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A comparative study of semantic 
segmentation of omnidirectional 
images from a motorcycle 
perspective
Ahmed Rida Sekkat1*, Yohan Dupuis2, Paul Honeine1 & Pascal Vasseur1,3

The semantic segmentation of omnidirectional urban driving images is a research topic that has 
increasingly attracted the attention of researchers, because the use of such images in driving scenes 
is highly relevant. However, the case of motorized two-wheelers has not been treated yet. Since 
the dynamics of these vehicles are very different from those of cars, we focus our study on images 
acquired using a motorcycle. This paper provides a thorough comparative study to show how different 
deep learning approaches handle omnidirectional images with different representations, including 
perspective, equirectangular, spherical, and fisheye, and presents the best solution to segment road 
scene omnidirectional images. We use in this study real perspective images, and synthetic perspective, 
fisheye and equirectangular images, simulated fisheye images, as well as a test set of real fisheye 
images. By analyzing both qualitative and quantitative results, the conclusions of this study are 
multiple, as it helps understand how the networks learn to deal with omnidirectional distortions. Our 
main findings are that models with planar convolutions give better results than the ones with spherical 
convolutions, and that models trained on omnidirectional representations transfer better to standard 
perspective images than vice versa.

With their large field-of-view, omnidirectional images are omnipresent in intelligent vehicles and robot naviga-
tion systems. At the same time, deep learning for computer vision has never been used as much as it is currently. 
However, computer vision algorithms used in these systems for tasks like scene understanding are mostly devel-
oped and tested for perspective conventional images captured using on-board cameras in cars. Furthermore, the 
case of motorized two-wheelers has not yet been studied while they present important differences in respect with 
cars. Indeed, in addition to distortions in omnidirectional images, these vehicles undergo rotations on the three 
axes, not like cars for example, which makes the semantic segmentation task even harder, due to the inadapt-
ability of classical methods to changes of orientation without a particular treatment. Hence, the importance of 
optimizing these algorithms for omnidirectional imaging in general and for the case of motorized two-wheelers 
in particular. We can notice a recent growing interest in these algorithms dedicated to omnidirectional imaging. 
Several works treated the adaptation of existing algorithms or the development of new ones for tasks like object 
recognition and semantic segmentation on omnidirectional images, such as 360◦ and fisheye. In these two tasks, 
deep learning using convolutional neural networks (CNNs) on perspective images is the state-of-the-art solution. 
This is mainly thanks to the emergence of large-scale datasets of perspective images with ground truth annotation, 
such as CamVid1 and Cityscapes2. This convenience is not available for omnidirectional images and motorized 
two-wheelers. Until now, there is no available dataset of omnidirectional real urban driving images with ground 
truth for this kind of vehicle. To compensate for this major issue, several contributions on semantic segmenta-
tion of fisheye images for the case of cars work on data augmentation by training the state-of-the-art CNNs on 
perspective images that were deformed with a distortion simulating a fisheye effect3–5. On the other hand, some 
researchers proposed to encode directly the omnidirectional representation in the CNN6. More works proposed 
CNNs with deformable kernels7,8, or used icosahedron spherical image representation and spherical CNNs9,10.

More recently, researchers are considering the generation of synthetic images with realistic textures, thanks 
to simulators like CARLA simulator and Grand Theft Auto V (GTA V), which is a high-quality video game. The 
published OmniScape Dataset11 contains synthetic perspective, fisheye, catadioptric, and 360◦ urban driving 
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images captured using a motorcycle with ground truth rendered from a virtual city and comes with pixel-level 
semantic annotation.

In this work, we take advantage of this dataset by building a comparative benchmark on it. We also used 
CamVid and Cityscapes, in addition to a test set of real fisheye images that we acquired and manually annotated, 
in order to study the performance of different semantic segmentation networks. This study consists in quantita-
tive comparative analyses of the semantic segmentation task to take stock of research progress and answer the 
following questions:

•	 Is training networks developed for perspective representation on omnidirectional representations sufficient 
to have good results? Or, do we need to adapt CNNs for omnidirectional representations?

•	 Do networks learn a universal representation when trained on omnidirectional images? And what are their 
performances on perspective images in this case?

•	 Do networks with spherical convolutions give better results than the ones with planar convolutions?

In order to answer these questions, we conduct several experiments using a set of OmniScape synthetic images 
with perspective, fisheye, and equirectangular projections of the same scene taken from both front sides of a 
motorcycle, images from CamVid and Cityscapes dataset, and fisheye images from or real annotated test set. 
First, we test several semantic segmentation networks on CamVid images and choose the four networks that 
give the best results. We then make a cross-modality experiment. By modality we mean the pair Type/Rep-
resentation, where the type of the image is either real or synthetic, and the geometry or the representation is 
either perspective, equirectangular, or fisheye. This cross-modality experiment is made by retraining the four 
networks separately on CamVid and Cityscapes images, OmniScape perspective, fisheye, and equirectangular 
images, to test them one by one with all these representations, as well as on our test set of real fisheye images. 
We use two models based on icosahedral representation dedicated to spherical images to perform semantic 
segmentation using the same equirectangular images used in the previous experiments. In the end, this allows 
us to conclude on the efficiency of different neural networks dedicated to semantic segmentation of perspec-
tive images on equirectangular and fisheye images, as well as the performance of these networks when trained 
on omnidirectional images. Finally, the relevance of the two icosahedral-based models is compared to the best 
planar model for equirectangular images. Studies made on semantic segmentation of real fisheye images rarely 
present quantitative results, due to the scarcity of dataset that contains omnidirectional urban driving images 
ground truth. In this study, we present quantitative results in addition to qualitative ones.

The remainder of this paper is organized as follows. “Related work” section presents different works on seman-
tic segmentation of omnidirectional images. “The experimental approach” section introduces our experimental 
approach. “Results and discussions” section presents the results obtained and discusses them. Finally, “Conclusion 
and future work” section concludes the paper.

Related work
Distinct studies were carried out on semantic segmentation of omnidirectional images to compensate for the 
lack of algorithms dedicated to this type of data, as succinctly presented in this section.

Fisheye images.  Fisheye cameras have a field of view that can reach 180°. Since CNNs for semantic seg-
mentation are not designed for these images, and due to the scarcity of fisheye datasets with ground truth, 
researchers worked on the deformation of conventional images from Cityscapes or SYNTHIA12, by applying 
distortion to simulate the fisheye effect3–5,13. The used distortion is described by rp = f tan(rf /f ) , which rep-
resents the mapping from the fisheye image point Pf =

(

xf , yf
)

 to the perspective image point Pp =
(

xp, yp
)

 , 
where r2p =

(

xp − upx
)2

+
(

yp − upy
)2 is the square distance between the image point Pp and the principal 

point Up =
(

upx , upy
)

 in the perspective image, and r2f =
(

xf − ufx
)2

+
(

yf − ufy
)2 denotes the square distance 

between the image point Pf  and the principal point Uf =
(

ufx , ufy
)

 in the fisheye image. This distortion only 
depends on the focal length f; thus, several focal lengths were set to simulate different fisheye images with their 
corresponding annotations. Using the images resulting from this transformation, Deng et al.4 proposed OPP-net 
based on an Overlapping Pyramid Pooling module. Saez et al.13 proposed an adaptation of Efficient Residual 
Factorized Network (ERFNet)14 to fisheye road images in order to achieve real-time semantic segmentation and 
tested it on real fisheye images, but only qualitative results were exposed. Deng et al.5 used the same method to 
achieve road scene semantic segmentation of fisheye surround-view cameras using restricted deformable con-
volution. The networks were trained on data from Cityscapes and SYNTHIA datasets and tested on real fisheye 
images.

Panoramic images.  Xu et al.15 used synthetic images captured from SYNTHIA to create a dataset of pano-
ramic images by stitching images taken from different directions. Using these images, the authors show that 
panoramic images improve segmentation results. Yang et al.16 proposed a panoramic annular semantic segmen-
tation framework (PASS), such as the cited works for fisheye images, they made a data augmentation method 
by adding distortion to perspective images in the training set. They then used planar CNNs after unfolding and 
partitioning the panoramic images. Ma et al.17 addressed the problem of semantic segmentation of panoramic 
images via an unsupervised domain adaptation method from perspective to panoramic images. Orhan et al.18 
achieved the same task as Ma et al.17 by proposing a network that uses deformable convolution where the offsets 
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added to the kernel location are not learned but computed using the geometry of the equirectangular projection. 
Orhan et al.18 have also shared an outdoor annotated panoramic image dataset.

Equirectangular images.  Equirectangular representation is the most popular projection for 360◦ images 
thanks to the simple transformation from spherical coordinates into planar coordinates. Classical CNNs 
designed for perspective images can be used for data under the equirectangular representation. But spherical 
input suffers from distortion in polar regions. Different approaches were proposed to handle this issue. Monroy 
et al.19 proposed SalNet360 where omnidirectional images are mapped to cubemap projection and trained using 
planar CNNs to predict visual attention. However, artefacts are created when recombining the cubemap faces to 
omnidirectional image. Lai et al.20 used semantic segmentation of equirectangular images to convert panoramic 
videos to normal perspective images. However for this task, highly accurate semantic segmentation was not 
required, a frame-based fully convolutional network FCN was used in21. Su et al.22 translated a planar CNN to 
process 360◦ images directly in the equirectangular projection for object detection. And in23 they proposed the 
kernel transformer network (KTN) to transfer convolution kernels from perspective images to equirectangular 
projection of 360◦ images. Tateno et  al.24, proposed a learning approach for equirectangular images using a 
distortion-aware deformable convolution filter for depth estimation from a single image; this approach was also 
demonstrated on 360◦ semantic segmentation.

Spherical representations.  Because of distortions resulting from the equirectangular representation, 
most recent studies on this topic choose to work on the spherical representation. Cohen et al.25 developed spher-
ical convolutions by replacing the translations in the plane with rotations of the sphere. Other studies took 
advantage of a more accurate discretization of the sphere, namely the icosahedral spherical approximation. The 
discretization of the sphere is represented by a spherical mesh generated by subdividing each face of a regular 
icosahedron into four equal triangles. Lee et al.26 proposed an orientation-dependent kernel method regard-
ing triangle faces. This method was demonstrated through classification, detection, and semantic segmenta-
tion. Zhang et al.27 also addressed semantic segmentation on omnidirectional images using icosahedron spheres 
by proposing an orientation aware CNN framework. Jiang et al.10 proposed UGSCNN to train spherical data 
mapped to an icosahedron mesh, by replacing conventional convolution kernels with linear combinations of 
learnable weighted operators. Kumatsu et al.28 addressed a method for all-around depth estimation from mul-
tiple omnidirectional images by proposing a new icosahedron-based convolution named CrownConv. Cohen 
et  al.29 proposed gauge equivariant convolutional networks on manifolds and demonstrated its relevance by 
achieving semantic segmentation. Eder et al.9 proposed Tangent-images, which is a spherical image representa-
tion that consists in rendering these images to a set of locally planar images grids tangent to a subdivided icosa-
hedron; planar convolutions can be then used on the resulting images to achieve different computer vision tasks.

We can notice that in general there are two groups of works, the first one uses planar convolutions and the 
second one uses convolution on manifolds. In the next section, we detail the experimental approach we fol-
lowed in our work to make a fair comparison between the main semantic segmentation solutions proposed in 
the state-of-the-art.

The experimental approach
To answer the questions addressed in the introduction, we carried out different experiments. We choose to 
use four networks developed for perspective images as well as UGSCNN and Tangent-images, which use the 
icosahedral manifold. One of the reasons why we choose to use UGSCNN and Tangent-images in addition to 
being the state-of-the-art solutions that use the icosahedral manifold is the availability of the source code. In 
the first experiment, we did a selection to choose the networks we will use in this study, and to choose the size 
of the data-set we made a performance versus number of samples experiment. Then we made a cross-modality 
experiment by training the four selected networks on real CamVid and Cityscapes perspective images and fisheye, 
equirectangular, and perspective OmniScape synthetic images. We also trained the networks on transformed 
Cityscapes images with the same transformation explained in section related work on fisheye images. In addi-
tion, we mixed transformed Cityscapes images with OmniScape images in the training set. We tested the trained 
networks on all these modalities and also on our test set of 15 fisheye images. To evaluate the quality of results, we 
performed a leave-one-out cross-validation experiment on this set. In the last experiment, we trained UGSCNN10 
and the baseline used in, as well as Tangent-images representation with the same networks proposed in9 on the 
same OmniScape equirectangular images used in the second experiment, we tested it on the same modality 
with different resolutions to compare the results with the best model for equirectangular images in the second 
experiment. In all the experiments, we used RGB images with 15 semantic classes. It is worth noting that all 
the networks in this study are trained for 300 epochs and from scratch without data augmentation and domain 
adaptation modules. We directly take the hyper-parameters proposed in their respective publications. We do 
not fine-tune each network since this is not the purpose of the paper. In all the following experiments, we will 
use two metrics, the mean accuracy (mAcc) and the mean intersection over union (mIOU). The accuracy and 
the intersection over union are computed for each class separately, and then averaged over all classes to provide 
a global mean accuracy and mean intersection over union scores of the semantic segmentation predictions. A 
single GPU NVIDIA Tesla V100 SXM2 was used in all the experiments.

Networks selection.  The goal of this experiment is to choose the four most relevant networks that we will 
use in the cross-modality. To choose these networks, we made a selection using real perspective images from 
CamVid Dataset among 11 networks representing different architectures proposed in the state-of-the-art on 
semantic segmentation of perspective images. The obtained results are listed in Table 1. We trained and tested all 
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the networks on the same sets of 512× 512 CamVid images. We used 700 images, 420 in the training set, 112 in 
the validation set, and the remaining 168 images in the test set. The images are segmented into 32 object classes. 
We mapped similar classes into 15 to have the same classes present in OmniScape. Figure 1 shows a CamVid 
image with ground truth.

Some networks rely on a pre-trained ResNet for feature extraction. Pre-trained ResNet weights are then down-
loaded and used in this case. These networks are: PSPNet32, RefineNet37, DeepLabV335, DeepLabV3+36, GCN33.

The results of this first selection are presented in Table 1. We can notice that all networks are quite similar in 
general. Indeed, some small changes in training parameters may change the ranking, but we will likely obtain 
close results anyway. The contribution is not to optimize and try to get the best results for each of the networks 
used in the study. The idea is to use them as they are presented and published. However, the four networks that 
give the best mIoU score with good mAcc are Fully Convolutional DenseNet, Full-Resolution Residual Network, 
SegNet, and RefineNet. For the Fully Convolutional DenseNet network, we chose to use just the architecture 
built from 103 convolutional layers for the next experiment. In the following, we present a brief overview of 
each of the four chosen networks.

•	 The Fully Convolutional DenseNet30 is an adaptation of DenseNets for semantic segmentation. It is a U-Net 
architecture where the convolutional layers are replaced with dense blocks. Each convolution layer is then 
directly connected to every other layer. This network has 9M parameters.

•	 The Full-Resolution Residual Network34 combines two distinct processing streams. One stream undergoes a 
sequence of pooling operations and is responsible for understanding large-scale relationships of the elements 
in the image. The second stream carries feature maps at the full image resolution, giving a precise adherence 
to boundaries. The pooling operations in the first stream act like residual units for the second and carry high 
level information over the network.This network has 17M parameters.

•	 The SegNet41 consists of an encoder–decoder layer followed by a pixel-wise classification layer. The architec-
ture of the encoder layer is identical to the VGG16 network. Each encoder consists of one or more convolu-
tional layers. This layer contains batch normalization, a ReLU non-linearity, a non-overlapping max-pooling, 
and sub-sampling. This network has 35M parameters.

Table 1.   Results of the networks selection using real perspective images from CamVid dataset (%). ⋆Designed 
or can be used in real-time. The bold font shows the scores (mIoU and accuracies) of the four chosen 
networks, and the best accuracies obtained per class.

mAcc mIoU

Per-class Acc

Void Sky Building Fence Other Person Pole Road line Road Sidewalk Vegetation Two wheeled Four wheeled Wall Traffic sign

FC-DenseNet5630 91.8 60.3 46.4 96.7 90.5 75.8 63.3 58.5 41.3 97.0 97.9 90.5 88.3 73.6 89.1 76.4 55.1

FC-DenseNet6730 92.3 54.4 47.7 96.8 92.2 78.9 67.5 62.7 54.4 96.9 98.3 88.6 87.7 73.9 89.9 77.1 60.8

FC-DenseNet10330 92.2 62.0 49.4 96.7 91.7 78.5 65.4 57.2 46.3 97.4 98.2 90.2 88.4 72.7 89.7 77.3 55.0

MobileUNet
⋆ 31 87.6 48.9 37.0 93.6 87.1 73.4 53.2 33.6 15.0 96.5 96.8 83.2 83.0 62.6 80.1 66.4 34.6

PSPNet32 89.0 54.6 38.9 95.7 89.8 74.6 60.6 55.9 34.5 95.5 97.6 84.5 83.5 67.2 86.5 71.9 50.9

GCN33 90.7 56.2 42.1 96.3 90.5 71.5 52.2 53.6 40.5 96.0 97.9 89.7 86.0 66.0 83.6 74.1 49.4

FRRN34 91.9 61.8 46.4 96.6 92.2 78.0 66.3 64.9 49.4 97.5 98.3 89.9 86.7 72.7 89.4 77.6 57.9

DeepLabV335 86.8 47.1 33.3 94.1 89.9 70.9 51.7 32.6 17.0 94.0 96.9 80.8 80.8 62.1 76.2 62.4 33.9

DeepLabV3+36 89.3 53.2 39.7 95.1 89.5 72.6 53.8 45.4 33.0 94.4 97.8 86.6 87.1 64.2 84.0 68.5 45.5

RefineNet37 91.2 59.3 42.9 96.0 92.5 75.5 60.6 57.0 39.8 97.7 98.1 89.1 87.4 71.0 86.3 74.5 51.9

AdapNet
⋆ 38 87.3 47.9 38.6 96.7 89.2 71.9 52.8 26.5 18.3 96.3 96.2 78.3 80.1 61.0 76.8 65.6 34.5

DenseASPP39 87.9 50.6 39.5 91.4 90.5 71.4 54.9 41.3 23.9 94.8 97.6 83.1 82.2 65.2 78.1 67.7 37.4

BiSeNet
⋆ 40 90.3 55.1 40.2 95.9 90.6 74.6 53.7 47.0 24.9 96.9 97.9 88.2 87.6 65.8 85.3 70.6 50.6

SegNet
⋆ 41 92.0 61.8 50.1 96.2 92.1 78.5 66.5 59.3 46.3 97.5 98.0 89.5 88.0 74.3 89.0 76.6 57.0

CamVid
perspective

Cityscapes
perspective

OmniScape
perspective

OmniScape
equirectangular

OmniScape
fisheye

Real
fisheye

Real fisheye
(perspective)

Figure 1.   Modalities used and corresponding semantic segmentation ground truth.
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•	 The RefineNet37 is considered as a generic multi-path refinement network that uses long range residual con-
nections to enable high resolution prediction by exploiting all the information available in the down-sampling 
process. By using fine-grained features from earlier convolution, the deeper layers that capture high level 
semantic features can be directly refined. This network has 85M parameters.

Performance versus number of samples.  We used the four selected networks and CamVid dataset with 
100 to 700 images, using each time 60% in the training set, 24% in the validation set and 16% images in the test 
set. Figure 2 shows the evolution of the mAcc and mIoU when the size of the training set increases. We can see 
that the performance does not improve beyond 500 images. We have decided then to keep using 700 images in 
all the experiments.

Cross‑modality experiment.  In this experiment, we used 700 captures from OmniScape, 700 images 
from CamVid, Cityscapes, and 15 images from our real fisheye images test set. The OmniScape Dataset provides 
synthetic omnidirectional images, namely 360◦ equirectangular, fisheye, and catadioptric stereo RGB images 
from the two front sides of a motorcycle with semantic segmentation and depth map ground truth. The images 
in OmniScape are annotated into 15 classes. For Equirectangular representation, we crop the images to keep 
just 180◦ , which represents the front side, so all modalities can be fairly compared to each other. Figure 1 shows 
OmniScape different modalities used with semantic segmentation ground truth. Our test set contains real fish-
eye images, we also use these images under the perspective representation with a FOV 126◦ . These real fisheye 
images are captured using the same disposition used in the OmniScape dataset; Stereo fisheye cameras placed in 
the two front sides of a motorcycle. We annotated 15 different images into 15 classes like the OmniScape dataset, 
using the open source tool for annotation PixelAnnotationTool42. Figure 1 shows an example of images from this 
set with ground truth. We split the 700 images of each modality like a standard cross validation problem into 
three sets: a training set of 420 images, a validation set of 112 images, and a test set of 168 images. We trained the 
four chosen networks on OmniScape images using fisheye, perspective, and 180◦ equirectangular images and 
also CamVid and Cityscapes. Then, we tested all the trained networks on all these modalities, and on our test set 
of fisheye real images annotated manually. The class Void in CamVid represents far objects that are undefined, 
and in the OmniScape dataset, it represents the dark space surrounding the fisheye image. In this experiment, 
we dropped this class and we did not take it into account in the evaluation of the scores because it does not 
represent a piece of information. In Table 2 are listed the training and test sets along with the networks used in 
the cross-modality.

Table 2.   Image sets and networks used in the cross-modality experiment.

Training sets Testing sets Networks

CamVid CamVid FC-DenseNet103

OmniScape Perspective images OmniScape Perspective images SegNet

OmniScape Fisheye images OmniScape Fisheye images FRRN

OmniScape Equirectangular images OmniScape Equirectangular images RefineNet

Cityscapes Cityscapes

Real Fisheye images

Real Fisheye images (perspective)

Figure 2.   mIoU and mAcc versus number of samples used in the training set.
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Leave‑one‑out experiment.  In this experiment we trained the four networks on the 15 real fisheye 
images by leaving one image out each time to test the networks on it, resulting in 15 training sets. The purpose of 
the experiment is to have an idea about the performance while using other modalities in the training set.

Distorted perspective images experiment.  In this experiment, we trained the networks on trans-
formed Cityscapes images with the same transformation explained in section related work on fisheye images 
and used by several previous researchers3–5,13. We choose to use six focal lengths f (100, 150, 200, 250, 300, 350) 
to cover all the values used in previous studies. The images of these sets are shown in Figure 3. We then used 
training sets where the types of representation are mixed and contain real and synthetic images, to explore if 
the networks can learn on different modalities and improve the results. We used Cityscapes images with and 
without tangent transform and OmniScape images. We created seven sets, each having 50% of OmniScapes and 
50% of Cityscapes images, with and without tangent transformation; we denote these sets OmniCityscapes. In 
this experiment, only the real fisheye images are used as the test set. It is worth noting that the unpleasant effect 
of using a tangent transformation is that the field of view of these images is not comparable to the large field of 
view of omnidirectional images. The amount of information is much more important in real omnidirectional 
images than in images generated with this transformation. We can also easily notice in Figures 1 and 3 that pixels 
representing foreground object classes, like Person and Vehicle for example, are very less in real fisheye images 
compared to transformed perspective images.

Comparison with icosahedral‑based CNNs.  The motivation behind this experiment is to know if 
icosahedral-based convolution gives better results than planar networks, especially the ones used in the sec-
ond experiment when tested on equirectangular images. The idea behind this comparison is to highlight the 
imperfections for possible improvement and to know what is better to segment equirectangular images. In this 
experiment, we used UGSCNN and Tangent-images representation. We trained UGSCNN on the same OmniS-
cape equirectangular images used in the cross-modality experiment. Since the resolution of the images used is 
512× 1024 , we performed this experiment using level 8. We used in this experiment just RGB, without depth 
map since the depth map was not used by the other networks. The network is trained with a batch size 8 for level 
8. We used like in10 the weighted cross-entropy loss for training and zero weight for the dropped class Void. To 
display qualitative results, we unwrap the sphere using the UV mapping process. The equirectangular images are 
regenerated using the following for any point P on the sphere:

where (u, v) are the coordinates in the equirectangular image in the range [0, 1], and d = (dx , dy , dz) the unit 
vector from P to the sphere’s origin. Figure 4 [UGSCNN(s = 8)] shows one example of unwrapped equirectan-
gular image from a sphere. We also used for comparison the same baseline networks used in UGSCNN article, 
namely UNet43 and FCN8s21 with the same equirectangular images.

UGSCNN is an orientation-aware method. In this network, the convolution kernel is replaced by linear com-
binations of differential operators that are weighted by learnable parameters using standard back-propagation. 
The operators are estimated on unstructured grids.

Tangent-images is a representation where spherical data are projected into square oriented pixel grids tangent 
to the sphere according to the faces of an icosahedron. We used this representation with three levels (s) 5, 7, and 
8, and three base subdivisions (b), 0, 1, and 2, to train the same networks proposed in the Tangent-images article, 
namely HexUNet27, UGSCNN where the specific convolution kernel was replaced by a 3× 3 2D convolution 
and ResNet10144, as well as the best model achieving best results trained and tested on equirectangular images 
in the first experiment FC-DenseNet103. In the next section, we will present the combination of level and base 
subdivisions that gives the best results for each used network.

(1)u = 0.5+
arctan2(dz , dx)

2π
, v = 0.5−

arcsin
(

dy
)

π
,

Figure 3.   Examples of the distorted perspective Cityscapes images used.
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Results and discussions
In this section, we present the results of all the experiments explained above and the comparison with icosahe-
dral-based CNNs. We discuss and give quantitative results, as well as qualitative ones. We answer the questions 
raised in the introduction by analyzing the obtained results. And finally, we make a comparison between the 
combinations network/training-set, which gives the best results on equirectangular images in the first experiment 
and icosahedral-based solutions UGSCNN and Tangent-images. Figure 5 represents an overview of the results 
obtained in the cross-modality experiment using clustered columns. It summarizes all the results obtained by 
140 testing processes. As a first remark, we can see that the best results are always obtained when the dataset does 
not change between training and testing processes. The four networks are very sensitive to texture changes. We 
see that when the environment changes (real versus synthetic), the performance deteriorates drastically. This 
problem could be viewed as a domain adaptation one but it is not the aim of this study.

Omnidirectional images.  The four networks, when trained on fisheye images or equirectangular images 
and tested on the same modalities, give a mAcc not less than 90% and a mIoU higher than 66% without excep-
tion. It shows that networks designed for perspective images give good results when trained and tested on 
omnidirectional ones. This answers the first question in the introduction: The network architectures that were 
proposed for perspective images can be used for omnidirectional images after necessary retraining phases, and 
possibly using some adjustments like the input size and the aspect ratio of the images. These architectures can 
then achieve similar performance on both representations, perspective and omnidirectional.

Real fisheye images.  On one hand, the results obtained for real fisheye images are poor, the highest 
obtained mIoU being 22.18% with mAcc equal to 73.11%. On the other hand, as listed in Table 3 the mIoU 
obtained in the leave-one-out experiment is 39.06% and the mAcc is 87.17%, representing unbiased results with 
the least variability. Considering the mean of the leave-one-out result as the best results we could expect using 
these images in the test set, we can consider that results obtained for real fisheye images in the cross-modality 
experiment are finally encouraging. The best results are reached when OmniScape fisheye images were used in 
training, using FRRN the same network with best results in the leave-one-out experiment. On the flip side, we 
can notice that in general there is not a big gap between the results obtained when testing on real fisheye images 
and when testing on the same images under the perspective representation, the best mIoU for real fisheye images 
under the perspective representation being 21.21% when trained on CamVid. When the networks are trained 
on fisheye OmniScape images, we obtain inferior results on the perspective representation but the best results 
on the fisheye representation. This confirms that it is thanks to the geometry of fisheye OmniScape images 
that the results are better since the intrinsic parameters of these images are the same as the real fisheye camera. 
Figures  6 and 7 shows results obtained in the distorted perspective images experiment and results obtained 
when we mix real Cityscapes images with synthetic OmniScape fisheye images. On one hand, we observe that 
the tangent transformation did not give better results than OmniScape fisheye images; however, the results are 
better than Cityscapes without transformation especially with f = 350, which represents the images with the 
least deformation. On the other hand, the mixed training sets did not achieve better than not mixed sets, but 
the mixing improved the results of transformed Cityscapes images especially for RefineNet f=100 and SegNet 
f = 250; it shows that both textures and geometry are important, but the geometry slightly outweighs the texture 
in this case. The use of Real fisheye or more photorealistic fisheye images in the training could improve the 
results. Figure 8 shows qualitative results obtained by the best networks for each modality. It is worth noting 

RGB Ground
truth

FC-DenseNet103 UGSCNN
(Tangent-images,s=8, b=0)

HexUNet
(Tangent-images,s=8, b=1)

ResNet101
(Tangent-images, s=8, b=1)

Unet
(UGSCNN baseline)

UGSCNN
(s=8)

FCN8
(UGSCNN baseline)

FC-DenseNet103
(Tangent-images, s=5, b=0)

Figure 4.   Predicted equirectangular images using icosahedral-based networks.
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that the accuracy and the intersection over union are computed without taking into account the surrounding 
black area in fisheye images. We consider just the part that contains the information. FRRN with OmniScape 
fisheye images gives the best results when testing on real fisheye images. However, it is not the fastest in terms of 
computation time as shown in Table 4.

FC-DenseNet103 SegNet FRRN RefineNet

(a) Acc. Trained on CamVid Perspective (b) IoU Trained on CamVid Perspective

(c) Acc. Trained on Cityscapes Perspective (d) IoU Trained on Cityscapes Perspective

(e) Acc. Trained on OmniScape Perspective (f) IoU Trained on OmniScape Perspective

(g) Acc. Trained on OmniScape Equirectangular (h) IoU Trained on OmniScape Equirectangular

(i) Acc. Trained on OmniScape Fisheye (j) IoU Trained on OmniScape Fisheye
(1) CamVid Perspective, (2) OmniScape Perspective, (3) OmniScape Equirectangular, (4) OmniScape Fisheye, (5) Real Fisheye, (6) Real Fisheye (Perspective), (7) Cityscapes

Perspective.

Figure 5.   Per test set mAcc and mIoU obtained in the cross-modality experiment (%).
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OmniScape images.  In these images, the only difference is the camera itself since the same scene is cap-
tured by three cameras: perspective, fisheye, and 360◦ equirectangular. This configuration allows us to make a 
fair comparison between all these modalities. We notice that the best results are obtained when the training 
and testing sets are the same as shown in gray in Tables 5 and 6 that list for each combination the best network 
in terms of mAcc and mIoU. When the training and testing sets are not the same, we can notice that omnidi-
rectional images (fisheye and equirectangular) are more robust and can learn a universal representation better 
than when trained on perspective images. We can also notice that FC-DenseNet103 and RefineNet achieve the 
best results, but sometimes they are just slightly better than the others. Figure 9 shows an example of qualitative 
results for all the combinations.

Equirectangular images.  We saw in the previous experiment that FC-DenseNet103 gives the best results 
when trained and tested on equirectangular. This becomes our baseline in this section, where we seek to discover 

Table 3.   Results obtained in the leave-one-out experiment (%).

mAcc mIoU Network

Max 97.95 65.30 FRRN

Min 47.50 18.37 RefineNet

Mean 87.17 39.06

Table 4.   Runtime of the selected networks for OmniScape equirectangular images using NVIDIA Tesla V100 
SXM2.

Network Training runtime (h) Testing average runtime (ms)

SegNet 10.93 263.4

RefineNet 14.97 271.6

FRRN 15.11 349.6

FC-DenseNet103 15.8 795.2

RGB Ground
truth FRRN Trained on OmniScape Fisheye

(22.18%)
FC-DenseNet103 Trained on CamVid

Perspective
(19.48%)

FRRN Trained on OmniScape
Equirectangular (17.14%)

FRRN Trained on OmniScape Perspective
(16.62%)

FC-DenseNet103 Trained on Cityscapes
Perspective
(12.41%)

Figure 6.   Qualitative results on a real fisheye image using networks given best mIoU for each modality in the 
cross-modality experiment.
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FC-DenseNet103 SegNet FRRN RefineNet

(a) Acc. Trained on distorted Cityscapes images. (b) IOU Trained on distorted Cityscapes images.

(1)

Cityscapes, (2) Cityscapes f100, (3) Cityscapes f150,(4) Cityscapes f200, (5) Cityscapes f250, (6) Cityscapes f300, (7) Cityscapes f350, (8) OmniScape Fisheye

Figure 7.   Per test set mAcc and mIoU obtained using distorted Cityscapes images (%).

(a) Acc. Trained on OmniCityscapes images. (b) IOU Trained on OmniCityscapes images.

(1)

OmniCityscapes, (2) OmniCityscapes f100, (3) OmniCityscapes f150,(4) OmniCityscapes f200, (5) OmniCityscapes f250, (6) OmniCityscapes f300, (7) OmniCityscapes
f350, (8) OmniScape Fisheye

Figure 8.   Per test set mAcc and mIoU obtained using OmniCityscapes images (%).

Table 5.   Networks with best mAcc (%) in the cross-modality experiment for OmniScape images.

Testing
Perspective Equirectangular Fisheye

Training
Perspective FC-DenseNet103 96.64 FC-DenseNet103 88.19 FC-DenseNet103 76.38
Equirectangular RefineNet 90.60 FC-DenseNet103 97.67 FC-DenseNet103 89.90
Fisheye RefineNet 88.98 RefineNet 93.23 FC-DenseNet103 97.37

Table 6.   Networks with best mIoU (%) in the cross-modality experiment for OmniScape images.

Testing
Perspective Equirectangular Fisheye

Training
Perspective FC-DenseNet103 72.36 FC-DenseNet103 43.54 RefineNet 34.03
Equirectangular FC-DenseNet103 46.13 FC-DenseNet103 75.63 FC-DenseNet103 53.47
Fisheye RefineNet 41.50 RefineNet 55.01 FC-DenseNet103 74.50
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Equirectangular
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RefineNet
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Figure 9.   Qualitative results for networks with best mIoU in the cross-modality experiment for OmniScape 
images.

Figure 10.   mAcc, mIoU and training runtime using icosahedral-based networks.
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if icosahedral-based networks can achieve better results or not. Figure 10 presents the best combination of levels 
(5, 7, 8) and base subdivision (0, 1, 2) for each network used with Tangent-images, and UGSCNN level 8, the 
baseline used by UGSCNN authors, as well as FC-DenseNet103. Figure 4 shows the corresponding qualitative 
results. The combinations of Tangent-images with FC-DenseNet103 using s = 7 and s = 8 were stopped because it 
needed several days of training. This is due to the fact that FC-DenseNet103 has several layers, and the Tangent-
images representation results in a big number of images.

We notice that Unet outperforms UGSCNN but both, as well as FCN8, are far behind FC-DenseNet103 which 
is the best. We observe that Tangent-images improve the performance of UGSCNN; this can be explained by 
the fact that the convolution in this case was replaced by a 2D convolution. We also observe that the best results 
for Tangent-images are obtained when using level 8 with b = 0 or b = 1, which means Tangent-images with 
256× 256 and 128× 128 pixels. We can deduce that Tangent-images is not useful in our case, even if it can be 
for high-level resolution images9. And also using a planar 2D convolution is better, since it enhances the results 
obtained by UGSCNN. Finally, we can deduce that using a network based on planar convolution is better than 
networks with icosahedral based convolution for our use case.

Summary.  To summarize all the experiments conducted in this work, we can say that semantic segmenta-
tion networks made for perspective images give good results and are more robust when trained on omnidirec-
tional images. They are able to learn a universal representation and achieve better results on all modalities than 
if trained on perspective images. Finally, we made a comparison between a network that uses icosahedral-based 
networks and a network with planar convolutions using equirectangular images. Working with the icosahedral 
manifold is very greedy in terms of computation time and memory, but does not necessarily give better results. 
We saw that a network based on planar convolution trained on equirectangular images is sufficient and outper-
forms icosahedral-based networks in segmenting road scene equirectangular images.

Conclusion and future work
This paper takes stock of progress made on semantic segmentation of omnidirectional images. We presented a 
comparative study of semantic segmentation using equirectangular, fisheye, and perspective images, from real 
and synthetic datasets. By comparing different networks of semantic segmentation, we proved that networks 
developed for perspective images with planar convolutions when trained on omnidirectional images give good 
results and they are more robust against modality changes. We also made a comparison using equirectangular 
images with both planar convolution and different icosahedral-based solutions. The experiments show that planar 
convolution is better. As we noticed that networks used are sensitive to textures and environment changes, one 
solution can be to use networks performing image to image translation like pix2pix45 to generate more realistic 
images using the OmniScape dataset since we lack datasets of real omnidirectional images with ground truth 
especially for the case of motorized two-wheelers. Ideally, a network using an equivariant convolution able to 
learn shapes and geometry of objects regardless of texture and position on the omnidirectional image would be 
more adequate for omnidirectional images. This can be achieved by using convolution on manifold as shown 
by Cohen et al.29. The works done on the icosahedral representation are encouraging, but for now, the experi-
ments showed that planar convolution is better for the task of semantic segmentation of omnidirectional road 
scenes images.
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