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Abstract

Electrode manufacturing process strongly impacts lithium-ion battery characteristics. The electrode
slurry properties and the coating parameters are among the main factors influencing the electrode
heterogeneity which impacts the battery cell performance and lifetime. However, the analysis of the
impact of electrode manufacturing parameters on the electrode heterogeneity is difficult to be quanti-
fied and automatized due to the large number of parameters that can be adjusted in the process. In this
work, a data-driven methodology was developed for automatic assessment of the impact of parameters
such as the formulation and liquid-to-solid ratio in the slurry, and the gap used for its coating on the
current collector, on the electrodes heterogeneity. A dataset generated by experimental measurements
was used for training and testing a Machine Learning (ML) classifier namely Gaussian Naives Bayes
algorithm, for predicting if an electrode is homogeneous or heterogeneous depending on the manufac-
turing parameters. Lastly, through a 2D representation, the impact of the manufacturing parameters
on the electrode heterogeneity was assessed in detail, paving the way towards a powerful tool for the

optimization of next generation of battery electrodes.

Introduction

Lithium-ion batteries (LIBs) are under the spotlight in in-
dustrial applications, especially for the development of new
portable devices and electric vehicles. LIBs are also intended
to play a crucial role in the energy transition, leading to re-
searchers and companies in sea- rch of improvement of the
cell performance and durability while decreasing production
cost. Certain areas of battery production have to be revisited
to target low costs that are currently still too high for LIBs
[1, 2]. For instance, NMP solvent is used while preparing
the cathode electrode slurry that later is casted on a current
collector, and adds significant cost in the electrode manu-
facturing process [3]. That is why deeper analysis in under-
standing the effect of manufacturing parameters on electrode
properties is an utmost in order to accelerate the optimiza-
tion of electrodes manufacturing.

For such optimization, the study of the slurry formula-
tion is crucial since the stability and homogeneity of the elec-
trode slurry affects the final electrode properties [4]. Previ-
ous studies have shown the importance of fabricating homo-
geneous electrodes whereas heterogeneous electrodes have
lower transport properties (ionic and electronic), limiting cell
performance and eventually inducing heterogeneous aging
[5, 6]. The latter aspects directly reduce the effective en-
ergy and power densities, and compromise cell safety and
lifetime [7]. Indeed, this implies an incomplete use of the
active material within the electrode. For instance, Ouvard et
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al. characterized the heterogeneous behavior of electrodes
through differences in distributions of LiFePO, proportions
and stressed about the necessity to investigate the impact of
manufacturing parameters on the the heterogeneous behav-
ior of the electrodes [8].

Nevertheless, trial and error approaches have already dem-
onstrated that LIBs performance is strongly correlated to elec-
trode manufacturing conditions [9, 10, 11], more precisely
through the slurry formulation and the calendering process
[12]. Thatis why, such parameters are in the balance to reach
an optimal configuration of the manufacturing process and
to target desired performances [13], where a possible strat-
egy is to deal with experimental measurements and analyz-
ing their impact by data analysis methodology, in comple-
ment to computational physical-based simulations [14]. In
that sense, the investigation of the electrode coating step will
allow to better mitigate electrode heterogeneity [15].

Nowadays, Machine Learning (ML) approaches are be-
coming more popular in materials science [16] and in battery
research, such as for performance predictions [17], Remain-
ing Useful Lifetime (RUL) estimation [18], online estima-
tion [19] or computational cost reductions [20]. Overall, ML
algorithms are well-known for being very powerful at treat-
ing different types of data and at dealing with Big Data. Re-
cently, various works focused on the application of such al-
gorithms within the scope of battery manufacturing process,
through supervised and unsupervised ML methods (such as
random forest [21] and neural networks [22]) where the as-
sessment of manufacturing parameters can be eased, accel-
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formance [10].

Recent publications have reported multi-objective data
driven approaches to predict final battery properties by using
different regression models [23]. Schnell ef al. compared
different regressions approaches such as linear models, en-
semble learnings and artificial neural networks for predicting
maximal capacity of battery cells as function of manufactur-
ing data [24]. Weiss et al. focused on the application of
usual ensemble lerning regression for the quality check of
the speed of a wafer in the manufacturing process whereas
Liu et al. applied ensemble learnings for classification pur-
poses in the context of manufacturing feature importance
and correlations [25]. Other data-driven approaches focused
on the performance of cells manufacturing and concluded on
the effect of the electrolyte mass on the cell maximum ca-
pacity [26]. Besides, other recent approaches focused more
on the electrode formulation and calendering aspects, to em-
bed experimental data and in silico electrode mesostructures
features into a regression model in order to predict physi-
cal properties of calendered electrodes and in the meantime,
bypass the calculation of properties based on physics-based
models [27].

In this work, we propose an automatic approach com-
bining unsupervised and supervised ML algorithms, sup-
ported by advanced statistical analysis, to predict LIBs elec-
trodes properties in terms of mass loading and thickness, and
systematically pinpoint NMC811 heterogeneous electrodes
without any experimental labeling of the data. Such an ap-
proach is applied to unravel the effect of the slurry and coat-
ing parameters on such automatic heterogeneity definition,
and provide a relevant and unique way to disclose such ef-
fect through 2D plots.

Experimental section

The heterogeneity study presented in this work was per-
formed considering the cathode electrodes manufactured by
casting a slurry onto an aluminium current collector. In par-
ticular, the slurry contained LiNi, gMn ;

Co; 10, (NMC811,Targray) as active material. This advanced
cathodic material is characterized by having high voltaje and
capacity. The slurry formulation also included conductive
carbon (C65, Imerys) and poly-vinylidene fluoride (PVdF,
Solef:5130, Solvay) as a binder in order to decrease the elec-
trical resistivity and ensure the adherence and cohesion of
the electrode, respectively.

2.1. Electrode preparation

For the analysis presented in this work, the electrode slur-
ries were prepared by mixing the active material, conduc-
tive material and binder in a five liter planetary mixer (In-
oue). First, the binder was dissolved in N-methyl pyrroli-
done (NMP, Synthesis grade, Scharlab) by mechanical stir-
ring to a final 5 wt.% concentration. Then, the binder so-
lution and the conductive material were mixed in the plan-
etary mixer. Afterwards, the active material was added to

solvent was gradually added to the slurry during the mixing
until reaching the final liqui-to-solid ratio.

Four different electrode formulations were prepared mod-
ifying the ratio of the three components of the electrode (wt%
of active material, wt% of conductive additive, wt% of binder).
Slurries with six different liquid-to-solid ratio values were
prepared for each of the formulations. These six values are
chosen among a set of eleven possible values ranging be-
tween 55 % and 73 %. Table 1 summarizes these values for
active material (%AM), liquid-to-solid ratios (%LS) and gap.

The resulting slurries were casted on a 15 um thickness
Al foil (Hydro) by a knife coating system (Coatema). Elec-
trodes with a coating length and width of 3 m and 0.210 m,
respectively, and six different coating gaps, 50 um, 75 um,
100 um, 200 um, 300 um and 400 um, were prepared with
each slurry. The wet films were dried in a three-zone oven
system. Each zone is 1 m long and their temperatures are
100 °C, 110 °C and 115 °C.

2.2. Electrode characterization

The homogeneity of the coating process was assessed by
characterizing eighteen circular samples, distributed uniform-
ly onto the electrode, measuring two parameters : thickness
and mass loading. The electrodes were cut with a precision
EL-cut device (EL-Cell) in disk format with 17.7 mm diam-
eter. The circular samples were weighted using a precision
balance (LAG 124i, VWR) and their thickness was measured
with a precision micrometer (IP65, Mitutoyo).

Table 1
Different values of manufacturing parameters used to prepare
the electrodes.

Values
{92.7,94,95,96}

{55,58,60,63,65,67,67.7,68,69,71,73}
{50,75, 100,200, 300,400}

Parameter

Active material [%)]
Liquid-to-solid [%]
Gap [um]

As a consequence, a set of 144 samples was obtained for
the different electrode formulations. Those measurements
are considered significant to represent a coated electrode by
their mass loading and thickness values, with a the purpose
to analyze the effect of manufacturing parameters on the final
electrode heterogeneity.

Computational method
3.1. Heterogeneity definition

Mass loading and thickness are the two properties that were
used to define the heterogeneity of coated electrodes (Figure
1). In particular, high variations of these two properties onto
the electrode may realize a non-uniform mesostructure by
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Figure 1: Workflow of the characterization along the steps of the manufacturing process considered in this work. The manu-
facturing parameters (yellow) and the output measurements (red) respectively correspond to influent parameters and trustable

properties for heterogeneity definition.

modifying the slurry and coating manufacturing parameters.
As a consequence, such physical interpretation is equivalent
to calculate the relative standard deviation d,, (called degree
of variation along the rest of the study) of the two properties,
and analyze if such value is higher/lower than a threshold to
conclude on the heterogeneity/homogeneity of the associ-
ated coated electrode. In that sense, the normalization of the
standard deviation (i.e. o) by the mean value (i.e. u) of a
sample like shown in Eq. 1, determines on what the hetero-
geneity of coated electrodes lies.

d =

v

Z Eq. 1
P (Eq. 1)

The eighteen distributed circular electrode samples, detailed
in the experimental section, are punched like shown in Fig-
ure 2. Nevertheless, instead of using all the eighteen samples
to calculate the degree of variation in thickness and mass
loading (i.e. (dy){thicknessy @04 (dy,){10ading})> the considera-
tion of sub-samples of circular disks among all provide dif-
ferent degrees of variation calculations for one coating. In-
deed, a grid of samples in a configuration of three rows and
six columns, as Figure 2 shows, enables to define two pos-
sible measurements namely Along and Perpendicular con-
figurations. As a consequence, the calculation enables three
different degrees of variation according to each configura-
tion. Therefore, the following analysis focuses on identi-
fying meaningful degrees of variation to achieve the elec-
trode heterogeneity definition, while changing the manufac-
turing parameters. Figure 3 shows the computational work-
flow adopted in this study, which is deeply described in the
sections below. The Supporting Information summarizes the
different nomenclatures used in this study.

3.1.1. Data compression

Firstly, a Principal Component Analysis (PCA) is applied
to unravel interdependencies between the manufacturing pa-
rameters and the degrees of variation from coated electrodes,
in combination with a segmentation method that classifies
the 144 coated electrodes as heterogeneous or homogeneous.
Nowadays, PCA is widely used in scientific research [28, 29,
30] and in electrochemistry [31] to treat a huge amount of
quantitative data for a better understanding of the relation-
ships among variables and appear relevant for the selection
of the best initial variables to characterize heterogeneities.
The idea behind the PCA is to find a linear combination of
the m initial variables to construct fewer k orthogonal di-
rections (with k£ smaller than m) with maximum variance.
Those resulting directions are called principal components
and identify the most relevant initial variables to describe
the raw data. In that sense, The latter data can be projected
on the subspace built by the principal components which re-
alize how such data are spread along the new components.
Therefore, PCA appears meaningful to analyze raw data de-
fined with many initial variables, into straightforward 2D or
3D plots where axes are the principal components (see Fig-
ure S1 in the Supporting Information).

The linear combination requests k vectors to shape the ma-
trix of projection called W. Considering raw data being X;
explained by m variables in the vector space R” like X; =
[x, x5, X3, ..., X,,,], the matrix W is a m X k matrix which al-
lows to obtain the projection in the k-dimensional subspace.
As a consequence, the projection of X; called c;, is matrix-

wise speaking written as
W =¢ ¢ eRF (Eq. 2)

The search of k vectors (i.e. principal factors) is under the
constraint of maximum variance, also called inertia (i.e. I).
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Figure 2: Scheme of the coating process and the distribution of the eighteen circular electrode punchs labelled in white, in
terms of a grid configuration with three rows and six columns. Instead of calculating the degree of variation within the eighteen
samples, two configurations are also taken into account for a calculation perpendicularly to the coating direction, and along it.
(d,;);<; are different degrees of variation exactly calculated in the same conditions for both mass loading and thickness, each one
with six circular disk samples per calculation. They have been color-coded separately for a better understanding of the approach.
However, to avoid confusion in the following, the degrees of variation are noted as d, y and d,; iongy for i € {1,2,3} for
Perpendicular and Along configurations to avoid confusion.

vi,perpendicular

That is why such research is equivalent to the following (P) with T'r(XZ) being the trace norm and .S pec(X) the set of

problem : eigenvalues.

max  1(u) As a consequence, obtaining most of the information (max-
Py=4d ueRrV (Eq. 3) imum variance) is equlvalent.to find the k highest elgenv.al—
_ ues, where the associated k eigenvectors represent the prin-

[ul] =1 . ; o L
cipal factors to form the matrix of projection. Similarly to
0 T beine the inertia al d h Eq. 2, the complete projection of the initial dataset is as-

wit eing the inertia along a vector u and ||.|| the sessed as it follows :

Euclidean norm in the current vector space.
s < 9T
[xl » X5 X3500ey XN] X [LU] s Woy ey wk] = [Cl 5 €Dy eney Ck]

In that sense, solving (P) is equivalent to focus on the variance- — XW =C V& eR"

covariance matrix X = [o;;]; ;<,, due to the linear definition
of the inertia in R™ (Eq. 5). Indeed, the latter matrix admits
a singular values decomposition (SVD) and can be deconvo-
luted by m eigenvalues associated to m eigenvectors [32] as
it follows :

(Eq. 6)

Figure 4 displays how close initial variables are with the
principal components and then, how they contribute to their
implementation. Indeed, a majority of variables appears mea-
ningful for the PCA since the first five principal components
reflect about 84 % of the initial information from the dataset.
Such percentage seems relevant because the dimensionality
reduction compresses the raw data and, in the meantime, the
initial information. That is why the PCA gives a short subset

Sw; = Aw; A € Spec(X) (Eq. 4)

From linear algebra, the inertia is equivalent to find the sum
of eigenvalues [28] as

1 2,
I = — X d (x" g)
I
Y
i<m (Eq. 5)
=TrX)
= z A A; € Spec(X)

i<m

of principal component where the variance is high.

As a consequence, a new PCA is performed without initial
variables that contribute very little to the implementation of
principal components. It does not affect the quality of the
new subspace implementation since the projection of raw
data figures out 94 % of the initial information within the
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Figure 3: Computational workflow followed for the analysis of heterogeneous coated electrodes, from the experimental measure-

ment till the design of the visualization tool.

first five principal components (see Figure S2 in the Sup-
porting Information) and spreads correctly the manufactur-
ing conditions along principal components for carrying out
the subsequent heterogeneity definitions.

3.1.2. Segmentation methodology

A K-Means clustering is performed on the raw data from
the variable subspace in order to obtain groups of manufac-
turing conditions [33]. This algorithm belongs to the un-
supervised ML techniques and aims to separate raw data in
different groups, also called clusters, with the same charac-
teristics in terms of their initial variables, and without any
ground truth category information. Indeed, the algorithm
finds patterns of data to ensure the largest separation of the
raw data by gathering them based on their feature similar-
ities (see Figure S3 in the Supporting Information). Such
methodology is relevant in the study since it gathers auto-
matically the manufacturing conditions based on the data
compression, and assesses a category to each manufacturing
condition in the dataset for the further supervised learning
classification into homogeneous or heterogeneous electrode,
that is developed in this study.

The procedure is iterative, meaning that the raw data within

the groups are optimized at each loop of the algorithm. These

groups are characterized by k.. clusters by their centroid (y;
The later centroids represent the gravity centers of clusters
and realize how far they are separated. As a consequence,
seeking the best clusters is equivalent to minimizing the dis-
tance between raw data and centroids, which is the within-

cluster sum of squares defined as follows

T=2 Y o, x5 - ul? (N.k)eN
i<N j<k,

(Eq. 7)

where N represents the number of raw data points in the
experimental dataset, and (w; ;) a weight equals to 1 if the
raw data %; belongs to the j*' cluster, else 0. The algorithm
converges when J is not changing anymore, and provides the
final centroids of each clusters with associated raw data.

Besides, the centroids are randomly chosen in order to ini-
tialize the algorithm. Then, the algorithm proceeds as fol-
lows :

i Assign raw data to the nearest centroids y; to form
clusters;
ii Update the new centroids with associated raw data;
iii Calculate the new value of the J metric;
iv Iterate again from step i) to step iii) until reaching con-
vergence.

The resulting groups are shown in Figure 5, with the raw
data points color-coded in terms of the manufacturing con-
ditions of the cluster to which they belong, with four (i.e.
k. = 4) groups in total. The k, value can be chosen before

)(jskc)launching the algorithm whereas inappropriate values can

result into poor clustering performances. However in this
study, the number of clusters was automatically chosen ac-
cording to the Elbow method which identifies the most rele-
vant number of clusters [34]. Indeed, the latter is tuned using
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Figure 4: Projection of initial variables on the first principal
plan. Arrows correspond to variables that are color-coded in
black for manufacturing parameters, red for degrees of vari-
ation related to mass loading, green for degrees of variation
related to thickness. The ellipses highlight the initial variables
(i.e. arrows) that were removed to perform the second PCA.
Lastly, the first and second principal components reflect 56 %
and 25 % of the variance, respectively.

the distortion metric to compare performances for different
values of k., and select the latter when such metric begins to
appear stagnating most rapidly.

3.1.3. Heterogeneous conditions assessment

In order to compare the clusters, the non-parametric Kruskal-
Wallis test is carried out to analyze statistically the distribu-
tion of (dy)(10ading) A0 (dy){1hickness) DEtWEEN groups [35].
Such test appears meaningful when comparing more than
two samples in order to conclude on the possible differences
of medians between samples (i.e. from a statistical point of
view, the samples are exactly the clusters), by assuming that
residuals are not following a normal distribution. The sig-
nificant result is assessed with the p-value of the associated
statistical test. Such p-value can be interpreted as the prob-
ability to have the current data under the hypothesis of the
test, where such value is compared to the smallest threshold
which the hypothesis of the test is accepted [36]. Along the
study, such p-value is written as p and compared to a thresh-
old equals to 0.05 to conclude on the statistical test. The
results are the following :

A significant difference (p < 0.05) is found by com-
paring (d,)(1oading}> and als0 (dy) (spickness) Detween
clusters. Besides, C; and C, are the clusters with dif-
ferent distributions meaning highest values, for thick-
ness and mass loading variations respectively;

e C; and G, are the two remained clusters with the low-
est values for both variables (d,,) spicknessy and (d,)

these clusters suggests lowest variations of mass load-
ing and thickness properties. Therefore, the manufac-
turing conditions that C; and C, contain are associ-
ated to homogeneous coated electrodes;

» According to both configurations detailed in Figure 2,
the same testing approach is made to compare the dis-
tribution of both dy,; serpendicutar) 4 d (i giong) (i €
{1,2 ,3}) through clusters with highest values. No
significant difference (p > 0.05) is found in the dis-
tribution comparison. That suggests that none part of
the electrode has specific highest degrees of variation
when a coated electrode has in average highest values
of d,. This allows concluding on the uniform hetero-
geneity along the total coated electrode (see Figures
S4 and S5 in the Supporting Information).

Consequently to this statistical comparison and contrary to
C; and C,, the clusters C3 and C, reflect larger variations
in the electrode thickness and mass loading. The latter con-
tain manufacturing conditions that produce heterogeneous
coated electrodes in thickness and mass loading respectively.
Such procedure provides an automatic assessment of hetero-
geneous electrodes from an experimental dataset, by analyz-
ing specific manufacturing conditions aside from the rest. It
also provides a labeling of the dataset with two binary out-
put features representing two outputs for the ML algorithms
detailed below, with value 0 meaning homogeneity and /
heterogeneity. The binary variables are named as 1;
and 1y;p;ckpess) in the rest of the manuscript.

loading}

3.2. Modeling

The two binary variables are used as output to implement

two classifiers, resulting from the definition of heterogeneities.
Each model reflects the interdependencies between input pa-
rameters and heterogeneities by displaying trends along 2D
plots. For the implementation of the models, the dataset is
randomly splitted into training and testing data where the
first one contains 80 % of the total standardized raw data and
the latter the remaining 20 %. The training dataset is used to
create and train models whereas the testing dataset evaluates
the reliability of the developed model [37]. Indeed, the latter
dataset contains experiments that are not seen by the model
during the training, which is like if the model is tested versus
experiments not carried out before.
It is important to point out unbalanced data while analyzing
classes like Figure 6 shows where the majority of the data
is categorized as homogeneous for both variables. This im-
plies that the unbalanced dataset requires a resampling tech-
nique to adjust the classes distribution, which is in this study
a random oversampling approach. Indeed, the latter adds
synthetic samples to the under represented class [38]. Such
a technique balances the classes distribution to improve the
classifier performances when taking into account heteroge-
neous labels (i.e. unbalanced classes).

loading}*
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Figure 5: K-Means results from the clustering analysis represented on the first principal plan with groups C,, C,, C; and C,
associated to the cluster centroid (u;); <4, color-coded in purple, blue, red and green respectively. The corresponding representation
is straightforward interpretable for the spread of coated electrodes.

A Gaussian Naives Bayes (GNB) is the probabilistic tech-

nique applied, according to the data analysis presented above,
for the supervised classification purpose. This technique has
been already used in the domain of LIBs for regression prob-
lems such as RUL estimation [39], and it is used for binary
classification purposes in the present study. Bayesian meth-
ods tend to be even more popular in the battery field, due to
their intuitive definition and low requirement of parameters
leading to low computational cost for learning [40, 41]. In-
deed, a classification learning must predict the real class as-
sociated to given inputs, saying that Naives Bayes algorithm
predicts the a posteriori probability P(y|xy, ...,x,,) to ob-
tain each output class given all the inputs (x;) (i<p) [42, 43].
More precisely, the definition of the model lies on the Bayes
theorem where a naive hypothesis written in Eq. 9, reflects
conditional independence of inputs for given class y.
Let’s assume that heterogeneity and homogeneity classes are
represented through the classification variable being ¥ =
y € {y,,y_}, a given observed dataset X = (xy, x5, ..., X,,)
Y(p,x;) € Nx RN The Bayes theorem gives :

P(y) X P(xy, ... X,py)
P|xy,s s Xp) = 2 U
(X1, s Xp)

(Eq. 8)

P(xy, ., xp|y) = HP(xi|Y)

i=1

(Eq. 9)

Meanwhile the algorithm considers the constant probabil-
ity P(xy, ..., x,,) regarding the training dataset, and the out-
put probability P(y|xy, ..., x,,) is approximated by the nu-
merator. As a consequence, the following Bayes classifier

P(y= . o . .
f, = W gives the rule consisting on finding
=Y_[X]seees m

¥, the argument that maximizes the product of probability :

9 = argmax (P(y) x [ | PGxily)
i=1

(Eq. 10)
1 ifp=
& 1), {Z Hy= oy

1 ifyp=y_

In the case of this study, the probability distribution is as-
sumed to be a multivariate Gaussian from R following the
formula, which is simply the extension of the normal distri-
bution in higher dimensions

1 2 Ga=m)Zy =)

- _xe 2
VCm) X dei(x,)

P(x|y) =
(Eq. 11)

with parameters 6 = (u,, X ), representing the mean vec-
tor and covariance matrix for data among one class y.

0 is estimated by the Expectation-Maximisation algorithm
(EM) in order to compute the best fitting probability model
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Figure 6: Unbalanced class distribution for cases (A) and (B)
which correspond t0 1(;,,4ing) @3nd 1(4;40e55) respectively. It rep-
resents how each binary output is unbalanced with the number
of electrodes in classes and their associated percentage of rep-
resentativity for each binary classifier.

[44]. Indeed, the EM algorithm calculates the maximum for
the likelihood #(x, 1, Z,) = [}, P(x;|)) and get param-
eters of the distribution to conclude on the behavior of f(y),
[45]. The algorithm is iterative and used in the case of Gaus-
sian mixture models (commonly called probabilistic models)
[46].

In order to evaluate each model, the Area Under Curve
(AUC) metric is used to analyze how testing data are well
classified by the GNB models [47]. Besides, both models are
used to avoid a bias induced in the metric value (given large
variations) by operating many splits into training/testing data-
sets. However, they reflect an average AUC value of 0.91
and 0.84 with a very low variation, which is enough for the
prediction capability of each classifier. The AUC metric is
preferred for binary classification, more precisely because it
measures how much a true positive observation (i.e. hetero-
geneous electrode) is predicted rather than a true negative
observation (i.e. homogeneous electrode) without any con-
sideration of a threshold [48]. In other words, the higher
AUC is, the better the model predicts heterogeneity (homo-
geneity) for a heterogeneous (homogeneous) manufacturing
condition.

Results and discussions
4.1. Prediction of heterogeneity

The built GNB models predict the a posteriori probability
of the manufacturing heterogeneous/homogenous electrodes
as a result of manufacturing parameters. Consequently, the
2D plots represent the evolution of the decision boundary
of the model to produce heterogeneous electrodes at %2AM
compositions of 92.7 %, 94 %, 95 % and 96 %. Figures 7 and
8 capture, for mass loading and thickness respectively, the
influence of input parameters (i.e. gap and %LS) on the evo-
lution of heterogeneity. In this study, the predicting capabili-

configuration are good enough according to AUC values for
the prediction of the effect of manufacturing parameters.

According to the definition of the GNB for either 1;;044;,4)
or 1y;pickness)» When the probability is greater than 0.5, the
electrode is classified as an heterogeneous one while it is
classified as homogeneous for a value lower than 0.5.

4.2. Impact of manufacturing parameters

The classification reflects the relative weight of heterogene-
ity and homogeneity for manufacturing parameters ranges.
The predicted patterns evolution in Figure 7 and 8 are dif-
ferent. In order to explain the reasons behind this trend,
each output measurement is deeply analyzed for the search
of interdependencies and the associated results are compared
with different statistical tests (see Supporting Information).
In this study, the distinction between the two different hetero-
geneities (illustrated in Figure 7 and 8) is useful for the inter-
pretability of the effect of manufacturing parameters, since
the coated electrodes adopt different types of mesostructures.
Indeed, several rearrangements of active material particles
inside the mesostructure may involve either a non-uniform,
or uniform slurry in terms of mass loading, for the same
thickness of the electrodes [49].

As a consequence, Figure 7 and 8 illustrate two different
trends for the effect of the manufacturing parameters. They
depend on the type of heterogeneity, such as the effect of
the gap producing heterogeneous electrodes in thickness and
mass loading at low values, whereas the effect of %AM is
only noticeable on the heterogeneity in thickness.

4.2.1 Mass loading

According to Figure 7, the heterogeneity pattern appears
in the left part of the 2D plots regardless the value of %AM.
Indeed when decreasing the gap, the probability to be het-
erogeneous increases. As it can be also seen in Figure 7,
there is no significant effect of %AM and %LS on the evo-
lution of the heterogeneity pattern, symbolized with the cur-
vature of the decision boundary that can be assimilated to
a straight line. Indeed, while evaporating the solvent, the
electrode is locally sensitive (i.e. unstable) to the particles
distribution due to the compression at low gap leading to a
non-uniform mesostructure, whereas the particles are uni-
formly distributed in a thick electrode at higher values of
gap. Therefore, a statistical analysis is made, as a compari-
son, to check the trends found in Figure 7 (see Supporting
Information for details). A significant relationship (r> =
—0.89) is found between the gap and (d,)(/4ding}> Whereas
the dependence between %AM and 1;,,4in,}> and also be-
tween %LS and 1{;,44i,¢) are not statistically significant (p >
0.05). Such results match with the empirical interpretation
from Figure 7, allowed us concluding about the effect of the
gap on the mass loading heterogeneity.
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Figure 7: Classification results in terms of heterogeneity probability predictions for coated electrode mass loading, as a function
of gap [um], liquid-to-solid ratio [%], for different amounts of active material [%]. The 2D surface of probability predictions is
interpolated in the parameters space, according to classification predictions based on manufacturing parameters combinations.

4.2.2 Thickness

The same approach is made to analyze the thickness hetero-
geneity. In this particular case, the outcomes of the imple-
mented ML algorithms predict that with low %AM the prob-
ability of getting heterogeneous electrode is low, whereas at
high %AM (i.e. 95 % and 96 %) heterogeneous electrodes
can be expected for low gap values. Indeed, the heteroge-
neous pattern appears when %AM has a value between 94
% and 95 % In addition, for high %AM amount, the prob-
ability to obtain heterogeneous electrodes increases by de-
creasing the gap. There exists more mobility for particles at
low values of binder content. As a consequence at low gap,
such mobility provides a non-uniform distribution of parti-
cles giving a rough thin electrode after the evaporation of
the solvent. In contrast, at high binder contents the cohesion
between particles is favored leading to low probability of ob-
taining heterogeneous electrodes.

The same statistical approach discussed in the previous sub-
section is done leading to the same trends found in Figure 8
(see Tables S3 and S4 in the Supporting Information). In-
deed, a significant relationship (> = —0.70) is found be-
tween the gap and (d,,)(;pickness) Whereas the effect of slurry

parameters on 1,455y 1S @ combined effect (i.e. the effect
of %LS depends on the values of %AM). The previous sta-
tistical analysis confirmed the trends found in Figure 8, and
concluded the effect of slurry parameters (i.e. %AM and
%LS) and the gap on such heterogeneity.

Conclusions

In this work a powerful Machine Learning-based approach
to identify the most appropriate manufacturing conditions to
enhance LIB electrode homogeneity is presented. Indeed,
it was found relevant to analyze key parameters from the
early steps of the manufacturing process, namely the amount
of active material in the slurry, the liquid-to-solid ratio and
the coating gap, with the purpose to automate the character-
ization of coated NMCS811 electrodes as heterogeneous or
homogeneous. Such methodology automatically proposed a
definition of the heterogeneity based on the relative standard
deviations calculation for punched disk samples. A Princi-
pal Component Analysis and K-Means clustering methods
are combined to both pinpoint meaningful initial variables
and classify the coated electrodes into groups of manufactur-
ing conditions with the same characteristics in terms of in-
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Figure 8: Classification results in terms of heterogeneity probability predictions for coated electrode thickness, as a function of
gap [um], liquid-to-solid ratio [%], for different amounts of active material [%]. The 2D surface of probability predictions is
interpolated in the parameters space, according to classification predictions based on manufacturing parameters combinations.

put variables. Lastly, Gaussian Naives Bayes classifiers are
tested to predict if the electrode associated to manufacturing
parameters values is homogeneous or heterogeneous. Due
to good performances, the resulting models gave the possi-
bility to disclose graphically the relationship between manu-
facturing conditions and heterogeneity probabilities through
straightforward 2D plots, where the validity was demonstrated
with statistical tests. All these trends found are explained in
terms of mass loading and thickness properties. As a con-
sequence, this tool can be used for high throughput samples
prediction as it allows assessing the data in a systematic and
reliable way. It could also be transferred to electrodes made
of other materials. Moreover, this tool avoids significant
computational costs of physical-based computational simu-
lations. Finally, our data-driven approach is essential to ac-
celerate the optimization of LIBs manufacturing processes.
Such methodology offers new opportunities to assess in a
faster manner the impact of different manufacturing process
steps on the final electrode properties, which is necessary to
optimize LIBs.

Code and data availability

The codes and data are available for download from a Github
repository upon publication of this paper :
ARTISTIC-ERC/electrode-heterogeneity

Supplementary data

Supporting Information in pdf format, giving an example
of data compression and the graph of variance for the expla-
nation of the PCA, an illustration of the K-Means algorithm,
the graphical and statistical comparison of d{,; ,erpendicuiar)
and d,; 41ong) for i € {1,2,3} in terms of mass loading and
thickness, the statistical procedure applied for the effect of
manufacturing parameters on heterogeneities, and lastly the
complete nomenclature for acronyms used in this study.
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