteins to chromatin. These modifications include lysine acetylation, ubiquitination,
sumoylation, lysine and arginine methylation, arginine citrullination, ADP-ribosylation,
proline isomerization, serine/threonine/tyrosine phosphorylation and serine/threonine
glycosylation, lysine biotinylation, monoaminylation of histone H3, glycation, lipidation,
formylation or histone tail clipping [21]. All of these post-translational modifications of his-
tones are epigenetic modulators of gene expression. Usually, histone acetylation favorizes
gene transcription and is catalyzed by histone acetyltransferase (HAT), while methylation
represses gene transcription [14]. The major targets of EDCs are nuclear hormone receptors,
which bind steroid hormones and regulate the transcription of their target genes. Nuclear
hormone receptors require coactivators linking the basal transcriptional machinery with
the hormone receptors, and some of them possess HAT activity. These modifications can
change the chromatin structure, modifying transcriptional cofactor recruitment and there-
fore gene expression. Some organotin compounds such as tributyltin (TBT) or triphenyltin
(TPT) enhance the HAT activity of core histones in a dose-dependent way, and other EDCs
such as monobutyltin or monophenyltin have no effect [22]. Fertility status in humans is
correlated with histone H3 methylation changes in retained sperm histones [23]. Exposure
to the organochlorine insecticide chlordecone increases prostatic epithelial neoplasia in F1
and F3 mice, associated with alterations in histone H3K4me3 [24]. Histone modifications
are epigenetic marks that can be transmitted to the offspring [25].

(c) Non-coding RNAs

Non-coding RNA molecules are classified as long (>200 nucleotides) or small
(<200 nucleotides). Long non-coding (lnc) RNAs are responsible for maintaining epigenetic
memory through several mechanisms, including the regulation of DNA methylation, chro-
matin remodeling or histone modifications [26]. Like mRNAs, lncRNAs are transcribed by
RNA polymerase II, and sometimes are also processed like mRNAs, have a 5mG cap, and
are spliced and polyadenylated [27]. Several lncRNAs are reported to play a crucial role in
stem cell maintenance and differentiation, involved in a variety of cancers, and important
lncRNAs are known to play a functional role in spermatogenesis and male fertility [28].
The small RNAs (sncRNAs) class includes microRNAs (miRNAs), piwi-interacting RNAs
(piRNAs), and endogenous-small interfering RNAs (endo-siRNAs), as well as other types
of small non-coding RNAs derived from tRNAs, rRNAs, and small nucleolar RNAs (snoR-
NAs). tRNAs are of particular interest as a source of a heterogeneous class of small RNAs,
tRNA-derived small RNAs (tsRNAs) [29]. tRNA biogenesis during post-testicular sperm
maturation can regulate the expression of transcripts driven by endogenous retroelements
modifying sperm epigenome in mammals [30]. tsRNAs represent a paternal epigenetic
factor that may mediate the intergenerational inheritance of diet-induced metabolic disor-
ders [31]. Environmental factors may cause primary DNA methylation changes, modifying
the expression of adjacent ncRNAs and therefore affecting their target gene expression.
However, environmental factors can also directly affect the production of ncRNAs, espe-
cially those large intergenic non-coding RNAs (lincRNAs) essential for sequence-specific
DNA methylation and chromatin remodeling. Aberrant ncRNA production leads to altered
DNA methylation patterns manifested as DMRs which, in turn, affect the expression of
multiple mRNA genes located throughout the genome [26].

(d) Extracellular Vesicles

Extracellular vesicles (EVs) are nanosized (<1000 nm), membrane-limited particles,
heterogeneous in terms of size and content [32]. They transport multimolecular messages
depending on the types of cells from which they are derived, in both physiological and
pathological conditions [33]. Since they are present in body fluids, EV releases could serve
as biomarkers [34]. Interestingly, EVs were proved to deliver a signal to recipient cells [35].
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In the male genital tract, three subtypes of EVs are described: myelinosomes, exosomes
and microvesicles (Figure 2). Myelinosomes and exosomes are issued from multivesicular
bodies (MVBs) merging with the plasma membrane and released into the extracellular
space, whereas microvesicles are formed by membrane shedding [36]. EV composition
varies as a function of the secretion site, for example, the testis, prostate or epididymis [9].
In the female genital tract, EVs isolated from follicular and oviductal fluids exert a positive
impact on embryo development in cattle [37]. EVs are involved in the regulation of
genes implicated in follicular development, meiotic resumption, and ovulation, and act
as a new means of communication in the ovarian follicle but also in embryo–maternal
interactions [38]. Overall, EVs may play several roles in mammalian reproduction.
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Figure 2. Schematic representation of the biogenesis and the diversity of extracellular vesicles (EVs).
EVs are players in inheritance as they may transport diverse information to gametes and embryos.

EVs are particularly enriched in ncRNAs, including miRNAs that target the mRNA,
resulting in protein translation inhibition. These EVs contain RNAs that can be transferred
to the gamete and most likely play a role in the development of the RNA profile during
gametogenesis. It is not clear if EVs directly control gene expression, but they may par-
ticipate in the epigenetic regulation of gene expression by transporting and delivering
specific molecules [39]. The potential role of miRNAs in epigenetic regulation is strongly
supported by these vesicle trafficking and protein carriers [40]. In particular, during the
maturation of spermatozoa in the genital tract, specific epididymosomal EVs containing
sRNAs are implicated in epigenetic inheritance from fathers to offspring (33). EVs also
contain DNA, making possible genomic DNA exchange between cells [41]. This mechanism
might be of relevance in the genital tract with the modification of the gamete environment,
as EVs are sensitive to endocrine disruptors. For example, ubiquitous pollutants found in
ambient air and diet exposure, such as polycyclic aromatic hydrocarbons (PAHs), increase
the EV production and release in urine. Exposure to B[a]P (benzo[a]pyrene), can change
the content of exosomes released by endothelial cells. EVs may be used as a sensor for
the monitoring of exposure to B[a]P. B[a]P is considered to be a reference PAH and is an
indicator of early cellular response prior to organ damage [42]. EVs are tiny intercellular
messengers and the specificity of their content in terms of regulatory element such as RNA
molecules makes them potential vehicles for environmental information transfer from the
somatic cells to the germ cells [43]. It was also hypothesized that paternal extracellular
vesicles could serve as vectors, delivering information not only to germ cells but also to the
zygote after fertilization [44].
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2. Endocrine-Disrupting Chemicals (EDCs) Transgenerational Impact

EDCs are found in lotions, cosmetics, soaps, perfumes, hair products, and feminine
hygiene products. A recurrent exposure to low doses of EDCs may interfere with the
endocrine metabolism. EDCs have been implicated in the development of cancers, mainly
in hormone-dependent cancers such as prostate, testis, breast, endometrium or thyroid
cancer [45]. It has been shown in a fish model that EDC-responsive genes are differen-
tially methylated after exposure to EDCs. These genes are involved in steroidogenesis,
prostaglandin synthesis, sexual development, DNA methylation, protein metabolism and
synthesis, and cell signaling, but also in neurodevelopment [8].

2.1. Dioxin

Dioxins can occur through combustion or waste incineration, car traffic or cigarette
smoking, but may also be caused by the manufacturing of paper, pesticides, herbicides, color
metal or electronics. The most toxic chemical produced by humans is 2,3,7,8-tetrachlordibenzo-
p-dioxin (TCDD) [46]. This results in the presence of a dioxin level higher than the toler-
able weekly intake in the environment [47]. Dioxin inhibits estrogen-receptor-mediated
gene transcription and modulates the expression or interact directly with steroid recep-
tors [48]. TCDD promotes epigenetic transgenerational inheritance of disease and DNA
methylation epimutations in sperm. In rats transgenerationally exposed to dioxin, trans-
mitted kidney disease, pubertal abnormalities and ovarian disease/abnormality to their
unexposed F3-generation descendants have been demonstrated [49]. Exposure to dioxin
induces transgenerational effects on both female and male reproductive health. It decreases
sex ratio (male/female), alters the onset of puberty and impairs both male and female
fertility [50]. In males, TCDD exposure alters the steroidogenic gene expression in fetal
and neonatal testes by reducing pituitary LH production, and reduces the expression of
the cholesterol biosynthesis pathway genes in fetal testis, followed by decreased testos-
terone production [50]. In females, TCDD exposure in utero affects estradiol, FSH, and
AMH levels. It impairs follicular development and leads to premature ovarian failure
by involving mRNA expression, leading to the downregulation of the imprinted genes
insulin-like growth factor 2 (Igf2) and H19, and the upregulation of Amh and Amhr2 [50].
The ancestral exposure of a gestating female to dioxin promotes an altered fetal gonadal
development and epigenetic reprogramming of the germline that then transmits the altered
epigenome to subsequent generations to contribute to the development of these ovarian
diseases transgenerationally. This was confirmed by an exceptional human model: A high
human exposure level to TCDD occurred in 1976 in an explosion at a chemical factory in
Seveso (Italy), exposing nearby residents, which was associated with decreased fertility
in Seveso mothers and potentially in their daughters exposed in utero. Ovarian diseases
are found transgenerationally in the F3 generation, presenting primordial follicle loss or
polycystic ovarian disease [46].

2.2. Diethylstilbestrol

Diethylstilbestrol (DES) is a potent estrogen compound that has been used for mis-
carriage prevention until the 70’s. Multigenerational effects of in utero exposure to this
molecule have been comprehensively described [51]. DES binds to both estrogen receptors
and progesterone receptors. The consequences of an historical accident where hormones
were given to pregnant women without any previous test of their effect on the embryos were
dramatically significant and affected up to three generations of children [51]. Daughters of
women who were exposed prenatally to DES present an increased risk of menstrual irregu-
larity and amenorrhea. Pregnancy outcomes were also affected with a higher incidence
of preterm birth and a possibly increased risk of ectopic pregnancy. These observations
support the hypothesis of epigenetic changes affecting primordial germ cells of the DES-
exposed fetus. DES-exposed third generation women whose mothers had vaginal epithelial
changes were more prone to show irregular menstrual periods. This phenomenon is a
marker of early and high cumulative DES exposure [52]. Several case reports are highlight-
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ing an hypothetical implication in endometriosis [51], primary cell carcinoma of cervix [53]
or androgen insensitivity syndrome [54] in children of grandmothers exposed. In utero ex-
posure to DES was also suspected to contribute to the pathogenesis of psychiatric disorders
since high prevalence of psychiatric disorders in two or three generations has been reported.
This also put forward the possible multigenerational and transgenerational effects of DES
exposure in neurodevelopment and psychiatric disorders [55].

2.3. Fungicides

Among the broad field of fungicides, the most studied according a transgenerational
inheritance is vinclozolin, a fungicide used in agriculture with an anti-androgenic endocrine-
disrupting activity. A transient embryonic exposure at a critical time during gonadal sex
determination in rat, promotes male infertility associated with decreased spermatogenic
capacity over three generations [11,56]. The molecular mechanism involved in epigenetic
transgenerational inheritance requires hypo or hypermethylation of DNA in the germline
to transmit the phenotype [56]. Prenatal exposure to vinclozolin caused sperm death
and alteration of prostate function through the F3 generation. Sperm samples from three
generation showed altered DNA methylation, ncRNA content and histone retention [12].
While in females, vinclozolin exposure was responsible for higher incidence of ovarian
cysts and a dramatic reduction in oocytes through the F3 generation [57].

2.4. Organochlorine Pesticides

It is now well established that pesticides can modify the gene expression level by
inducing different epigenetic changes, such as miRNA expression and DNA methylation
status modulation [58]. DDT (1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane) and its metabo-
lites (DDE and DDD) and methoxychlor (1,1,1-trichloro-2,2-bis(p-methoxyphenyl) ethane,
MXC) are organochlorine pesticides [59]. Widely banned since the 1970s but still used
in some countries, in particular for malaria control, DDT exposure persists due to global
transportation. These molecules are persistent in the environment and bioaccumulate in
lipid-rich organs [60]. The organochlorine pesticides and their metabolites possess estro-
genic properties, impairing the activity of FSH and TSH receptors [60], with a negative
impact on the reproductive system, as shown in animal models [61].

Although MXC has a low affinity for ERs, it has a modest endocrine activity and
therefore is no longer used. Nevertheless, MXC primary metabolite, HPTE (2,2,-bis-(p-
hydroxyphenyl)-1,1,1-trichloroethane), has a high affinity for ERs and is widely used as
a model estrogenic EDC. DDT exposure induces an epigenetic transgenerational inher-
itance of sperm epimutations by the alteration of epigenetic processes, including DNA
methylation, non-coding RNA (ncRNA) and histone retention. The most ncRNA-altered
classes were piRNA and small tRNA. Histone replacement by protamines occurs during
spermiogenesis, where transcriptional programs that lead to sperm specialization and
sperm epigenome establishment are codependent mechanisms that have a direct role in the
histone replacement and retention processes in the mammal’s sperm [62]. Histone retention
is altered after exposure to DDT, since a large number of new retention sites were found
in the sperm of exposed males, observed in a transgenerational manner [63]. In addition,
females are also affected after exposure to DTT and MXC. Indeed, dramatic impacts of DTT
and MXC were thoughtfully described in animal models and concerned female fertility,
ovarian function, and implantation [64].

2.5. Bisphenol A

Bisphenols are found in domestic products and may be absorbed by oral and dermal
routes. Bisphenol A (BPA) is a nonsteroidal estrogen and is one of the industrial synthetic
chemicals produced at the highest volume worldwide [60]. BPA has toxic effects on oocyte
maturation and spindle formation, and alters granulosa cell steroidogenesis. BPA can
indirectly (through miRNA level modulation) upregulate the expression of genes involved
in vascularization and angiogenesis that are crucial for endometrium growth during the
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menstrual cycle and decidualization [65]. The exposure to BPA in doses relevant to human
exposure was shown to affect oogenesis and human oocyte maturation in vitro [66]. BPA
exposure was also shown to affect female reproductive function in mice in a transgenera-
tional manner [67]. Social behavior in mice and modifications in the expression of neural
genes such as oxytocin and vasopressin were observed after ancestral exposure to BPA [68].
Even below the U.S. Food and Drug Administration (FDA) no-observed-adverse-effect
level (NOAEL), prenatal BPA exposure may have adverse effect, since it was reported to
disturb the transcriptome of the neonate amygdala in females. This prenatal exposure
affects the developing brain by interaction with estrogen, oxytocin, and vasopressin sig-
naling pathways. This results in the alteration of signaling pathways that are critical for
synaptic organization and transmission [69]. BPA affects the epigenetic landscape since it
impacts DNA methylation, histone modification and miRNAs expression, leading to the
alteration of several metabolic pathways [70]. A deregulation of cellular and extracellular
miRNAs may also be implicated in BPA toxicity in the ovarian follicle. It has been shown
that exposure to supraphysiological BPA levels changes the levels of specific EV-enriched
miRNAs in conditioned media of primary granulosa cells associated with modification in
the expression of their cellular target genes [71].

2.6. PolyChlorinated Biphenyls

Polychlorinated biphenyls (PCBs) are a group of synthetic chlorinated aryl hydrocarbons
extensively used in industrial applications, such as dielectrics, hydraulic fluids, lubricants and
plasticizers. They are resistant to biodegradation processes and were banned twenty years ago.
However, human exposure persists, with a NOAEL of 6–9 mg/kg/day [60]. This contamina-
tion is related to production through modern manufacturing processes and leaching from
old construction materials and hazardous waste sites [72]. PCB sulfates are derived from the
metabolism of hydroxylated PCBs (OH-PCBs) [73]. PCBs can interact with steroid receptors
or modulate their expression. Based on the in silico simulation of molecule interactions, it
was concluded that PCBs were able to interfere with the reproductive process [48]. PCBs
decreased the force and amplitude of oviductal motility and some of them also stimulated
the synthesis of leukemia inhibitory factor (LIF). LIF is released by oviductal epithelial cells
and is indispensable for embryo implantation in the endometrium [74].

2.7. Phtalates

Phthalates and phthalate esters are compounds widely used in food processing and
packaging. Di(2-ethylhexyl) phthalate (DEHP) is a plasticizer detected in a large variety
of consumer products with a NOAEL of 20 mg/kg/day [60]. Owing to its anti-androgen
activity, DEHP deregulates steroidogenesis and disrupts the reproductive system in both fe-
males and males in human and animal models. Mixtures of paternal urinary concentrations
of DEHP metabolites are associated with higher rates of failure of couples’ infertility treat-
ment [75]. Maternal DEHP exposure results in the DNA hypermethylation of promoters of
spermatogenesis-related genes in fetal testicular germ cells in F1 mice. The hypermethyla-
tion of genes implicated in spermatogenesis (Hist1h2ba, Sycp1, and Taf7l) persisted from
fetal testicular cells to adult spermatogonia, resulting in the downregulation of expression
of these genes [76]. DEHP alters the sperm methylome as well as DNA methylation and
gene expression in the developing embryo [77]. The fertility and reproduction of the third
generation was shown to be disrupted in a sex-specific manner after ancestral prenatal
exposure to DEHP. Indeed, males exhibited more severe adverse effect with decreased
fertility, testicular steroidogenic capacity, and spermatogenesis. This observation suggested
the involvement of the Y chromosome, which was supported by the results of testicular
transcriptome analysis, showing an alteration of the expression of a number of Y chromo-
somal [78]. The impact of DEHP exposure on reproduction and social behavior is not only
transgenerational but also dose-specific in both males and females [79]. In addition, the
perinatal exposure of both juvenile and adult mice to DEHP induces sex- and tissue-specific
DNA methylation alterations [80]. DEHP exposure during gestation increased DNMT3a
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and DNMT3b (Figure 3) expression in adult rat testes of F1 and in offspring, suggesting
that epimutations may be a potential mechanism of DEHP-mediated testicular toxicity [81].
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Figure 3. Schematic DNA methylation dynamics occurring during germ cell specification and
embryo development. During mammal development, two waves of global demethylation occur: after
fertilization and before PGC differentiation. Each step depicted in this figure may be a target for EDC
with an impact on the DNA methylation profile, which may in turn affect the health of subsequent
generations. PGC: primordial germ cells.

2.8. Perfluoroalkyl and Polyfluoroalkyl Substances

Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are synthetic chemicals used for
both household (e.g., shampoo, cookware) and industrial (e.g., insecticides) applications.
They are insoluble in water and solvents and are bio-accumulated in the food chain with a
long half-life. Nutrition is the main route of exposure in humans worldwide [82]. Perfluo-
rooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) are two fluorinated compounds
that are widely used in industry and are commonly acknowledged as endocrine disruptors.
PFAS have disruptive properties on the hypothalamic–pituitary–thyroid axis, which in
turn have an adverse impact on neurodevelopment in utero and neonatal neuromaturation
to adolescence and adulthood. Contamination is associated with reproductive toxicity,
the depletion of the ovarian reserve, disruption in the earliest stage of folliculogenesis by
altering oocyte development and the inhibition of steroidogenic enzyme activities. The
potential mechanisms include the activation of peroxisome proliferator-activated receptor
(PPAR) signaling pathways, the disruption of intercellular communication between oocytes
and granulosa cells and the induction of oxidative stress [83]. In addition to PPAR signaling
pathways, endocrine disruption may also be facilitated by acting directly on gene coding
for the enzymes responsible for cholesterol transport and ovarian steroidogenesis, and a
loss of kisspeptin signaling in the hypothalamus that can impact ovarian function [83].

Data from animal models about maternal PFOA exposure suggest that PFOA ad-
versely impacts lactational efficiency, leading to offspring mortality, and altered mammary
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gene expression and mammary development [84]. PFOA and PFOS significantly reduced
fecundity in a medaka model through different mode of actions [85].

2.9. Flame Retardants

Flame retardants are mostly volatile compounds that are included in objects of daily
use such as furniture, clothing, toys, electronics, and plastics. They are released by these
objects and thus detected in a large number of places, including house dust, food and
water [86]. Three groups are described: organophosphate (OP) flame retardants (OPFRs),
polybrominated diphenyl ethers (PBDEs) and novel brominated compounds. The uti-
lization of the former has been largely banned since the mid-2000s due to their bioaccu-
mulation in humans and wildlife, and their neurological and endocrine toxicity. As the
use of polybrominated diphenyl ethers (PBDEs), and the entire class of organohalogen
flame retardants, is declining, the use of OPFRs is increasing [87]. Men presenting higher
concentrations of urinary OP metabolites, known to originate from flame-retardants, have
aberrantly methylated sperm cells. Exposure to triphenyl phosphate is associated with
hypermethylation at the GRB10 DMR, and tris(1,3-dichloro-2-propyl) phosphate exposure
is associated with altered methylation at the MEG3 and H19 DMRs [88]. Tris(2-butoxyethyl)
phosphate (TBOEP), which belongs to the group of non-halogenated OPs, shows endocrine
disruption effects in daphnids. Exposure leads to significant differences in the transcription
of genes involved in endocrine-mediated mechanisms such as reproduction and growth,
indicating effects of parental exposure on offspring [89]. Tetrabromobisphenol A (TBBPA) is
very popular and its exposure may result in neurotoxicity in zebra fish larval offspring [90].
Interestingly, it has been shown that the multiplicity of OPs in the human body is associated
with increased DNA methylation aberrancies in sperm, compared with exposure to few
OPs [88]

2.10. Polycyclic Aromatic Hydrocarbons

Polycyclic aromatic hydrocarbons (PAHs) are present in air pollutants and cigarette
smoke components, and are environmental toxicants acting as chemicals disrupting en-
docrine regulation and reproductive toxicants. Benzo [a] pyrene (B[a]P) is one of the most
important types of PAHs. PAHs are extensively metabolized by cytochrome P450 enzymes
in humans and animals. The major metabolites of PAHs are monohydroxy-phenols (hy-
droxylated metabolites of polycyclic aromatic hydrocarbons (OH-PAHs)) and dihydrodiols,
which are urinary biomarkers useful for the characterization of PAH exposure. Paternal
preconceptional occupational exposure to PAHs was associated with increased risks of
all childhood brain tumors [91]. In testis, PAHs interfere with gap junctional intercellular
communication, which is critical for the normal development and function of testicular
tissue [92]. Prenatal PAH exposure induces DNA methylation and alters gene expression
in the Erα-mediated pathway across generations, suggesting that offspring consequences
such as mammary cell proliferation also may occur in offspring as a result [93].

3. Epigenetic Inheritance

Epigenetic inheritance refers to the transmission of epigenetic marks to offspring [94].
It is intergenerational when the epigenetic marks are transmitted from one generation
to the next. It is transgenerational when the information is transmitted from exposed
grandparents to a grandchild, with an effect of the event observed in the third or fourth
generation according the affected parent [95]. Transgenerational epigenetic inheritance
has the potential to be adaptive, with major implications for heredity, breeding and evolu-
tion [96]. The origins of transgenerational germline epigenetic alterations have been shown
to be throughout gametogenesis from the PGCs to the mature gametes [97]. The exposure
of a gestating female to an environmental factor during pregnancy might directly affect off-
spring’s PGCs. An epigenetic change occurring in males can only modify his spermatozoa,
affecting reliable nongenetic inheritance in the third generation. Multigenerational effects
are defined when the affected generations are in direct exposure to EDCs [98].
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Epigenetic information can be disrupted by environmental factors and could be inher-
ited, leading to long-term adverse consequences affecting offspring health. For example,
diet is an environmental factor modifying gene expression. Evidence of the epigenetic
transgenerational inheritance of disease in humans is observed in Dutch and Swedish co-
horts exposed to prenatal famine [99]. Exposure to famine in utero leads to higher rates of
obesity, diabetes and mortality in offspring, related to epigenetic silencing [100]. Maternal
undernutrition in goats altered the muscle fiber type in offspring, with the modification of
several methylation marks [101]. An increased risk of mortality was described in grand-
children when grandparents had been exposed to famine. Health and behavior disorders
were also detected at a higher incidence in the offspring when the mother had been ex-
posed to famine [99]. Oppositely, in humans, increased maternal BMI was associated with
an alteration in DNA methylation landscape in offspring both in neonates and in later
childhood [102]. This observation suggests that differential gene methylation and thus
gene regulation is highly dependent on the maternal environment [103]. In another study,
a transgenerational kidney disease was observed in male and female third-generation
descendants of gestating females exposed to methoxychlor, showing that methoxychlor
could transmit kidney diseases and obesity through the female germline [104].

It is difficult for human studies to highlight a clear connection from exposure in
an ancestor leading to molecular changes in germ cells, driving a specific phenotype in
descendants. However, associations have been made between several aspects involving
epidemiological, epigenetic, and genetic approaches [105]. An example of particular inter-
est is the development of polycystic ovary syndrome (PCOS), closely related to epigenetic
mechanisms. It is a heritable affection and common metabolic and reproductive pheno-
types were described in the parents of PCOS women [106]. This syndrome is not without
any consequences on the lifetime risk of comorbidities, since it dramatically increases the
chances of developing type 2 diabetes mellitus, psychiatric disorders and gynecological
cancers. Hyperandrogenemia is one of the features of PCOS, which persists throughout
reproductive life and after menopause [107]. Several dysfunctions, such as reproductive,
metabolic or psychiatric dysfunctions, are correlated with a high level of circulating andro-
gens. It was suggested that hormonal dysregulation of the maternal uterine environment
led to epigenetic and developmental programming, resulting in the pathogenesis of PCOS.
The exposure of mothers is the main cause for the observed transgenerational effects of
androgen exposure, which are passed on for up to three generations [108]. This epigenetic
inheritance is supported by the observation of family members that also suffer from an
increased risk of developing PCOS-associated reproductive and metabolic disorders [109].
It was also hypothesized that an alteration of androgens or anti-Mullerian hormone (AMH)
levels during pregnancy could be responsible for PCOS in female newborns [109]. In addi-
tion, the expression of ovarian genes may be altered in the third generation after ancestral
prenatal AMH exposure [110]. Indeed, some phenotypes such as reduced sensitivity to
thyroid hormone, mortality, type II diabetes, asthma, spina bifida, metabolic syndrome,
and genitourinary abnormalities in great grand-children may be a consequence of ancestral
exposure and inherited in a non-genetic manner [105].

A transgenerational transmission of increased incidence of disease is described through
the male germline after exposure with vinclozolin [11] or through the female germline
after methoxychlor exposure [104]. DDT exposure determined that male obesity was trans-
mitted through the female germline and female obesity through the male germline. The
female germline transmission of environmentally induced epigenetic transgenerational
phenotypes appears to be as stable as male germline transmission, and the combination
of both paternal and maternal alleles is needed to transmit certain diseases, such as testis
disease, to the male offspring [111]. The paternal inheritance of psychological post-stress
effects has been reported, showing that the inheritance of “epigenetic memory” produced
offspring with the potential to be adapted to the environmental challenges that their parents
experienced, with major implications for heredity and evolution [112].
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4. After-Effects of EDCs Exposure on Germ Cells

EDCs are an important part of our environment. Exposure to EDCs results in epi-
genetic modifications in cells. Germ cells are particularly vulnerable to EDC exposure.
The epigenetic markers most studied are DNA methylation, the modification of histones,
ncRNA and EVs (Figure 1).

4.1. Epigenetic Sperm Modifications

Sperm cells have long been considered as delivering the paternal haploid genome and
then the genetic information to the oocyte. However, spermatozoa also harbor epigenetic
information that plays a remarkable role during offspring early development and long-
term health. These multiple epigenetic marks make up the epigenome [113]. The blood–
testis barrier reduces the potential for xenobiotic agents to alter the germline. However,
electrolytes, very small polar molecules and some classes of lipophilic molecules have a
high transfer potential to cross this barrier [43]. Epigenetic alterations occur during the
development of male fetal germ cells, leading to spermatogenesis failure and the alteration
of sperm parameters in adulthood [113].

The DNA methylation profile of male germ cells is significantly different from that
of somatic cells and is stable throughout spermatogenesis and in mature sperm. Germ
cell DNA demethylation and remethylation in a sex-specific manner occurs during fetal
development and is maintained throughout the individual’s entire life [113]. Environ-
mental factors can induce changes in DNA methylation markers in the germ line [114].
In humans, the exposure to chemotherapy, bariatric surgery, cannabis, flame retardants,
mercury, polycyclic aromatic hydrocarbons and bisphenol A was found to induce sperm
DNA methylation alterations [105]. It is interesting to note that the methylation pro-
filing of PEG1/MEST-DMR and H19-DMR in sperm shows epimutations in H19-DMR
and PEG1/MEST-DM in men with reduced sperm counts without consequences on the
outcomes of assisted reproductive techniques [115]. A similar observation was made at
the genome-wide scale and a significant positive association between sperm global DNA
methylation level and sperm concentration was described [116,117]. Endocrine disruptors
have been shown in mouse models to induce transmissible changes over several genera-
tions, altering the quality of spermatogenesis in adulthood [11]. These epigenetic markers
are easily modifiable by exogenous factors such as bacterial infection [118]. It has been
shown that changes in apparently harmless habits such as physical training can alter the
sperm methylome [119]. Age-associated methylation has been reported, supporting a
link with neuropsychiatric disorders such as autism spectrum disorder, schizophrenia,
and bipolar disorder in the offspring born after advanced age males [120]. The paternal
methylome was also shown to be sensitive to environmental factors with perturbations
persisting for at least two subsequent generations [121].

In adulthood, during spermiogenesis, chromatin is reorganized in the male gamete.
Most of the histones are replaced by protamines, allowing supercoiling and chromatin
compaction, but up to 10% of histones are preserved in the sperm [113]. This protamine–
histone–DNA organization during spermatogenesis is specific to the sperm epigenome,
Thus, the paternal genome becomes transiently vulnerable to environmental hazards
during this chromatin rearrangement process and any exogenous perturbation to the
sperm epigenome may have serious impacts on subsequent offspring development [122].
A significant correlation between nonoccupational exposure urinary levels of 1-OHP, 1-
OHPH and the methylation of sperm DNA imprinting genes suggests that sperm chromatin
is sensitive to PAHs [123]. Alterations in histone retention appear to take part in the
environmental induction of epigenetic transgenerational inheritance [124].

Large (mRNAs and lncRNAs) and small (sncRNAs) sperm-borne RNAs are delivered
to the oocyte during main fertilization. The sperm of transgenerational males that were an-
cestrally exposed to DDT have differentially expressed lncRNAs. Paternally acquired char-
acteristics may be transmitted to the offspring via sperm RNAs in the first post-fertilization
mitotic divisions of the zygote [125]. miRNA and piRNA expression in sperm are affected
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by life factors such as endurance training, stress in childhood and cigarette smoking, with
a potential impact on general health in subsequent generations [105], suggesting a high
susceptibility to environmental factors.

Specific post-testicular sperm maturation occurs through the epididymal secretion
of EVs [9]. Reproductive tract EVs transmit information regarding stress in the paternal
environment to sperm, potentially altering fetal development. It has been shown that sperm
incubated with EVs collected from stress-treated epididymal epithelial cells produced
offspring with altered neurodevelopment and adult stress reactivity [126]. Proteomic and
transcriptomic assessment of these EVs showed dramatic changes in protein and miRNA
content long after stress treatment had ended [126]. These data confirm that EVs are
a normal players in sperm maturation but also perform roles in the intergenerational
transmission of paternal environmental exposure [127].

4.2. Epigenetic Oocyte Modifications

Oocytes are subjected to prolonged periods of arrest. There are critical periods wherein
the oocyte undergoes nuclear and cytoplasmic maturation, where the translation of stored
mRNAs, accumulated during the growth period, is crucial for meiotic maturation and
subsequent embryogenesis. The maintenance of protein homeostasis is needed to achieve
successful fertilization despite proteostasis being “reset” during embryogenesis [128].
Environmental exposure leads to an earlier age at menopause, premature ovarian failure
and infertility by exhausting the oocyte pool and causing the depletion of follicular ovarian
cells [129].

In utero exposure to a plastics mixture during the period of fetal gonadal sex de-
termination promotes the epigenetic transgenerational inheritance of adult-onset disease
resembling primary ovarian insufficiency and polycystic ovarian syndrome (PCOS) [57].
Plastic mixtures (BPA, DEHP, DBP) caused early-onset puberty compared with the control,
and both the pesticide and plastic mixtures caused a significant decrease in the primordial
follicle pool compared with the control in rats [130]. A gene network analysis of the trans-
generationally altered granulosa cell transcriptome highlighted a set of potential regulatory
genes associated with ovarian abnormalities [57]. The critical window of exposure to
promote such changes in humans is 6–18 weeks of gestation [57].

Vinclozolin-lineage granulosa cells displayed significant transgenerational alteration
in both the transcriptome and epigenome, bringing up a new paradigm for the etiology of
ovarian disease [104]. Moreover, the oocytes, the embryos, the endometrium, and clinical
outcomes in IVF are also adversely impacted by the exposure to various pesticides [131].

Significantly, more DMRs are found when gestating female rats are exposed to vin-
clozin, in F3 compared with F1 sperm, knowing that these animals were exposed during a
period of PGCs deprogramming and subsequent reprogramming. Methylation patterns
between generations depend on the period during which the F1 animals are exposed [132].

The transmission of environmentally induced epigenetic changes through the female
germline appears to be stable, but a combination of both paternal and maternal alleles is
needed to transmit testis disease to the male offspring [111]. Despite the importance of
DNA methylation in the oocyte, knowledge of its perturbation in human oocytes remains
very limited.

In the oogenesis and early development of mammals, the functional activity of
chromatin is regulated by the unique epigenetic landscape created by post-replication
DNA modifications, post-translational modifications of DNA-associated proteins and ATP-
dependent nucleosome remodeling. In the oocyte, chromatin undergoes chromosome
condensation, withstands double-stranded breaks during meiotic recombination, and sur-
vives a long meiotic arrest in mammals [133]. However, oogenesis does not appear to
involve dramatic chromatin changes analogous to the protamine transition during spermio-
genesis [134]. The maternal inheritance of certain histone variants is essential for embryonic
viability and development [19]. Histone variants may “mark” imprinted regions of the
inherited maternal genome in embryos. After fertilization, the protamine-bound sperm
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chromatin becomes decondensed into the zygote, and protamines are quickly replaced by
the oocyte-specific H1, H1oo, leading to an enlarged sperm pronucleus [135]. Maternally
histone variants may also be crucial for the initial stages of embryogenesis, especially to
mediate the protamine-to-histone transition of the paternal genome and post-translational
modifications of histones for zygotic genome activation. Despite these specialized chro-
matin requirements, very few chromatin exogenous alterations have been described for
mammalian oogenesis, unlike for spermatogenesis [134].

Among lncRNAs, Xist (X-inactive specific transcript) acts in the silencing of the X
chromosome by modifying the structure of the chromatin and the factors interacting
in chromosome X of mammalian females during development. Dicer1 is an important
RNase III enzyme that processes pre-miRNA into the shorter miRNA duplex. Conditional
knockout of Dicer in mice increases the degeneration of follicles and decreases ovulation
rates. miRNAs are involved in ovarian folliculogenesis and granulosa cell physiology [136].
piRNAs are present in ovarian follicle cells and may suppress transposons in the ovarian
somatic cells [137].

Concerning EVs’ implication in oocyte maturation, EVs derived from plasma promote
cumulus expansion and oocyte maturation by enhancing Has2 and Ptgs2 mRNA expression
in the cumulus–oocyte complex [138].

5. Embryo Development and Critical Window

Exposure during pregnancy to environmental factors increases the risk for disease
development later in life [139]. Transgenerational effects of low doses of EDCs are mainly
attributed to epigenetic changes, presumably at the level of the germ cell. PGCs are the
precursors of gametes. During their migration to the genital ridge, PGC undergo an
epigenetic reprogramming to establish methylation on imprinted genes in a sex-specific
manner [140]. This epigenome resetting, including chromatin remodeling and global DNA
demethylation, occurs within ∼4 weeks in human PGCs (131). A dramatic remodeling
of constitutive heterochromatin occurs, which is essential for natural reprogramming at
fertilization. In the paternal pronucleus, H3K9me3 is catalyzed by SUV39H2 (a histone
lysine methyltransferase) after fertilization. De novo H3K9me3 is initially non-repressive
for gene expression, but instead bookmarks promoters for compaction [141]. These early
stages of development represent a critical window of vulnerability to the effects of EDCs,
as any perturbation by exogenous compounds may alter PGC specification, migration,
and differentiation. Several genetic factors have been identified, such as Blimp1, Prdm14,
and Tcfap2c, Lin28 and the microRNA let-7 [142]. Blimp1 is a crucial regulator of PGC
differentiation and prenatal exposure to vinclozolin, and induces a disequilibrium in the
Lin28/let-7/Blimp1 pathway in three successive generations of males mice [10]. Following
fertilization, DNA methylation erasure occurs in the stem cells of the early developing
embryos, before the global resetting of the methylation landscape in different somatic cell
lines. The transient exposure of gestating females to vinclozolin during the fetal gonadal
sex determination period promoted the epigenetic transgenerational inheritance of adult
onset diseases in F1–F4-generation rats. The exposure to EDCs triggers epimutations in
fetal germ cells that may be corrected in the next generation. The correction of epimu-
tations aiming at preventing the transgenerational inheritance of such errors caused by
environmental factors may have played an evolutionary role [97]. These transgenerational
epigenetic changes found in sperm are likely exposure-specific. For instance, a parental
transgenerational transmission of disorders via the female or male germline was suggested
by using methoxychlor [104]. This observation indicates that these epimutations could
be used as biomarkers for ancestral toxicant exposure. The imprinted genes methylation
profile remains unchanged and thus is not reprogrammed, but parent-specific imprints are
established during the epigenetic reprogramming process. The impact of exposure to EDCs
is notable, particularly when tissues are differentiating and cells are sensitive to imprinting.
A modification of any epigenetic marker impacts genetic programming, resulting in an
alteration of the adult epigenome and transcriptome [143]. Somatic tissues can response
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to stressing stimuli by releasing EVs containing RNA. These vesicles may be internalized
by epididymal spermatozoa, which in turn delivers the vesicles to oocytes at fertilization.
Therefore, this process may be assimilated to a continuous stream of epigenetic information
flows from parental somatic-tissue-derived embryos. The flow is capable of crossing the
Weismann barrier, facilitated by circulating vesicles. This process ultimately results in the
possibility to pass specific epigenetic traits on to the offspring [144].

6. Conclusions

Today, a growing number of studies indicate that environmental factors and partic-
ularly EDCs are transduced by both paternal and maternal gametes over the course of a
pregnancy. Table 1 is a summary of studies that showed the transgenerational effect of expo-
sure to EDCs. Better understanding the transgenerational effects of EDCs on reproductive
health may help to predict their consequences on the next generations. However, the reality
is more complex than all of the studies presented in this review. We must keep in mind that
humans are exposed to EDC mixtures composed of hundreds of chemicals every day—not
a single chemical in isolation. Improving our understanding of the epigenetic changes
that occur in the parental germline following preconception environmental conditions
and exposure will enhance reproductive success, as well as improve offspring health [145].
Numerous disruptions of the epigenome in mammals provoked by environmental ex-
posure have been described. While some appear to be corrected by germline-specific
epigenetic reprogramming, others remain uncorrected and are transmitted over subsequent
generations [146]. There are recommendations to pregnant women who are vulnerable to
EDCs: avoid products that have been in contact with pesticides, limit their consumption
of fatty fish and crustaceans loaded with heavy metals and endocrine disruptors, avoid
food plastics and above all do not heat them in the microwave, be careful with cosmetics by
avoiding too many or by favoring organic products, ventilate housing regularly, and do not
use stoves that have a non-stick coating. By changing some of these habits, it is possible to
limit the cocktail of effects. The limitation of these substances become part of the awareness
of consumers.

Table 1. Studies showing a non-genetic effect across generations in different species.

Model EDC Transgenerational Effect Reference

Daphnia magna
microcrustacean

Flame retardants
Tris(2-butoxyethyl) phosphate
(TBOEP)

Levels of mRNA were found to be significantly different
for genes known to be involved in endocrine-mediated
mechanisms such as reproduction and growth between
generations F0, F1, and F2, indicating the effects of
parental exposure on offspring.

[89]

Crepidula onyx
gastropod

2,2′,4,4′-tetrabromodiphenyl
ether (BDE-47)

Bioaccumulation and maternal transfer of BDE-47 were
evident in all life stages of the F0 generation and in F1
eggs, respectively. Exposure to BDE-47 reduced fecundity,
delayed sexual maturity, and impeded embryonic
development in F0 to F2.

[147]

Zebra fish
(danio rerio)

Flame retardant
Tetrabromobisphenol A
(TBBPA)

Neurotoxicity and decreased content of dopamine in
larval offspring.

[90]

Medaka BPA
EE2

BPA or EE2-induced transgenerational reproductive
impairment in the F2 generation was associated with
alterations in reproductive gene expression in brain and
testis and global DNA methylation in testis.

[148]

Gobiocypris rarus BPA Parental BPA exposure inhibited the ovary development
of the offspring.

[149]
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Table 1. Cont.

Model EDC Transgenerational Effect Reference

Fish Dioxin Exposure to the environmental toxicants methylmercury
or dioxin transmit to their grand-offspring behavioral
changes, visual defects, increased body mass, skeletal
abnormalities and/or decreased fertility, sometimes
associated with changes in DNA methylation.

[150]

Medaka BPA
EE2

Medaka exposed to the endocrine disruptors BPA or
ethinylestradiol produce grand-offspring and
great-grand-offspring with reduced fertility.

[151]

Bird Genistein In quail eggs exposed to the environmental estrogen
genistein, the great-grand offspring age at which the first
egg was laid was significantly greater. Embryonic
environment affects the phenotype of offspring three
generations later in quail.

[152]

Rodent Vinclozoline Increased obesity risk in rats is inherited
transgenerationally after ancestral exposure to DDT,
plastic compounds, hydrocarbons and methoxychlor.

[130]

Rodent Vinclozoline Endocrine disruptors have been shown in mouse models
to induce transmissible changes over several generations,
altering the quality of spermatogenesis in adulthood.

[11,130]

Rodent Chlordecone Chlordecone increases prostatic epithelial neoplasia in F1
and F3 mice. Hoxa genes are affected both in the prostate
and in sperm of F1 and F3 generations.

[24]

Fish
M. beryllina

Bifenthrin (pyrethroid
insecticide) Levonorgestrel
(synthetic progestin),
Ethinylestradiol
(synthetic estrogen),
Trenbolone
(synthetic androgen)

Differential methylation of EDC-responsive genes is
inherited by the offspring of EDC-treated animals,
sometimes in the F2 generation that was never exposed.
Low environmentally relevant levels of EDCs can cause
altered methylation in genes that are functionally relevant
to impaired phenotypes documented in
EDC-exposed animals.
EDC exposure has the potential to affect epigenetic
regulation in future generations of fish that have never
been exposed.

[8]

Zebrafish TCDD
(dioxin)

Multi- and transgenerational methylomic changes in
testicular tissue and decreased reproductive capacity,
significantly in the indirectly exposed F1 generation.
Histone modification genes were both differentially
methylated and expressed in all generations, and many
differentially methylated genes overlapped between
multiple generations.

[153]
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Abbreviations

AMH Anti-Mullerian hormone
ART Assisted reproductive techniques
BDE-47 2,2′,4,4′-tetrabromodiphenyl ether
BPA Bisphenol A
DES Diethylstilbestrol
DMRs Differentially methylated regions
DDT 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane
DEHP Di(2-ethylhexyl) phthalate
EE2 Ethinylestradiol
EDCs Endocrine-disrupting chemicals
Endo-siRNAs Endogenous-small interfering RNAs
EVs Extracellular vesicles
FDA U.S. Food and Drug Administration
H3K9me3 H3K9 trimethylation
HAT Histone acetyltransferase
HPTE 2,2-bis-(p-hydroxyphenyl)-1,1,1-trichloroethane
Igf2 Insulin-like growth factor 2
lincRNAs Large intergenic non-coding RNAs
LIF Leukemia inhibitory factor
lncRNA Long non-coding RNA
miRNAs MicroRNAs
mRNA Messenger RNA
MXC Methoxychlor (1,1,1-trichloro-2,2-bis(p-methoxyphenyl) ethane)
NOAEL No-observed-adverse-effect level
OP Organophosphate
OPFRs Organophosphate flame retardants,
piRNAs Piwi-interacting RNAs
PBDEs Polybrominated diphenyl ethers
PAHs Polycyclic aromatic hydrocarbons
PCBs Polychlorinated biphenyls
PCOS Polycystic ovary syndrome
PFOS Perfluorooctane sulfonate
PFOA Perfluorooctanoate
PGC Primordial germ cells
PPAR Peroxisome proliferator-activated receptor
snoRNAs Small nucleolar RNAs
sncRNA Small non-coding RNAs
SUV39H2 SUppressor of Variegation 3-9 homolog 2 Histone Lysine Methyltransferase
TBBPA Tetrabromobisphenol A
TBT Tributyltin
TCDD 2,3,7,8-tetrachlordibenzo-p-dioxin
TPT Triphenyltin
Xist X-inactive specific transcript
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