Deconvoluting the benefits of porosity distribution in layered electrodes on the electrochemical performance of Li-ion batteries
Abbos Shodiev, Mehdi Chouchane, Miran Gaberscek, Oier Arcelus, Jiahui Xu, Hassan Oularbi, Jia Yu, Jianlin Li, Mathieu Morcrette, Alejandro A. Franco

To cite this version:
Abbos Shodiev, Mehdi Chouchane, Miran Gaberscek, Oier Arcelus, Jiahui Xu, et al.. Deconvoluting the benefits of porosity distribution in layered electrodes on the electrochemical performance of Li-ion batteries. Energy Storage Materials, 2022, 47, pp.462-471. 10.1016/j.ensm.2022.01.058. hal-03659984

HAL Id: hal-03659984
https://u-picardie.hal.science/hal-03659984
Submitted on 29 Jun 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Deconvoluting the benefits of porosity distribution in layered electrodes on the electrochemical performance of Li-ion batteries

Abbos Shodivea,b, Mehdi Chouchanea,b, Miran Gabersekc, Oier Arcelusa,b, Jiahui Xua,b, Hassan Oularbia,b, Jia Yua,b, Jianlin Lic, Mathieu Morcrettea,b,d, Alejandro A. Francoa,b,d,e,*

a Laboratoire de Réactivité et Chimie des Solides (LRCS), UMR CNRS 7314, Université de Picardie Jules Verne, Hub de l’Energie, 15 rue Baudeloque, 80039 Amiens Cedex, France
b Réseau sur le Stockage Electrochimique de l’Energie (RS2E), FR CNRS 3459, Hub de l’Energie, 15 rue Baudeloque, 80039 Amiens Cedex, France
c Electrochemical and Energy Infrastructures Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831 United States
d ALLISTORE-European Research Institute, FR CNRS 3104, Hub de l’Energie, 15 rue Baudeloque, 80039 Amiens Cedex, France
e Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
f Institut Universitaire de France, 103 Boulevard Saint Michel, 75005 Paris, France

A R T I C L E I N F O

Keywords: Lithium-ion batteries Electrode heterogeneity 4D-resolved physical modeling Ionic resistance Symmetric cells

A B S T R A C T

Thick Lithium Ion Battery (LIB) electrodes suffer from poor rate capability and high ionic impedance due to their thickness and mesostructure. Therefore, optimizing thick electrode architectures becomes crucial. In this work, we report a systematic assessment of the ionic resistance in heterogeneous porous electrodes through the combination of computational simulations using a 4D-resolved model and experimental measurements. The first part of the study is devoted to a general assessment of Electrochemical Impedance Spectroscopy (EIS) spectra, mapping the impact of ionic and electronic resistances on the overall impedances of uncalendered and calendered LiNi\textsubscript{0.5}Mn\textsubscript{0.5}O\textsubscript{2}, LiFePO\textsubscript{4}, and graphite electrodes. In the second part, in silico-generated electrodes with different porosities are used in computational EIS simulations to analyze the impact of the electrode porosity on the ionic impedance. As expected, the results show that a lower porosity leads to a higher ionic impedance because of a higher electrode tortuosity factor. Furthermore, in silico-generated electrodes with different porosities were stacked and assembled to create heterogeneous of porosity along the thickness, and used in computational EIS and galvanostatic discharge simulations. The computational results show that the porosity heterogeneity along the electrode thickness has a significant effect on the ionic impedance and capacity of the electrode. The electrode architecture with progressively decreasing porosity from separator to current collector shows the highest performance, a trend validated by our in house experimental EIS and galvanostatic discharge also reported in this manuscript. Overall, we conclude that the ionic resistance in a thick electrode can be effectively reduced through proper tuning of the porosity heterogeneity. The proposed heterogeneous electrode architectures presented here could enormously help building efficient thick electrodes for LIBs.

1. Introduction

Developing optimized energy conversion and storage devices has led to an unprecedented growth of the sustainable energy industry during the last three decades. Particularly, lithium-ion batteries (LIBs) have enabled consumer electronic technologies as well as the renaissance of the electric vehicles (EVs), due to their high energy and power densities, and long cycling stability [1]. Nevertheless, continuous improvements such as increasing energy density and decreasing manufacturing costs are still required to unlock their full potential [2,3]. State-of-the-art LIB chemistries are well engineered and can be designed for fast charging, yet electrodes need to be relatively thin leading to low energy densities and high costs [4]. Increasing electrode thickness and mass loading is a common approach to enhance the LIB energy density [3,5,6]. However, even if the lithium ion migration in a liquid electrolyte is several orders of magnitude higher than lithium diffusion in the solid phase, it is still the rate-limiting factor in a thick electrode and for electrodes under high C-rates [7,8]. Additionally, thick electrodes might also suffer from poor electrode wetting and dysfunctional heterogeneity in the electrode mesostructure [9,10]. These variations may lead to heterogeneous current distributions, increased ionic impedance, and fast electrolyte decomposition under high storage temperatures [11,12], resulting in lower energy and power capacities with accelerated cell degradation [13,14]. Therefore, optimizing thick electrode architectures becomes crucial for

* Corresponding author.
E-mail address: alejandro.franco@u-picardie.fr (A.A. Franco).

https://doi.org/10.1016/j.ensm.2022.01.058
Received 29 September 2021; Received in revised form 10 January 2022; Accepted 30 January 2022
Available online 1 February 2022
2405-8297/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)
overcoming the limitations of electronic and ionic current distributions in LIBs [15]. Some experimental works have recently reported the interplay between energy and power density and electrode properties, such as areal loadings, porosities, and electrode architectures [7,8]. However, some electrode properties are challenging to engineer due to time, costs and instrument limitations [16]. In this regard, physical modeling serves as an efficient tool to address the electrochemical performance of LIBs, where optimization processes based on experimental trial and error become expensive and cumbersome [17]. For instance, several modeling studies were recently reported to quantify and address the heterogeneity issue at the single active material (AM) particle and the full electrode levels [18,19]. These models were built to describe how electrode heterogeneities affected its performance [18,19]. Furthermore, the ion migration limitation in the electrolyte phase of a porous electrode determines the LIB cell performance under high C-rate operation, an aspect which was independently and systematically studied in several works [7,8,20].

Electrochemical impedance spectroscopy (EIS) is one of the dominant tools to measure ionic resistance in the battery field [21]. The experimental setup to measure the ionic resistance of porous electrodes was first proposed by Ogihara et al. using a symmetric cell configuration [21]. Additionally, EIS constitutes a simple way to calculate the electrode tortuosity factor. Several authors already used symmetric cell configurations to measure the tortuosity factors of a graphite anode, a LiPF6 cathode, and a NMC cathode [21–24]. Moreover, in a recent publication, we have reported for the first time a 4D (3D in space + time) physical model of a NMC electrode symmetric cell, which captures the impact of the spatial location of the AM and the carbon-binder domain (CBD) on the EIS response [25]. Our model allows assigning different physics to NMC, CBD and pores, and considers explicitly the electrochemical double layers at the NMC/electrolyte and CBD/electrolyte interfaces, which sets up a powerful ground for the characterization of ionic resistances in heterogeneous porous electrodes.

The present work aims at investigating the electrochemical response of electrodes with different porosity configurations. We particularly aim at assisting the design of thick electrodes with reduced ionic resistance and improved charge and discharge rate capabilities for LIBs. For this, we systematically investigate the ionic resistances of single layer and multi-layer electrodes with heterogeneous porosities along the thickness, to unravel possible guidelines of improvement of power densities of thick electrodes. After introducing the dual modeling-experimental methodology on which our study is supported, we discuss, based on our experimental data, ionic and electronic resistances contributions to the overall EIS for different electrode chemistries. Such data is used to calibrate our 4D-resolved model. The latter is employed to assess the EIS and discharge performance of in silico-generated electrodes with heterogeneous porosities along the electrode thickness. Electrodes are analyzed in terms of their tortuosity factors, and validation experiments are also reported. We finally conclude and indicate future directions for this work.

2. Methodology

2.1. Electrode structures generation

We have reported in our previous articles computational methods for stochastic and manufacturing simulation-based generation of LIB electrodes [26,27]. In this work, the stochastic method of electrodes generation was chosen to have electrodes with controlled porosity and keeping all the other parameters (e.g. electrode formulation) constant. The details of the technique can be found in Ref. [28] The obtained electrode mesostructures are meshed by using our voxelization algorithm INNOV in the Matlab® environment [29].

2.2. Pore size distribution

The pore phase of the generated electrodes was further segmented into individual pores using the watershed method to obtain pore size distribution of the studied mesostructures [9,10]. Specifically, the PoroDict library was used as part of the GeoDict® software package. Due to the discrete voxelated nature of the studied mesostructures, over-segmentation of the pore space is a common artifact induced by watershed-based methods. Many post-processing methods exist to alleviate the effect of such artifacts. In GeoDict® this is solved by reconnecting the initially segmented pores only if the percentage of surface area that is shared between them is bigger than a chosen value. A low threshold value results in many pores being reconnected, while the contrary happens when a high threshold value is selected. In this work, an intermediate value is carefully selected so that non-physical artifacts are eliminated. Once the pore space is labeled, the diameters of equivalent volume spheres are calculated and arranged in a histogram. The histogram is further normalized to account for the non-uniform selection of the number of histogram bins.

2.3. EIS model and simulation procedure

The imported volumetric multi-phase mesh consists of five subdomains: active material (AM) and carbon binder domain (CBD) particles, separator (coming from computer tomography-acquired imaging), current collectors, and electrolyte [30]. The equations behind the 3D EIS model and geometry subdomains are provided in one of our previous publications [25]. The EIS spectra were calculated in Comsol Multiphysics 5.4 environment using the Battery Module. The impedance was calculated at seven frequencies per decade, ranging from 1 to 107 Hz with 10 mV perturbation. The simulations were performed using a computer equipped with an Intel® Xeon® E5-4627 Cache @ 3.30 GHz with 264 GB of RAM. Each simulation took approximately 15 to 30 hours, depending on the input parameters (electronic conductivity of active material) and the electrode mesostructure.

2.4. Electrode tortuosity factor calculations

Electrode tortuosity factor (𝜏EIS) values were calculated from the EIS data generated by the computer simulations by using the graphical method proposed by Landesfeind et al. [24] based on the following expression:

\[
τ_{EIS} = \frac{R_{\text{cell}} k}{2d}
\]

(1)

where \(R_{\text{cell}}\) is the ionic resistance within the electrode extracted from impedance data, \(k\) is the surface area of the electrode, \(ε\) is the electrode porosity, \(k\) is the bulk ionic conductivity of the electrolyte and \(d\) is the thickness of the electrode [24].

The direct assessment of the tortuosity factors (\(τ_{\text{factor}}\)) of the computer-generated electrode mesostructures was performed by using the TauFactor software in the Matlab® environment [31]. This software solves Fickean diffusion equations in steady-state after application of a concentration difference between two opposing faces in the electrode along its thickness. The tortuosity factor \(τ_{\text{factor}}\) is given in this case by:

\[
τ_{\text{factor}} = \frac{D}{D_{\text{eff}}} ε
\]

(2)

with \(D\) being the bulk diffusion coefficient and \(D_{\text{eff}}\) the effective diffusion coefficient.

2.5. Discharge model and simulation procedure

Once the meshed electrode mesostructure is imported into COMSOL Multiphysics, an electrochemical model was applied to simulate a single discharge at 3C starting from a fully charged battery cell. The model is
identical to the one reported in some of our previous studies [26,30].
Each discharge simulation took between 5 and 9 h to complete on
a desktop computer with 64 GB of RAM.

2.6. Experimental methodology

As-received materials were used including LiNi$_{0.5}$Mn$_{0.3}$Co$_{0.2}$O$_2$
(NMC, Umicore), LiFePO$_4$ (LFP, Aleece), C-NERGYTM super C65, C45
carbon black and GDPR 10–4 graphite (IMERYS), SorelTM Polyvinylidy-
ne fluoride (PVdF, Solvay), Carboxymethyl Cellulose (CMC, ACROS
Organics), Styrene-Butadiene Rubber (SBR, Zeon), Triton X-100 (TX,
Sigma-Aldrich), N-methyl pyrrolidone (NMP, BASF), Tetrabutylammo-
nium perchlorate (TBAClO$_4$, Alfa Aesar) and Poly (vinylidene fluoride-
co-hexafluoropropylene) (PVdF-HFP, Kynar Flex2801, Arkema).

The NMC, LFP, and graphite electrodes that we used as control elec-
 trodes were prepared in the usual way. First, the solid components, in-
 cluding active material, carbon black, and binder, were premixed with
a soft blender. Then, the solvent was added until the desired solid content
(SC) was achieved. A Dispermat CV3-PLUS high-shear mixer was used
for the slurry preparation. The NMC and LFP slurries were mixed for
two hours, while the graphite slurries were mixed overnight, in a water-
bath cooled reactor at 25 °C. The resulting NMC and LFP mixtures were then
coated over a 22 μm thick aluminum current collector, and the graphite
mixture was coated over a 18.6 μm thick copper current collector, using
a comma-coater prototype-grade machine. For the electrodes with con-
trolled porosity and the bi-porous electrodes, the Belloc process was
used [32]. The solid components were ground with an agate mortar and
then moved to a glass container. Different volumes of dibutyl phtha-
late, calculated according to the volume ratio, were added as a porogen
agent. Acetone was added as a solvent, and the mixture was well mixed
with a magnetic stirrer at high speed. The slurry was then deposited
on a Mylar foil by doctor blading. The films detached from the Mylar
foil were dried in ambient temperature and combined to one electrode
under 10 Pascal at 130 °C. The bi-porous electrode was then soaked 3
times in dimethyl-ether during 15 min in ether to remove the porogen
agent. The analyzed electrodes in this work are listed in Table 1.

All EIS tests were performed in 2035-coin cells assembled in a dry
room (H$_2$O < 15 ppm). The electrodes were punched and assembled
into symmetric coin cells (both at the positive and negative side) using
Celgard 2500 as separator (thickness = 25 μm, porosity = 55%).
The electrolyte was a 10 mM TBAO$_4$ solution, prepared in a 1:1 wt mixture
of ethylene carbamate:dimethyl carbonate. The EIS was performed with
a BioLogic MTZ-35 impedance analyzer, in the range of 10$^{-1}$ – 106 Hz
with a potential perturbation of 10 mV. All measurements were carried
out at 25 ± 1 °C.

3. Results and discussion

3.1. Deconvoluting ionic resistance from EIS

It is frequent practice to represent the EIS response as Nyquist plots.
The typical shape of a Nyquist plot for symmetric cells results from an
about 45° slope line followed by an about 90° vertical line at low fre-
frequencies. The high-frequency intercept on the x-axis represents a pure
resistor while the response at the lowest frequencies tends to a vertical
line representing a purely capacitive behavior. Between these two fre-
quency regions, slopes with 45° represent the resistance caused by ion
migration inside the porous electrode [33,34]. Furthermore, sometimes
a semicircle-shaped spectrum shows up in mid-high frequency intervals
for some electrode materials. Since in symmetric cell experiments the
blocking electrolyte ensures that no faradaic current flows during the
EIS characterization, this arc-like EIS response cannot be related to a
charge transfer process, as usually observed in LIB electrodes.

In the present symmetric cells, this semicircle is ascribed in the
literature to several factors such as the contact electronic resistance at
the current collector/composite electrode interface and bulk AM elec-
tronic conductivity [33]. The capacitive element can originate from
the electrical double layer formation that occurs at the current collec-
tor/electrolyte interface (i.e. the electrolyte phase inside the pores of
the composite that wets the current collector substrate)[34]. On top of
that, the electronic conductivity of the AM generates a high frequency
semicircle too. As Landesfeind et al. pointed out, if a high electronic con-
ductivity condition is not met, both ionic and electronic effects will play
a role in the total resistance measured by impedance, which hinders the
measurement of pure ionic resistances [24,35].

Fig. 1 shows our experimentally obtained EIS plots for uncalen-
dered and calendered NMC, LFP, and graphite electrodes in symmetric
cell configurations. As discussed above, uncalendered NMC and LFP
(Fig. 1(A)) electrodes with low electronic conductivity present a semi-
circle at the mid-high frequency region (106 Hz to 100 Hz). The LFP
electrode, which has a lower electronic conductivity when compared to
the NMC based electrode, shows an even bigger semicircle region and
total resistance [6]. On the other hand, the graphite electrode does not
show the curved mid-high frequency impedance values, due to its higher
intrinsic electronic conductivity. One way of experimentally increasing
the electronic conductivity by decreasing the contact resistance is to per-
form electrode calendering. Fig. 1(B) illustrates the EI spectra of calen-
dered NMC, LFP and graphite electrodes. Electrode calendering drasti-
cally decreases the semicircle region (electronic/contact resistance) and
ensures the isolated observation of the impact of ionic resistance on the
overall EI spectra. Given that the electronic contribution to the resis-
tance was virtually suppressed due to calendering, the total resistance
of the LFP electrode decreased (62.5%) from 0.042 to 0.020 Ωm2. A
similar change was observed for NMC electrodes after the calendering
step (from 0.041 to 0.030 Ωm2). In contrast, the overall resistance for
the graphite electrode increased after calendering, which is due to an in-
crease in the ionic resistances only, given that the electronic resistances
are not a limiting factor for graphite electrodes.

In the following parts of our article, we aim to use our 4D-resolved
model to investigate the impact of porosity heterogeneity on the elec-
trodes’ electrochemical response. As electrode nanostructures are gen-
erated stochastically to control porosity, calendering process impact on
the electrode electronic conductivity cannot be explicitly simulated.
Therefore, we need to find out the exact value above which the elec-
tronic conductivity stops being a limiting source of impedance in the

Table 1

List of analyzed electroactive electrodes.

<table>
<thead>
<tr>
<th>Name</th>
<th>Active material (dry mass%)</th>
<th>Carbon black (dry mass%)</th>
<th>Binder (dry mass%)</th>
<th>Porosity (%)</th>
<th>Thickness (μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uncalendered-NMC-96</td>
<td>LiNi${0.5}$Mn${0.3}$Co$_{0.2}$O$_2$ (96%)</td>
<td>C65 (2%)</td>
<td>PVdF (2%)</td>
<td>49%</td>
<td>144</td>
</tr>
<tr>
<td>Calendered-NMC-96</td>
<td>LiNi${0.5}$Mn${0.3}$Co$_{0.2}$O$_2$ (96%)</td>
<td>C65 (2%)</td>
<td>PVdF (2%)</td>
<td>28%</td>
<td>73</td>
</tr>
<tr>
<td>Uncalendered-LFP-96</td>
<td>LiFePO$_4$ (96%)</td>
<td>C45 (2%)</td>
<td>PVdF (2%)</td>
<td>64%</td>
<td>122</td>
</tr>
<tr>
<td>Calendered-LFP-96</td>
<td>LiFePO$_4$ (96%)</td>
<td>C45 (2%)</td>
<td>PVdF (2%)</td>
<td>37%</td>
<td>64</td>
</tr>
<tr>
<td>Uncalendered-graphite-96</td>
<td>GDHR 10–4 (95%)</td>
<td>C45 (2%)</td>
<td>CMC/SBR (1.5%/1%)</td>
<td>56%</td>
<td>157</td>
</tr>
<tr>
<td>Calendered-graphite-96</td>
<td>GDHR 10–4 (95%)</td>
<td>C45 (2.5%)</td>
<td>CMC/SBR (1.5%/1%)</td>
<td>28%</td>
<td>95</td>
</tr>
<tr>
<td>Uncalendered-NMC-PVdF-HFP-C45</td>
<td>LiNi${0.5}$Mn${0.3}$Co$_{0.2}$O$_2$ (73%)</td>
<td>C45 (7%)</td>
<td>PVdF (20%)</td>
<td>55.6%</td>
<td>127</td>
</tr>
<tr>
<td>Calendered-NMC-PVdF-HFP-C45</td>
<td>LiNi${0.5}$Mn${0.3}$Co$_{0.2}$O$_2$ (72.7%)</td>
<td>C45 (19.3%)</td>
<td>PVdF-HFP (7.8%)</td>
<td>44%</td>
<td>85</td>
</tr>
</tbody>
</table>
simulated electrodes. For this purpose, several EIS simulations were carried out by setting different AM electronic conductivity values. Fig. 2(A) shows a cut view of the simulated 3D symmetric cell using one of our in silico-generated electrode mesostructures. Fig. 2(B) and (C) show the Nyquist and Bode plots obtained by the simulations. When the electronic conductivity of the AM was set to be 0.001 S.m\(^{-1}\) (as experimentally measured for NMC electrodes), the EIS simulations were consistent with the experimental EIS measurements (Fig. 1(A)) [25]. However, when setting a higher electronic conductivity (1 and 760 S.m\(^{-1}\)) in the model, the electronic resistance coming from the AM is observed to disappear (semicircle region) and only the ionic resistance (45° slope line) is observed. The simulated EIS spectra with high electronic conductivity values are consistent then with the experimental EIS measurements performed with calendered electrodes (Fig. 1(B)). In short, the above analysis shows that by sufficiently increasing the electronic conductivity of the AM, we ensure the dominating presence of the 45° slope line appearing between 10\(^2\) Hz to 10 Hz in Fig. 2(B). This impedance feature corresponds to the electrolyte resistance due to ionic migration limitations in the porous electrode [22]. Additionally, the Bode plot (Fig. 2(C)) shows that, for AM conductivities of 1 and 760 S.m\(^{-1}\), the corrected phase angles remain between 43° and 50° (10\(^5\) Hz to 10 Hz) as theoretically expected [22].

Consequently, all contact resistances are neglected and bulk electronic conductivity of AM domain was set to 1 S.m\(^{-1}\) (higher than in reality) in our simulations as shown in the following sections of our article. These assumptions ensure separating electronic and ionic contributions to the electrode’s impedance response and allow us to investigate the impact of the electrode architecture on its ionic resistance.
3.2. Understanding electrode porosity effects on ionic resistance

Once our 4D-resolved model is correctly calibrated to isolate the ionic resistance contributions, the influences of the electrode porosity on the overall ionic resistance and the tortuosity factors were studied. For this, three electrodes with 30%, 35% and 45% porosities were stochastically generated and simulated by using our model under a virtual symmetric cell configuration. (Fig. 3).

Usually, the PSD of the electrodes changes simultaneously when changing the electrode porosity. Therefore, the PSD of the in silico-generated electrodes was assessed to quantify exactly how much pore sizes changed by decreasing the electrode porosity. Fig. 3(A) shows that an electrode with 45% porosity has the broadest PSD among the three electrodes with 1.0 μm to 6.0 μm equivalent diameter pores. The smallest standard deviation of PSD was found for the electrode with 30% porosity, as expected. Still, it is clear from the results that the differences in the pore size distributions between different electrodes is slim. These small differences allow us to isolate and systematically study the effect of electrode porosity independently from other geometrical factors. Generated electrodes with different porosities are used in symmetric cell EIS simulations. The Schematics of the electrodes with different porosities used in these simulations are given in Fig. 3B.

In the Nyquist plot (Fig. 3(C)), the sloping region (mid-to-high frequency) increases when the electrode porosity is reduced from 45% to 30%, ascribing to the higher ionic resistance caused by the low amount of electrolyte and a longer migration path for ions. In addition, the resistance of the electrode increases from 0.0025 to 0.0045 Ωm² when the electrode porosity decreases from 45% to 30%. Furthermore, it is crucial to notice that high porosity electrodes lead to electrical double layer formation at high frequencies faster than the electrodes with lower porosities, which can be explained by an easier path for ions to reach the surface of the solid materials within the electrode.

Fig. 4 shows the ionic impedance of a cross-sectional cut at half of the thickness of the electrode, parallel to the surface at 10² Hz. The illustration shows that pores are better connected at higher porosities, which allows easier ionic transport. According to the cross-sectional 2D cut plots (Fig. 4(A)), the electrolyte resistance inside the electrode increased when the electrode porosity decreased. Furthermore, higher resistance regions were observed for the CBD domain for the electrode with lower porosity. The explanation of this phenomenon can be found in our recent publications [25,26,30]. Corresponding 3D videos of the simulations are given in SI section.

Table 2 displays the calculated values of ionic resistances (R_{ion}) of the electrolyte within the porous electrodes, the electrode tortuosity factors (τ_{EIS}) calculated through the graphical method proposed by Landesfeind et al., [24] and the tortuosity factors (τ_{factor}) calculated using TauFactor. As expected, the lower the porosity, the higher the ionic resistance and the higher the tortuosity factors (τ_{EIS} and τ_{factor}).

3.3. Designing heterogeneous electrode architectures with improved performance

In the last section we found that highly porous electrodes are beneficial for achieving low ionic resistances which is crucial under high C-rate operation. However, a tradeoff exists between active mass loading and rate capability, which is basically a tradeoff between energy and power densities. Having therefore understood the principles of ionic resistance contributions in EIS, we then envisioned electrode architectures that could optimize rate capabilities, for a fixed average porosity and thickness, by tuning their mesostructural heterogeneities. To do this, the electrodes with different porosities discussed above were virtually
Table 2
Ionic resistances (R_{ion}) of the electrolyte within the electrode pores and tortuosity factors calculated using TauFactor (τ_{factor}) and using the approach proposed by Landersfeind et al. (τ_{EIS}) [24].

<table>
<thead>
<tr>
<th>Porosity – 30%</th>
<th>Porosity – 35%</th>
<th>Porosity – 45%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrode thickness</td>
<td>25 μm</td>
<td>25 μm</td>
</tr>
<tr>
<td>Tortuosity factor (τ_{factor})</td>
<td>2.15</td>
<td>1.89</td>
</tr>
<tr>
<td>Tortuosity factor (τ_{EIS})</td>
<td>3.3</td>
<td>2.8</td>
</tr>
<tr>
<td>Ionic Resistance (R_{ion}) Ω/m²</td>
<td>0.011</td>
<td>0.008</td>
</tr>
</tbody>
</table>

Table 3
Ionic resistances (R_{ion}) of the electrolyte within the electrode pores and tortuosity factors calculated using TauFactor (τ_{factor}) and using the approach proposed by Landersfeind et al. (τ_{EIS}) [24].

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrode thickness</td>
<td>75 μm</td>
<td>75 μm</td>
<td>75 μm</td>
</tr>
<tr>
<td>Tortuosity factor (τ_{factor})</td>
<td>1.81</td>
<td>1.81</td>
<td>1.81</td>
</tr>
<tr>
<td>Tortuosity factor (τ_{EIS})</td>
<td>1.5</td>
<td>2.8</td>
<td>2.2</td>
</tr>
<tr>
<td>Ionic Resistance (R_{ion}) Ω/m²</td>
<td>0.013</td>
<td>0.024</td>
<td>0.019</td>
</tr>
</tbody>
</table>

assembled as one electrode to create heterogeneity of porosity along the electrode thickness (cartesian coordinate 2). Then, the constructed virtual symmetric cells were studied systematically to map the impact of the heterogeneous porosity on the total ionic resistance.

The obtained electrodes are shown schematically in Fig. 5(A). Their corresponding EIS simulation results are shown in Fig. 5(B) and (C), in the form of Nyquist and Bode plots, respectively. The calculated ionic resistance and tortuosity factors for these simulated symmetric cells are given in Table 3. Even though the four studied configurations have the same average porosity, the difference of the ionic resistances between them is significantly different, as it can be seen from the Nyquist plots (Fig. 5(B)).

Cell-1, with the highest porosity (45 %) close to the separator, shows the lowest ionic resistance (0.013 Ωm²) with a low tortuosity factor τ_{EIS} of 1.5. In contrast, Cell-2, with the lowest porosity (30 %) close to the separator region, has the highest ionic resistance 0.024 Ωm² and a tortuosity factor τ_{EIS} of around 2.8. According to these results, adjusting the electrode porosity distribution can reduce the ionic resistance by almost 50% while maintaining the overall porosity. When comparing Cell-1 and Cell-4, we demonstrate that having a progressively decreasing porosity from the separator to the current collector can reduce ionic resistance, which results in a drastic improvement of the rate capability of the electrodes for the same areal loading. Additionally, the diffusional tortuosity factors (τ_{factor}), for all four cells were calculated giving a value of around 1.81 (Table 3), which is in striking contrast with the EIS-calculated electrode tortuosity factor (τ_{EIS}) values. These results show that diffusional tortuosity factors are not always adequate when trying to characterize battery electrodes.

In order to validate the predicted simulation trends, single-layer and bi-layer electrodes were prepared by the Bellcore process [32]. The bi-layer electrode consisted of two layers where each layer had a porosity of 40% and 55%. The manufactured single-layer and bi-layer electrodes were put in symmetric cell format for the EIS experiments. Fig. 6(A) shows Nyquist plots of the single-layer electrodes with different porosi-
A. Shodiev, M. Chouchane, M. Gaberscek et al.

Energy Storage Materials 47 (2022) 462–471

Fig. 5. (A) Schematics of the different simulated symmetric cells with different porosity heterogeneities across the thickness. (B) Simulated Nyquist and (C) Bode plots for these symmetric cells.

Fig. 6. Nyquist plot of experimental symmetric cells (A) NMC/PVDF-HFP/C45 electrodes with 40% and 55% porosity. (B) NMC/PVDF-HFP/C45 Bi-layer electrodes consisted of two layers across the thickness (from the separator to the current collector side) where each layer had a porosity of 40% and 55% respectively.

Consistently with the simulation results (Fig. 3(C)), the electrode with 40% porosity showed higher resistance ($0.0085 \, \Omega \cdot \text{m}^2$) than the electrode with 55% porosity ($0.0055 \, \Omega \cdot \text{m}^2$). Fig. 6(B) shows the Nyquist plot where bi-layer electrodes were assembled to mimic the gradual porosity decreases/increases from the separator to the current collector side. The electrode with the highest porosity (55%) close to the separator shows the lowest ionic resistance $0.007 \, \Omega \cdot \text{m}^2$ and at the same time, the electrode with the lowest porosity (40%) close to the separator region has the highest ionic resistance $0.014 \, \Omega \cdot \text{m}^2$. According to the experiments, adjusting the electrode porosity distribution can reduce the ionic resistance by almost 50% while maintaining the overall porosity and the areal loading. This finding is in perfect agreement with the simulation results.

In summary, EIS simulations predicted that the total ionic resistance is strongly correlated with electrode heterogeneity and these predictions were confirmed experimentally. Therefore, when keeping the same overall porosity and areal loading, a desirable electrode mesostructure with a minimized impedance should have a porosity that gradually decreases from separator to current collector. This shows the significant impact of electrode design on electrochemical performance.

Besides the EIS simulations, discharge simulations for the same electrode mesostructures used in the modeling calculations above were carried out based on a half-cell configuration vs. lithium (Fig. 7(A)). The simulations carried out at 5C, 3C and 1C rates for all the structures and the results of two electrodes, Halfcell-1 and Halfcell-2, with the most significant difference, are shown in Fig. 7(B). Both of the simulated half-
cells showed the same capacity (166 mAh g⁻¹) at 1C rate with a small difference in the overall potential between half-cells. However, when simulations were carried under higher C rates (5C and 3C), Half-cell-1, with the electrode with the highest porosity close to the separator, exhibited the highest gravimetric discharge capacity, while Half-cell-2, with the electrode with the lowest porosity close to the separator, delivered the lowest gravimetric capacity among all the electrodes. The results of the discharge simulations at 3C rate for all the cells are given in Fig. 7(C). In agreement with our EIS simulations, discharge simulations showed the same trends for all the corresponding electrodes, where the electrode architecture with progressively decreasing porosity from separator to current collector offers the highest performance.

Fig. 7(D) and (E) represent the lithium concentration in the electrolyte phase at the end of discharge for Half-cell-2 and Half-cell-1, respectively. In Half-cell-2, the high concentration of lithium close to the separator dramatically decreases along the thickness of the electrode. On the other side, lithium concentration spreads more homogeneously along the thickness of the electrode in Half-cell-1, which has higher porosity close to the separator region. The electrode region with lower electrolyte concentration indicates electrolyte depletion, which can limit utilization of the electrode in that region. The electrolyte depletion will be more serious with increasing electrode thickness and can lead to very low utilization of AM in some regions. In Half-cell-2, the lowest porosity close to the separator reduces the contact surface between NMC and electrolyte and limits the ion migration along the electrode, which reduces the utilization of the high porosity layer next to the current collector. Also, it is essential to mention that lower porosity near the current collector region ensures better contact between the
cells is better suited than the diffusion-based calculated tortuosity factor (τ_{factor}) for battery electrode characterization.

Other electrodes with different porosities were virtually built to study the effect of inhomogeneous porosity across the electrode thickness. Furthermore, virtually generated cells were used in our 4D-resolved model to study EIS in symmetric cell configuration and galvanostatic discharge in half cell setups. The results coming from both simulation and in house experiments, showed that electrode heterogeneity along the thickness direction has a significant effect on the ionic impedance and capacity of the electrode. The study showed that the electrode region close to the separator side has the most prominent role in ionic impedance and tortuosity factors which consequently influences the overall capacity. Therefore, to obtain the optimal electrode mesostructure with the highest performance, electrode porosity must be constructed to decrease from the separator side to the current collector side.

Author contribution

Abbos Shodie: Conceptualization, Methodology, Model development, Formal analysis, Data curation, Investigation, Visualization, Software, Writing – review & editing, Writing – original draft. Mehdi Chouchane: Model development, Investigation, Data curation, Review & editing. Miran Gaberscek: Conceptualization, Data curation, Investigation, Formal analysis, Writing – review & editing. Oier Arcelus: Software, Formal analysis, Visualization, Data curation, Writing – review & editing. Jiahui Xu: Investigation, Writing – review & editing. Hassan Oularbi: Investigation, Writing – review & editing. Jianlin Li: Investigation, Writing – review & editing. Mathieu Morcrette: Investigation, Methodology, Software, Formal analysis, Data curation, Writing – review & editing. Alejandro A. Franco: Conceptualization, Methodology, Investigation, Writing – review & editing, Supervision, Project administration, Funding acquisition.

Data and code availability

All the data and the codes used in the scope of this work will be publicly available on the ERC-ARTISTIC project’s website https://www.erc-artistic.eu

Appendix A. Supplementary data

The supplementary data for this article includes a Supporting Information document and 5 videos showing 3D electrodes under different frequencies for EIS simulations.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.

Acknowledgments

A.A.F., A.S., O.A., J.X., H.O., M.C., and M.M. acknowledge the European Union’s Horizon 2020 research and innovation program for the funding support through the European Research Council (grant agreement 772873, “ARTISTIC” project). A.A.F. and O.A. acknowledge partial funding from the Région Hauts de France and from the European Union’s Horizon 2020 research and innovation program under grant agreement no 957189 (BIG-MAP). A.A.F. acknowledges the Institut Universitaire de France for the support. J.Y. and A.A.F acknowledge also the funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement no 875489 (SONAR).