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a b s t r a c t 

Thick Lithium Ion Battery (LIB) electrodes suffer from poor rate capability and high ionic impedance due to 
their thickness and mesostructure. Therefore, optimizing thick electrode architectures becomes crucial. In this 
work, we report a systematic assessment of the ionic resistance in heterogeneous porous electrodes through the 
combination of computational simulations using a 4D-resolved model and experimental measurements. The first 
part of the study is devoted to a general assessment of Electrochemical Impedance Spectroscopy (EIS) spectra, 
mapping the impact of ionic and electronic resistances on the overall impedances of uncalendered and calendered 
LiNi 1/3 Mn 1/3 Co 1/3 O 2 , LiFePO 4 and graphite electrodes. In the second part, in silico -generated electrodes with 
different porosities are used in computational EIS simulations to analyze the impact of the electrode porosity 
on the ionic impedance. As expected, the results show that a lower porosity leads to a higher ionic impedance 
because of a higher electrode tortuosity factor. Furthermore, in silico -generated electrodes with different porosities 
were stacked and assembled to create heterogeneities of porosity along the thickness, and used in computational 
EIS and galvanostatic discharge simulations. The computational results show that the porosity heterogeneity 
along the electrode thickness has a significant effect on the ionic impedance and capacity of the electrode. The 
electrode architecture with progressively decreasing porosity from separator to current collector shows the highest 
performance, a trend validated by our in house experimental EIS and galvanostatic discharge also reported in this 
manuscript. Overall, we conclude that the ionic resistance in a thick electrode can be effectively reduced through 
proper tuning of the porosity heterogeneity. The proposed heterogeneous electrode architectures presented here 
could enormously help building efficient thick electrodes for LIBs. 
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. Introduction 

Developing optimized energy conversion and storage devices has led
o an unprecedented growth of the sustainable energy industry during
he last three decades. Particularly, lithium-ion batteries (LIBs) have en-
bled consumer electronic technologies as well as the renaissance of the
lectric vehicles (EVs), due to their high energy and power densities,
nd long cycling stability [1] . Nevertheless, continuous improvements
uch as increasing energy density and decreasing manufacturing costs
re still required to unlock their full potential [ 2 , 3 ]. State-of-the-art LIB
hemistries are well engineered and can be designed for fast charging,
et electrodes need to be relatively thin leading to low energy densities
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nd high costs [4] . Increasing electrode thickness and mass loading is
 common approach to enhance the LIB energy density [ 3 , 5 , 6 ]. How-
ver, even if the lithium ion migration in a liquid electrolyte is several
rders of magnitude higher than lithium diffusion in the solid phase, it
s still the rate-limiting factor in a thick electrode and for electrodes un-
er high C-rates [ 7 , 8 ]. Additionally, thick electrodes might also suffer
rom poor electrode wetting and dysfunctional heterogeneity in the elec-
rode mesostructure [ 9 , 10 ]. These variations may lead to heterogeneous
urrent distributions, increased ionic impedance, and fast electrolyte de-
omposition under high storage temperatures [ 11 , 12 ], resulting in lower
nergy and power capacities with accelerated cell degradation [ 13 , 14 ].
herefore, optimizing thick electrode architectures becomes crucial for
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vercoming the limitations of electronic and ionic current distributions
n LIBs [15] . 

Some experimental works have recently reported the interplay be-
ween energy and power density and electrode properties, such as areal
oadings, porosities, and electrode architectures [ 7 , 8 ]. However, some
lectrode properties are challenging to engineer due to time, costs and
nstrument limitations [16] . In this regard, physical modeling serves as
n efficient tool to address the electrochemical performance of LIBs,
here optimization processes based on experimental trial and error be-

ome expensive and cumbersome [17] . For instance, several modeling
tudies were recently reported to quantify and address the heterogene-
ty issue at the single active material (AM) particle and the full elec-
rode levels [ 18 , 19 ]. These models were built to describe how electrode
eterogeneities affected its performance [ 18 , 19 ]. Furthermore, the ion
igration limitation in the electrolyte phase of a porous electrode deter-
ines the LIB cell performance under high C-rate operation, an aspect
hich was independently and systematically studied in several works
 7 , 8 , 20 ]. 

Electrochemical impedance spectroscopy (EIS) is one of the domi-
ant tools to measure ionic resistance in the battery field [21] . The ex-
erimental setup to measure the ionic resistance of porous electrodes
as first proposed by Ogihara et al. using a symmetric cell config-
ration [21] . Additionally, EIS constitutes a simple way to calculate
he electrode tortuosity factor. Several authors already used symmet-
ic cell configurations to measure the tortuosity factors of a graphite
node, a LFP cathode, and a NMC cathode [21–24] . Moreover, in a
ecent publication, we have reported for the first time a 4D (3D in
pace + time) physical model of a NMC electrode symmetric cell,
hich captures the impact of the spatial location of the AM and the

arbon-binder domain (CBD) on the EIS response [25] . Our model al-
ows assigning different physics to NMC, CBD and pores, and consid-
rs explicitly the electrochemical double layers at the NMC/electrolyte
nd CBD/electrolyte interfaces, which sets up a powerful ground
or the characterization of ionic resistances in heterogeneous porous
lectrodes. 

The present work aims at investigating the electrochemical response
f electrodes with different porosity configurations. We particularly aim
t assisting the design of thick electrodes with reduced ionic resistance
nd improved charge and discharge rate capabilities for LIBs. For this,
e systematically investigate the ionic resistances of single layer and
ulti-layer electrodes with heterogeneous porosities along the thick-
ess, to unravel possible guidelines of improvement of power densities
f thick electrodes. After introducing the dual modeling-experimental
ethodology on which our study is supported, we discuss, based on our

xperimental data, ionic and electronic resistances contributions to the
verall EIS for different electrode chemistries. Such data is used to cal-
brate our 4D-resolved model. The latter is employed to assess the EIS
nd discharge performance of in silico -generated electrodes with het-
rogeneous porosities along the electrode thickness. Electrodes are an-
lyzed in terms of their tortuosity factors, and validation experiments
re also reported. We finally conclude and indicate further directions
or this work. 

. Methodology 

.1. Electrode structures generation 

We have reported in our previous articles computational methods for
tochastic and manufacturing simulation-based generation of LIB elec-
rodes [ 26 , 27 ]. In this work, the stochastic method of electrodes genera-
ion was chosen to have electrodes with controlled porosity and keeping
ll the other parameters ( e.g. electrode formulation) constant. The de-
ails of the technique can be found in Ref. [28] The obtained electrode
esostructures are meshed by using our voxelization algorithm INNOV

n the Matlab® environment [29] . 
463 
.2. Pore size distribution 

The pore phase of the generated electrodes was further segmented
nto individual pores using the watershed method to obtain pore size
istribution of the studied mesostructures [ 9 , 10 ]. Specifically, the Poro-
ict library was used as part of the GeoDict® software package.
ue to the discrete voxelated nature of the studied mesostructures,
ver-segmentation of the pore space is a common artifact induced by
atershed-based methods. Many post-processing methods exist to alle-
iate the effect of such artifacts. In GeoDict® this is solved by recon-
ecting the initially segmented pores only if the percentage of surface
rea that is shared between them is bigger than a chosen value. A low
hreshold value results in many pores being reconnected, while the con-
rary happens when a high threshold value is selected. In this work, an
ntermediate value is carefully selected so that non-physical artifacts are
liminated. Once the pore space is labeled, the diameters of equivalent
olume spheres are calculated and arranged in a histogram. The his-
ogram is further normalized to account for the non-uniform selection
f the number of histogram bins. 

.3. EIS model and simulation procedure 

The imported volumetric multi-phase mesh consists of five sub-
omains: active material (AM) and carbon binder domain (CBD) parti-
les, separator (coming from computer tomography-acquired imaging),
urrent collectors, and electrolyte [30] . The equations behind the 3D
IS model and geometry subdomains are provided in one of our previ-
us publications [25] . The EIS spectra were calculated in Comsol Multi-
hysics 5.4 environment using the Battery Module. The impedance was
alculated at seven frequencies per decade, ranging from 1 to 10 7 Hz
ith 10 mV perturbation. The simulations were performed using a com-
uter equipped with an Intel® Xeon® E5–4627 Cache @ 3.30 GHz with
64 GB of RAM. Each simulation took approximately 15 to 30 hours,
epending on the input parameters (electronic conductivity of active
aterial) and the electrode mesostructure. 

.4. Electrode tortuosity factor calculations 

Electrode tortuosity factor ( 𝜏EIS ) values were calculated from the
IS data generated by the computer simulations by using the graphi-
al method proposed by Landesfeind et al . [24] based on the following
xpression: 

𝐸𝐼𝑆 = 

𝑅 𝑖𝑜𝑛 𝐴𝜀𝑘 

2 𝑑 
(1) 

here R ion is the ionic resistance within the electrode extracted from
mpedance data, A is the surface area of the electrode, 𝜀 is the electrode
orosity, k is the bulk ionic conductivity of the electrolyte and d is the
hickness of the electrode [24] . 

The direct assessment of the tortuosity factors ( 𝜏factor ) of the
omputer-generated electrode mesostructures was performed by using
he TauFactor software in the Matlab® environment [31] . This software
olves Fickean diffusion equations in steady-state after application of a
oncentration difference between two opposing faces in the electrode
long its thickness. The tortuosity factor 𝜏factor is given in this case by: 

fact or 
= 

𝐷 

𝐷 eff

𝜀 (2) 

ith D being the bulk diffusion coeffient and D eff the effective diffusion
oefficient. 

.5. Discharge model and simulation procedure 

Once the meshed electrode mesostructure is imported into COMSOL
ultiphysics, an electrochemical model was applied to simulate a single

ischarge at 3C starting from a fully charged battery cell. The model is
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Table 1 

List of analyzed experimental electrodes. 

Name Active material (dry mass%) Carbon black (dry mass%) Binder (dry mass%) Porosity (%) Thickness ( 𝜇𝑚 ) 

Uncalendered-NMC-96 LiNi 1/3 Mn 1/3 Co 1/3 O 2 (96%) C65 (2%) PVdF (2%) 49% 144 
Calendered-NMC-96 LiNi 1/3 Mn 1/3 Co 1/3 O 2 (96%) C65 (2%) PVdF (2%) 28% 73 
Uncalendered-LFP-96 LiFePO 4 (96%) C45 (2%) PVdF (2%) 64% 122 
Calendered-LFP-96 LiFePO 4 (96%) C45 (2%) PVdF (2%) 37% 64 
Uncalendered-graphite-96 GHDR 10–4 (95%) C45 (2%) CMC/SBR (1.5%/1%) 56% 157 
Calendered-graphite-96 GHDR 10–4 (95%) C45 (2.5%) CMC/SBR (1.5%/1%) 28% 95 
Uncalendered- NMC-PVDF-HFP-C45 LiNi 1/3 Mn 1/3 Co 1/3 O 2 (73%) C45 (7%) PVdF (20%) 55.6% 127 
Calendered-NMC-PVDF-HFP-C45 LiNi 1/3 Mn 1/3 Co 1/3 O 2 (72.7%) C45 (19.5%) PVdF-HFP (7.8%) 44% 85 
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dentical to the one reported in some of our previous studies [ 26 , 30 ].
ach discharge simulation took between 5 and 9 h to complete on a
esktop computer with 64 GB of RAM. 

.6. Experimental methodology 

As-received materials were used including LiNi 1/3 Mn 1/3 Co 1/3 O 2 
NMC, Umicore), LiFePO 4 (LFP, Aleees), C 

–NERGYTM super C65, C45
arbon black and GHDR 10–4 graphite (IMERYS), Solef TM Polyvinyli-
ene fluoride (PVdF, Solvay), Carboxymethyl Cellulose (CMC, ACROS
rganics), Styrene-Butadiene Rubber (SBR, Zeon), Triton X-100 (TX,
igma-Aldrich), N-methyl pyrrolidone (NMP, BASF), Tetrabutylammo-
ium perchlorate (TBAClO 4 , Alfa Aesar) and Poly (vinylidene fluoride-
o-hexafluoropropylene) (PVdF-HFP, Kynar Flex2801, Arkema). 

The NMC, LFP, and graphite electrodes that we used as control elec-
rodes were prepared in the usual way. First, the solid components, in-
luding active material, carbon black, and binder, were premixed with a
oft blender. Then, the solvent was added until the desired solid content
SC) was achieved. A Dispermat CV3-PLUS high-shear mixer was used
or the slurry preparation. The NMC and LFP slurries were mixed for two
ours, while the graphite slurries were mixed overnight, in a water-bath
ooled recipient at 25 °C. The resulting NMC and LFP mixtures were then
oated over a 22 𝜇m thick aluminum current collector, and the graphite
ixture was coated over a 18.6 𝜇m thick copper current collector, using
 comma-coater prototype-grade machine. For the electrodes with con-
rolled porosity and the bi-porous electrodes, the Bellcore process was
sed [32] . The solid components were ground with an agate mortar and
hen moved to a glass container. Different volumes of dibutyl phtha-
ate, calculated according to the volume ratio, were added as a porogen
gent. Acetone was added as a solvent, and the mixture was well mixed
ith a magnetic stirrer at high speed. The slurry was then deposited
n a Mylar foil by doctor blading. The films detached from the Mylar
oil were dried in ambient temperature and combined to one electrode
nder 10 Pascal at 130 °C. The bi-porous electrode was then soaked 3
imes in dimethyl-ether during 15 min in ether to remove the porogen
gent. The analyzed electrodes in this work are listed in Table 1 . 

All EIS tests were performed in 2035-coin cells assembled in a dry
oom (H 2 O < 15 ppm). The electrodes were punched and assembled
nto symmetric coin cells (both at the positive and negative side) using
elgard 2500 as separator (thickness = 25 𝜇m, porosity = 55%). The
lectrolyte was a 10 mM TBAClO 4 solution, prepared in a 1:1 wt mixture
f ethylene carbonate:dimethyl carbonate. The EIS was performed with
 BioLogic MTZ-35 impedance analyzer, in the range of 10 − 1 – 10 6 Hz
ith a potential perturbation of 10 mV. All measurements were carried
ut at 25 ± 1 °C. 

. Results and discussion 

.1. Deconvoluting ionic resistance from EIS 

It is frequent practice to represent the EIS response as Nyquist plots.
he typical shape of a Nyquist plot for symmetric cells results from an
464 
bout 45° slope line followed by an about 90° vertical line at low fre-
uencies. The high-frequency intercept on the x-axis represents a pure
esistor while the response at the lowest frequencies tends to a vertical
ine representing a purely capacitive behavior. Between these two fre-
uency regions, slopes with 45° represent the resistance caused by ion
igration inside the porous electrode [ 33 , 34 ]. Furthermore, sometimes
 semicircle-shaped spectrum shows up in mid-high frequency intervals
or some electrode materials. Since in symmetric cell experiments the
locking electrolyte ensures that no faradaic current flows during the
IS characterization, this arc-like EIS response cannot be related to a
harge transfer process, as usually observed in LIB electrodes. 

In the present symmetric cells, this semicircle is ascribed in the lit-
rature to several factors such as the contact electronic resistance at
he current collector/composite electrode interface and bulk AM elec-
ronic conductivity [33] . The capacitive element can originate from
he electrical double layer formation that occurs at the current collec-
or/electrolyte interface ( i.e. the electrolyte phase inside the pores of
he composite that wets the current collector substrate) [34] . On top of
hat, the electronic conductivity of the AM generates a high frequency
emicircle too. As Landesfeind et al. pointed out, if a high electronic con-
uctivity condition is not met, both ionic and electronic effects will play
 role in the total resistance measured by impedance, which hinders the
easurement of pure ionic resistances [ 24 , 35 ]. 

Fig. 1 shows our experimentally obtained EIS plots for uncalen-
ered and calendered NMC, LFP, and graphite electrodes in symmet-
ic cell configurations. As discussed above, uncalendered NMC and LFP
 Fig. 1 (A) ) electrodes with low electronic conductivities present a semi-
ircle at the mid-high frequency region (10 6 Hz to 10 2 Hz). The LFP
lectrode, which has a lower electronic conductivity when compared to
he NMC based electrode, shows an even bigger semicircle region and
otal resistance [6] . On the other hand, the graphite electrode does not
how the curved mid-high frequency impedance values, due to its higher
ntrinsic electronic conductivity. One way of experimentally increasing
lectronic conductivity by decreasing the contact resistance is to per-
orm electrode calendering. Fig. 1 (B) illustrates the EI spectra of calen-
ered NMC, LFP and graphite electrodes. Electrode calendering drasti-
ally decreases the semicircle region (electronic/contact resistance) and
nsures the isolated observation of the impact of ionic resistance on the
verall EI spectra. Given that the electronic contribution to the resis-
ance was virtually suppressed due to calendering, the total resistance
f the LFP electrode decreased (62.5%) from 0.042 to 0.020 Ω.m 

2 . A
imilar change was observed for NMC electrodes after the calendering
tep (from 0.041 to 0.030 Ω.m 

2 ). In contrast, the overall resistance for
he graphite electrode increased after calendering, which is due to an in-
rease in the ionic resistances only, given that the electronic resistances
re not a limiting factor for graphite electrodes. 

In the following parts of our article, we aim to use our 4D-resolved
odel to investigate the impact of porosity heterogeneity on the elec-

rodes’ electrochemical response. As electrode mesostructures are gen-
rated stochastically to control porosity, calendering process impact on
he electrode electronic conductivity cannot be explicitly simulated.
herefore, we need to find out the exact value above which the elec-
ronic conductivity stops being a limiting source of impedance in the
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Fig. 1. Experimental Nyquist plots of (A) un- 
calendered and (B) calendered electrodes in 
symmetric cells: Graphite 96% - C45/CMC 2% 

(red), NMC 96% - C65/PVdF 2% (blue) and LFP 
96% - C45/PVdF 2% (green). 

Fig. 2. (A) 2D cut view of the simulated sym- 
metric cell. (B) Simulated Nyquist and (C) Bode 
plots of NMC 96% - CBD 4%symmetric cells 
with different electronic conductivities of the 
NMC active material. The EI spectrum of AM- 
760 S.m 

− 1 (blue) is superposing with AM-1 
S.m 

− 1 (red). 
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imulated electrodes. For this purpose, several EIS simulations were car-
ied out by setting different AM electronic conductivity values. Fig. 2 (A)

hows a cut view of the simulated 3D symmetric cell using one of our
n silico -generated electrode mesostructures. Fig. 2 (B) and (C) show the
yquist and Bode plots obtained by the simulations. When the electronic
onductivity of the AM was set to be of 0.001 S.m 

− 1 (as experimen-
ally measured for NMC electrodes), the EIS simulations were consistent
ith the experimental EIS measuresements ( Fig. 1 (A) ) [25] . However,
hen setting a higher electronic conductivity (1 and 760 S.m 

− 1 ) in the
odel, the electronic resistance coming from the AM is observed to dis-

ppear (semicircle region) and only the ionic resistance (45° slope line)
s observed. The simulated EIS spectra with high electronic conductiv-
ty values are consistent then with the experimental EIS measurements
erformed with calendered electrodes ( Fig. 1 (B)) . In short, the above
465 
nalysis shows that by sufficiently increasing the electronic conductiv-
ty of the AM, we ensure the dominating presence of the 45° slope line
ppearing between 10 5 Hz to 10 Hz in Fig. 2 (B) . This impedance feature
orresponds to the electrolyte resistance due to ionic migration limita-
ions in the porous electrode [22] . Additionally, the Bode plot ( Fig. 2 (C))

hows that, for AM conductivities of 1 and 760 S.m 

− 1 , the corrected
hase angles remain between 43° and 50° (10 5 Hz to 10 Hz) as theoret-
cally expected [22] . 

Consequently, all contact resistances are neglected and bulk elec-
ronic conductivity of AM domain was set to 1 S.m 

− 1 (higher than in
eality) in our simulations as shown in the following sections of our arti-
le. These assumptions ensure separating electronic and ionic contribu-
ions to the electrode’s impedance response and allow us to investigate
he impact of the electrode architecture on its ionic resistance. 
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Fig. 3. (A) Normalized pore size distribution 
of stochastically generated AM 96% - CBD 4% 

electrodes with porosities 30%, 35% and 45%. 
(B) Schematics of the simulated electrodes with 
different porosities in symmetric cells (AM and 
CBD represented as a merged single solid in 
grey, red and blue color and pores represented 
in black color). (C) Simulated Nyquist plots for 
the three electrode porositues. 
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.2. Understanding electrode porosity effects on ionic resistance 

Once our 4D-resolved model is correctly calibrated to isolate the
onic resistance contributions, the influences of the electrode porosity on
he overall ionic resistance and the tortuosity factors were studied. For
his, three electrodes with 30%, 35% and 45% porosities were stochas-
ically generated and simulated by using our model under a virtual sym-
etric cell configuration. ( Fig. 3 ). 

Usually, the PSD of the electrodes changes simultaneously when
hanging the electrode porosity. Therefore, the PSD of the in silico -
enerated electrodes was assessed to quantify exactly how much pore
izes changed by decreasing the electrode porosity. Fig. 3 (A) shows that
n electrode with 45% porosity has the broadest PSD among the three
lectrodes with 1.0 μm to 6.0 μm equivalent diameter pores. The smallest
tandard deviation of PSD was found for the electrode with 30% poros-
ty, as expected. Still, it is clear from the results that the differences in
he pore size distributions between different electrodes is slim. These
mall differences allow us to isolate and systematically study the effect
f electrode porosity independently from other geometrical factors. Gen-
rated electrodes with different porosities are used in symmetric cell EIS
imulations. The Schematics of the electrodes with different porosities
sed in these simulations are given in Fig. 3 B . 

In the Nyquist plot ( Fig. 3 (C) ), the sloping region (mid-to-high fre-
uency) increases when the electrode porosity is reduced from 45%
o 30%, ascribing to the higher ionic resistance caused by the low
mount of electrolyte and a longer migration path for ions. In addi-
ion, the resistance of the electrode increases from 0.0025 to 0.0045
.m 

2 when the electrode porosity decreases from 45% to 30%. Fur-
hermore, it is crucial to notice that high porosity electrodes lead to
lectrical double layer formation at high frequencies faster than the
lectrodes with lower porosities, which can be explained by an eas-
466 
er path for ions to reach the surface of the solid materials within the
lectrode. 

Fig. 4 shows the ionic impedance of a cross-sectional cut at half of
he thickness of the electrode, parallel to the surface at 10 2 Hz. The
llustration shows that pores are better connected at higher porosities,
hich allows easier ionic transport. According to the cross-sectional 2D

ut plots ( Fig. 4 (A) ), the electrolyte resistance inside the electrode in-
reased when the electrode porosity decreased. Furthermore, higher re-
istance regions were observed for the CBD domain for the electrode
ith lower porosity. The explanation of this phenomenon can be found

n our recent publications [ 25 , 26 , 30 ]. Corresponding 3D videos of the
imulations are given in SI section. 

Table 2 displays the calculated values of ionic resistances ( R ion ) of the
lectrolyte within the porous electrodes, the electrode tortuosity factors
 𝜏EIS ) calculated through the graphical method proposed by Landesfeind
t al., [24] and the tortuosity factors ( 𝜏factor ) calculated using TauFactor.
s expected, the lower the porosity, the higher the ionic resistance and

he higher the tortuosity factors ( 𝜏EIS and 𝜏factor ). 

.3. Designing heterogeneous electrode architectures with improved 

erformance 

In the last section we found that highly porous electrodes are ben-
ficial for achieving low ionic resistances which is crucial under high
-rate operation. However, a tradeoff exists between active mass load-

ng and rate capability, which is basically a tradeoff between energy and
ower densities. Having therefore understood the principles of ionic re-
istance contributions in EIS, we then envisioned electrode architectures
hat could optimize rate capabilities, for a fixed average porosity and
hickness, by tuning their mesostructural heterogeneities. To do this,
he electrodes with different porosities discussed above were virtually
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Fig. 4. (A) Simulated NMC 96% - CBD 4% 

electrode cross-sectional impedance 2D plots at 
100 Hz frequency, corresponding to the ionic 
contribution to the total measured impedance. 
(B) Scheme of the cross-section cut, where each 
phase is explicitly tagged with different colors. 
The cut-views were done at half of the electrode 
thickness parallel to the current collector sur- 
face. 

Table 2 

Ionic resistances ( 𝑅 𝑖𝑜𝑛 ) of the electrolyte within the electrode pores and tortuosity factors caculated using TauFactor 
( 𝜏 factor ) and using the approach proposed by Landersfeind et al. ( 𝜏EIS ) [24] . 

Porosity – 30% Porosity – 35% Porosity – 45% 

Electrode thickness 25 𝜇m 25 𝜇m 25 𝜇m 

Tortuosity factor ( 𝜏 factor ) 2.15 1.89 1.59 
Tortuosity factor ( 𝜏EIS ) 3.3 2.8 1.8 
Ionic Resistance (EIS) R ion / Ω m 

2 0.011 0.008 0.004 

Table 3 

Ionic resistances ( 𝑅 𝑖𝑜𝑛 ) of the electrolyte within the electrode pores and tortuosity factors caculated using TauFactor 
( 𝜏 factor ) and using the approach proposed by Landersfeind et al. ( τ𝐸𝐼𝑆 ) [24] . 

Cell-1Sep-45–35–30 Cell-2Sep-30–35–45 Cell-3Sep-35–30–45 Cell-4Sep-45–3035 

Electrode thickness 75 𝜇m 75 𝜇m 75 𝜇m 75 𝜇m 

Tortuosity factor ( 𝜏 factor ) 1.81 1.81 1.81 1.81 
Tortuosity factor ( 𝜏EIS ) 1.5 2.8 2.2 1.7 
Ionic Resistance (EIS) R ion / Ω m 

2 0.013 0.024 0.019 0.015 
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ssembled as one electrode to create heterogeneity of porosity along the
lectrode thickness (cartesian coordinate Z). Then, the constructed vir-
ual symmetric cells were studied systematically to map the impact of
he heterogeneous porosity on the total ionic resistance. 

The obtained electrodes are shown schematically in Fig. 5 (A). Their
orresponding EIS simulation results are shown in Fig. 5 (B) and (C), in
he form of Nyquist and Bode plots, respectively. The calculated ionic
esistance and tortuosity factors for these simulated symmetric cells are
iven in Table 3 . Even though the four studied configurations have the
ame average porosity, the difference of the ionic resistances between
hem is significantly different, as it can be seen from the Nyquist plots
 Fig. 5 (B)). 

Cell-1, with the highest porosity (45 %) close to the separator, shows
he lowest ionic resistance (0.013 Ω.m 

2 ) with a low tortuosity factor

EIS of 1.5. In contrast, Cell-2, with the lowest porosity (30 %) close to
he separator region, has the highest ionic resistance 0.024 Ω.m 

2 and a
ortuosity factor 𝜏 of around 2.8. According to these results, adjusting
EIS 

467 
he electrode porosity distribution can reduce the ionic resistance by
lmost 50% while maintaining the overall porosity. When comparing
ell-1 and Cell-4, we demonstrate that having a progressively decreasing
orosity from the separator to the current collector can reduce ionic
esistance, which results in a drastic improvement of the rate capability
f the electrodes for the same areal loading. Additionally, the diffusional
ortuosity factors ( 𝜏factor ) , for all four cells were calculated giving a value
f around 1.81 ( Table 3 ), which is in striking contrast with the EIS-
alculated electrode tortuosity factor ( 𝜏EIS ) values. These results show
hat diffusional tortuosity factors are not always adequate when trying
o characterize battery electrodes. 

In order to validate the predicted simulation trends, single-layer and
i-layer electrodes were prepared by the Bellcore process [32] . The bi-
ayer electrode consisted of two layers where each layer had a porosity
f 40% and 55%. The manufactured single-layer and bi-layer electrodes
ere put in symmetric cell format for the EIS experiments. Fig. 6 (A)

hows Nyquist plots of the single-layer electrodes with different porosi-
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Fig. 5. (A) Schematics of the different simu- 
lated symmetric cells with different porosity 
heterogeneities across the thickness. (B) Simu- 
lated Nyquist and (C) Bode plots for these sym- 
metric cells. 

Fig. 6. Nyquist plot of experimental symmet- 
ric cells (A) NMC/PVDF-HFP/C45 electrodes 
with 40% and 55% porosity. (B) NMC/PVDF- 
HFP/C45 Bi-layer electrodes consisted of two 
layers across the thickness (from the separator 
to the current collector side) where each layer 
had a porosity of 40% and 55% respectively. 
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ies. Consistently with the simulation results ( Fig. 3 (C) ), the electrode
ith 40% porosity showed higher resistance (0.0085 Ωm 

2 ) than the elec-
rode with 55% porosity (0.0055 Ωm 

2 ). Fig. 6 (B) shows the Nyquist plot
here bi-layer electrodes were assembled to mimic the gradual porosity
ecreases/increases from the separator to the current collector side. The
lectrode with the highest porosity (55%) close to the separator shows
he lowest ionic resistance 0.007 Ω.m 

2 and at the same time, the elec-
rode with the lowest porosity (40%) close to the separator region has
he highest ionic resistance 0.014 Ω.m 

2 . According to the experiments,
djusting the electrode porosity distribution can reduce the ionic resis-
ance by almost 50% while maintaining the overall porosity and the
real loading. This finding is in perfect agreement with the simulation

esults. s  

468 
In summary, EIS simulations predicted that the total ionic resistance
s strongly correlated with electrode heterogeneity and these predic-
ions were confirmed experimentally. Therefore, when keeping the same
verall porosity and areal loading, a desirable electrode mesostructure
ith a minimized impedance should have a porosity that gradually de-

reases from separator to current collector. This shows the significant
mpact of electrode design on electrochemical performance. 

Besides the EIS simulations, discharge simulations for the same elec-
rode mesostructures used in the modeling calculations above were car-
ied out based on a half-cell configuration vs. lithium ( Fig. 7 (A) ). The
imulations carried out at 5C, 3C and 1C rates for all the structures and
he results of two electrodes, Halfcell-1 and Halfcell-2, with the most
ignificant difference, are shown in Fig. 7 (B) . Both of the simulated half-
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Fig. 7. (A) Schematic of the simulated half 
cells with different porosity heterogeneities 
along the thickness (B). Simulated discharge 
curves for all the half cells for Half-cell-2 and 
Half-cell-1 at 1C rate and 3C rate (C). Simulated 
discharge curves for all the half cells at 3C rate. 
(D) and (E) representation of the lithium con- 
centration in the electrolyte at the end of dis- 
charge simulation for Half-cell-2 and Half-cell- 
1 at 3C rate, respectively (the separator and 
the current collector are located respectively at 
the top and bottom of the electrode mesostruc- 
tures). 
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ells showed the same capacity (166 mAh g − 1 ) at 1C rate with a small
ifference in the overall potential between half-cells. However, when
imulations were carried under higher C rates (5C and 3C), Half-cell-
, with the electrode with the highest porosity close to the separator,
xhibited the highest gravimetric discharge capacity, while Half-cell-2,
ith the electrode with the lowest porosity close to the separator, de-

ivered the lowest gravimetric capacity among all the electrodes. The
esults of the discharge simulations at 3C rate for all the cells are given
n Fig. 7 (C) . In agreement with our EIS simulations, discharge simula-
ions showed the same trends for all the corresponding electrodes, where
he electrode architecture with progressively decreasing porosity from
eparator to current collector offers the highest performance. 

Fig. 7 (D) and (E) represent the lithium concentration in the elec-
rolyte phase at the end of discharge for Half-cell-2 and Half-cell-1,
469 
espectively. In Half-cell-2, the high concentration of lithium close to
he separator dramatically decreases along the thickness of the elec-
rode. On the other side, lithium concentration spreads more homoge-
eously along the thickness of the electrode in Half-cell-1, which has
igher porosity close to the separator region. The electrode region with
ower electrolyte concentration indicates electrolyte depletion, which
an limit utilization of the electrode in that region. The electrolyte de-
letion will be more serious with increasing electrode thickness and can
ead to very low utilization of AM in some regions. In Half-cell-2, the
owest porosity close to the separator reduces the contact surface be-
ween NMC and electrolyte - and limits the ion migration along the
lectrode, which reduces the utilization of the high porosity layer next
o the current collector. Also, it is essential to mention that lower poros-
ty near the current collector region ensures better contact between the
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Fig. 8. Experimental discharge curves at 1C and 3C rates for the half-cell format 
Lithium metal vs NMC/PVDF-HFP/C45 bi-layer electrodes constituted of two 
layers across the thickness where each layer had a porosity of 40% and 55 % 

respectively. 
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lectrode and the current collector, consequently allowing better elec-
ronic fluxes. 

On top of the model-based calculations, comparable experiments
ere performed to reproduce the predictions. Bi-layer electrodes, which
imic the gradual porosity, decrease/increase from the separator to

he current collector side, were built in half-cell format against lithium
etal to test the rate capability of the electrodes. Coherent with simu-

ations, experiments were tested at 1C and 3C rates. The corresponding
ischarge curves for the two electrodes are given in Fig. 8 . Both elec-
rodes had the same capacity (135 mAhg − 1 ) at 1C rate. Still, there is
 small difference in overpotential between electrodes as predicted by
he simulations. By increasing the C rate from 1 to 3, the difference in
apacity diverged between electrodes. Coherent with the simulation re-
ults, the electrode with the highest porosity close to the separator exhib-
ted the highest gravimetric discharge capacity, while the electrode with
owest porosity close to the separator delivered the lowest gravimetric
apacity among two electrodes. This also agrees with other recent pub-
ished experimental results where electrodes with high porosity close to
eparator while maintaining same average porosity demonstrated supe-
ior performance at high rates [ 36 , 37 ]. 

. Conclusion 

In the scope of this work, a 4D (3D in space + time) physical model
as successfully used to simulate and analyze the electrode porosity
eterogeneity effect on the overall ionic resistance. Furthermore, the
odeling results were compared and validated with experimental re-

ults. Different electrodes with different mesostructures were generated
y using our in house INNOV application. 

The first part of the study is devoted to mapping the role of ionic
nd electronic resistances on EIS spectra by comparing experimental
MC, LFP and graphite uncalendered and calendered electrodes. On top
f it, simulations with different AM electronic conductivities were car-
ied to eliminate electronic impedance contributions and to assess ionic
mpedances only. 

In the second part of the work, a comparison of electrodes with differ-
nt porosities was performed based on EIS simulations. As expected, the
esults show that a lower porosity leads to a higher ionic impedance and
lectrode tortuosity factor. Tortuosity factors ( 𝜏EIS ) calculated by the EIS
ethod and tortuosity ( 𝜏factor ) based on diffusion modeling were com-
ared for all the cases. In agreement with recent literature, we conclude
hat the EIS-calculated electrode tortuosity factor ( 𝜏 ) in symmetric
EIS 

470 
ells is better suited than the diffusion-based calculated tortuosity fac-
or ( 𝜏factor ) for battery electrode characterization. 

Other electrodes with different porosities were virtually built to
tudy the effect of inhomogeneous porosity across the electrode thick-
ess . Furthermore, virtually generated cells were used in our 4D-
esolved model to study EIS in symmetric cell configuration and gal-
anostatic discharge in half cell setups. The results coming from both
imulation and in house experiments, showed that electrode heterogene-
ty along the thickness direction has a significant effect on the ionic
mpedance and capacity of the electrode. The study showed that the
lectrode region close to the separator side has the most prominent
ole in ionic impedance and tortuosity factors which consequently in-
uences the overall capacity. Therefore, to obtain the optimal electrode
esostructure with the highest performance, electrode porosity must be

onstructed to decrease from the separator side to the current collector
ide. 
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