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Abstract: With the steep rise in the development of smart grids and the current advancement in
developing measuring infrastructure, short term power consumption forecasting has recently gained
increasing attention. In fact, the prediction of future power loads turns out to be a key issue to
avoid energy wastage and to build effective power management strategies. Furthermore, energy
consumption information can be considered historical time series data that are required to extract all
meaningful knowledge and then forecast the future consumption. In this work, we aim to model
and to compare three different machine learning algorithms in making a time series power forecast.
The proposed models are the Long Short-Term Memory (LSTM), the Gated Recurrent Unit (GRU)
and the Drop-GRU. We are going to use the power consumption data as our time series dataset and
make predictions accordingly. The LSTM neural network has been favored in this work to predict the
future load consumption and prevent consumption peaks. To provide a comprehensive evaluation of
this method, we have performed several experiments using real data power consumption in some
French cities. Experimental results on various time horizons show that the LSTM model produces
a better result than the GRU and the Drop-GRU forecasting methods. There are fewer prediction
errors and its precision is finer. Therefore, these predictions based on the LSTM method will allow us
to make decisions in advance and trigger load shedding in cases where consumption exceeds the
authorized threshold. This will have a significant impact on planning the power quality and the
maintenance of power equipment.

Keywords: neural networks; time series; LSTM; GRU; Drop-GRU; energy consumption prediction;
load shedding

1. Introduction

Power consumption forecasting has been considered as a key challenging topic for
smart grid planning, electricity market development, and the sustainability of power. Re-
cent research shows that precise power prediction provides important guidance to the
power suppliers and consumers to improve power management, secure the grid and con-
trol the load [1]. So, with the recent development of sophisticated machine learning-based
methods and especially deep learning algorithms, a large number of researchers in diverse
disciplines have focused on these techniques [2]. Thus, time series analysis has become
a popular research area. Its development has a great impact on our daily life [3]. It can
be used to track how a sensor value, economic variable or weather report changes over
time. It is also applied everywhere to forecast future outcomes based on recorded historical
data in several fields such as weather prediction [4], air pollution prediction [5] and stock
market prediction [6]. In this context, many prediction methods have been proposed in
the literature. From an academic point of view, these methods can be divided into three
categories: statistical analysis, machine learning and deep learning. The statistical models
include various methods such as Markov chain (MC) [7], exponential smoothing [8] and
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autoregressive integrated moving average (ARIMA) [9]. The machine learning models
consist of three methodologies: Decision Tree (DT), Support Vector Machine (SVM) and
Artificial Neural Network (ANN) [10]. Finally, as a breakthrough in artificial intelligence,
deep learning approaches automatically perform in treating highly nonlinear features via
a cascade of multiple layers. Recurrent Neural Network (RNN) and Back-Propagation
Neural Network (BPNN) are two popular algorithms used for predicting time series [11].
So, a forecasting system based BPNN is widely used by researchers, due to its strong
adaptability and computing ability. However, it also has some shortcomings, such as the
final training result which can easily fall into a local extremum [12]. RNN can remember the
historical information and choose whether to retain this information for the current output.
Nevertheless, it fails to maintain the long temporal dependence because of the serious
vanishing/exploding gradient problem [13]. To alleviate these problems, an improved
version of RNN, named long short-term memory network (LSTM) is proposed. The LSTM
network is based on the introduction of a cell memory in the RNN which presents a promis-
ing solution to inhibit the gradient disappearance [14]. Their contribution is particularly
manifest in the case of long sequences of events. It has also demonstrated a significant
improvement in terms of forecasting stability. The LSTM can give more stable forecasting
power in time-series prediction compared to traditional RNN [15]. In this paper, an LSTM
network based algorithm for forecasting power consumption is presented. Indeed, LSTM
models are currently widely used as the most robust approach to dealing with sequential
data. Their contribution is especially obvious in the case of rather long sequences of events.
Time series analysis and forecasting are currently at the beginning of their potential. It
should be noted that, in the case of the construction of global models for the time series,
the LSTM models allow the creation of high-performance models, both for point forecasts
and long-term forecasts [16]. The fundamental question is then how powerful and accurate
these newly introduced techniques are when compared with traditional approaches. In this
work, a dynamic model based on time series analysis and the LSTM is proposed to forecast
the power consumption, detect the power peaks, and then shed the load. The aim of this
prediction is to maintain the power balance between producers and consumers to ensure
the security of the electrical grid. In order to make full use of the various data in the power
consumption and achieve accurate predictions, different deep learning-based algorithms
were proposed, which comprise the LSTM, the GRU, and the Drop-GRU models. In the
proposed model, the GRU module is exploited to model dynamic changes in historical
power consumption data for better learning potential characteristics in time sequence
data, and the dropout process is used as a weight regularization technique for reducing
overfitting. In an analogous way, the LSTM method is chosen due to its ability to preserve
and train the characteristics of the provided data for a long period of time. Therefore, this
technique has achieved a significant success in recent years. Indeed, the paper provides
in-depth guidance on data processing and training of LSTM models for a set of power
consumption time series data. Moreover, a comparison study between GRU, Drop-GRU,
and LSTM models concerning their performance in reducing error rates is performed.
The article is organized as follows. Section 2 presents the context of this work. Section 3
explains the methodology adopted in this study. Firstly, it provides the general framework
of the proposed predictive models. Then it gives, step by step, the implementation process
of the proposed algorithms; it covers the dataset processing description, the parameters
and the evaluation indices. Section 4 shows the experimental detail, the results analysis
and the performance evaluation of the LSTM networks in comparison to the GRU and the
Drop-GRU models. Finally, Section 5 concludes this work.

2. Context of This Work

The working subject presented in this manuscript falls within the framework of the
development of a monitoring platform related to energy management on the consumer
side. It also aims to improve the energy efficiency of public infrastructure and optimize
the electrical networks. Figure 1 illustrates the general context of this project. Indeed,
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this subject is part of a vast VERTPOM research project which wants to develop positive
energy territories through the design of smart electricity grids. The VERTPOM project will
maintain an optimized balance between the energy available from production regarding
uses by applying a set of algorithms for forecasting and simulating the levels of power
production and consumption on the various distribution systems. It treats an actual
database. The use of artificial intelligence networks, such as machine and deep learning, is
preferred. The key challenge of this project is to simulate all possible scenarios allowing
a positive production/consumption balance. Hence, the main objectives of VERTPOM
are anticipating the power requirement according to all the parameters available in the
area such as climatology, scheduled events and consumption in order to make the best
decision regarding consumption priorities among renewable and conventional energies.
Moreover, it should optimize the peak consumption and interact intelligently with the
consumer-player. So the aim of all previous objectives is to develop a set of digital tools for
power management, to design adequate smartgrids for energy suppliers and consumers
and to guarantee the safety of electrical infrastructures.

Smart meter

Consumers

Industrial consumers

Public buildings

Photovoltaic sources

Wind sources

Electric vehicles

Traditional sources
of electricity

Energy storage

Public lighting

Smart meters,
control,

data concentrator

control

Figure 1. The smart grid context: VERTPOM project.

3. Materials and Methods

To predict the energy consumption, we suggest a framework based on three neural net-
work models as discussed earlier. So to explain the methodology of our work, the flowchart
shown in Figure 2 gives different steps used to construct the proposed predictive models.

Before discussing the forecast, we should understand how important analysing and
preprocessing data are for time series. They can make or break the forecast. Thus, the main
challenge to forecasting is preprocessing data into the appropriate form.

3.1. Data Analysis

The processed data used in this work represent the average power consumption of an
area in Péronne city. There are several zones; a measurement unit in each zone allows us to
record the energy consumption data. These data are logged by measurement tools from the
VERPOM team with a sampling rate of 30 min.

The measured values depend on several factors:

• Nature of consumers: inhabitants, factories, hospitals, offices, etc.;
• Climatology: humidity, temperatures, sunshine, wind speed, etc.;
• Days of the week, weekends, holidays, etc.
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Data pre-processing
Handle missing values and normalization

Feature selection
Set parameters, train-test split

Define the neural network architecture

LSTM GRU Drop-GRU

Evaluating the model performances

RMSE MAE

Select model for the future prediction

Figure 2. The Proposed Methodology.

In fact, these data show that each area’s power consumption has various distribution
characteristics as illustrated in Figures 3 and 4. The presented profiles are of different types:
cyclical, irregular, stationary and with trends, etc.
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Figure 3. Power consumption of the first zone.
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Figure 4. Power consumption of the second zone.
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3.2. Data Pre-Processing

Data tend to be incomplete and incoherent, therefore data cleaning aims to remove
noise, fill in missing values and correct inconsistencies in the data. In this section, we will
present the crucial preprocessing steps for time series. The aims of standardization is that
the model runs very fast and to bring values to specific ranges. Hence, data preprocessing
involves various operations. Each operation aims to help the machine learning to develop
the best predictive models:

• Some raw data have “holes”: the process of Exponential Moving Average (EMA) is
used to fill in the missing information.
The EMA is a type of moving average that gives a greater weight and significance to
the most recent data points. The EMA formula is given as:

EMA = (Valuetoday − EMAyesterday) ∗ Smoothing constant + EMAyesterday, (1)

where the smoothing constant is equal to 2
n+1

with n as the number of time periods.
The EMA formula is based on the previous day′s EMA value. Since it has to start the
computations somewhere, the initial value for the first EMA calculation will actually
be an SMA. It is calculated by taking the arithmetic mean of a given set of values over
a specified period of time.
The formula for computing the SMA is presented as:

SMA =
A1 + A2 + · · ·+ An

n
, (2)

where
A denotes the average in period n.

• Consumption profiles have different types of data: the process of reduced centered
standardization is applied. The normalisation is performed by ZScore and the formula
is given as:

ZScore =
x− xmean

xσ
, (3)

where:

xσ =

√
1

n− 1

n

∑
i=1

(xi − xmean)2 (4)

xmean =
1
n

n

∑
i=1

xi. (5)

The goal of data standardization is to use a common scale, without loss of information.
The idea is to push all the values of the variable to be between −1 and 1, while keeping the
distances between the values. These two preliminary preprocessing steps allow the LSTM
network to work properly.

3.3. LSTM Neural Network Model

The long short term memory (LSTM) model is a special form of the recurrent neural
network (RNN). This model conserves long-term memory by using memory units that
can update the previous hidden state. It provides feedback at each neuron. The output of
RNN is not only dependent on the current neuron input and weight but also dependent
on previous neuron inputs. This functionality makes it possible to understand temporal
relationships on a long-term sequence. Its internal memory unit and gate mechanism
overcome the exploding and vanishing gradient problems that occur in training traditional
RNN. So, the internal structure of the LSTM model includes four important units: input
gate, output gate, forget gate and cell status. The three gates are introduced to control the
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maintenance and the update of information comprised in cell status. Figure 5 shows the
structure of an LSTM cell. The computation process can be given in the following as [17]:

ft = σ(w f [ht−1, Xt] + b f ) (6)

it = σ(wi[ht−1, Xt] + bi) (7)

ot = σ(wo[ht−1, Xt] + bo) (8)

at = tanh(wa[ht−1, Xt] + ba) (9)

ct = ft ∗ ct−1 + it ∗ at (10)

ht = ot ∗ tanh(ct), (11)

where σ is the sigmoid activation function and it can be defined as:

σ(x) = (1 + e−x)−1. (12)

The notations ft, it and ot are the output values of the forget, the input and the output
gates, respectively. ct refers to the memory cell and at is the update and the activation of
the current cell status. Xt is the input vector and ht represents the output vector result at
time t. Finally, W f ,i,a,o are the weights matrices and b f ,i,a,o the bias vectors.

X

X

X

+

σσ σtanh

tanh

Ct−1

ht−1

Input gate Output gate

Cell state ht

ht

Ct

F
o
r
g
et

g
a
te

Figure 5. The internal structure of the LSTM model.

Figure 6 illustrates the forecast strategy framework with the LSTM model. This model
can be divided into three big parts [18]:

• The input layer is mainly used for preprocessing the original data;
• The hidden layer is used to optimize the parameters and training the data;
• The output layer is used to predict the data according to the model trained in the

hidden layer.

3.4. LSTM Network Parameters

The complexity of the network is characterized by its trainable parameters of the
network, which are called the trainable weights. They are illustrated through the connec-
tions between the input layer, the hidden layer and the output layer as well as internal
connections in LSTMs. For a neural network of n inputs, m outputs and p LSTM cells in
the hidden layer, the Number of Trainable Weights (NTW) is calculated as:

NTW = 4np + 4pp + 4p + mp + m. (13)
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X X

Raw data

Data scaling and partitioning

Inverse data transformation

Power consumption forecast data

Model prediction

Hidden

Input

Output

layer

layer

layer

Adam
optimization

Loss
calculation

Optimized
tuning

Model
training Y Y

LSTM1 LSTMn..........

Figure 6. The LSTM power consumption forecasting framework.

Table 1 explains each parameter used in the previous equation.

Table 1. Trainable Weights in the LSTM network.

4np 4pp 4p mp m

The weights between Recursive weights The bias of The weights between The bias of
the input layer in the hidden layer. the hidden layer. the hidden layer the output layer.

and the hidden layer. and the output layer.

Selecting optimal parameters for a neural network architecture can often mean the
difference between poor and peak performances. However, there is little information in
the literature on the choice of different parameters, n, m and p, of the neural network; it
involves the experience of experts.

3.5. GRU Neural Network Model

GRU is one of the most popular improved variants of RNN with a special gated
recurrent neural network based on optimized LSTM. The GRU internal structure is similar
to the internal structure of the LSTM, except that the GRU associates the input gate and the
forget gate in the LSTM unit into a single update gate. This model has two gates: one is the
update gate, which controls the extent and retains previous information in the current state;
the other represents the reset gate which determines whether the previous information and
the current state are to be associated [19]. Figure 7 shows the basic design of a GRU unit.
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X

+

σσ tanh

ht−1

Xt

htX

X

rt

zt

1-

at

Figure 7. The internal structure of the GRU model.

According to Figure 7, the formulas of GRU can be given as:

zt = σ(wz[ht−1, Xt] + bz) (14)

rt = σ(wr[ht−1, Xt] + br) (15)

at = tanh(rt ∗ wa[ht−1, Xt] + ba) (16)

ht = (1− zt) ∗ at + zt ∗ ht−1, (17)

where Xt is the vector input of training data at time t, and ht is the outcome of the current
layer at time t. zt and rt represent the update and the reset gates respectively. at is the
candidate activation.

3.6. Neural Network Model Setup
3.6.1. Gradient Descent Algorithm

In order to address an optimization problem, an energy function based on the bound
constraints is defined. The traditional gradient descent is an effective algorithm for con-
strained optimization problems which can be used to minimize the energy. It needs
extensive time and computing resources to converge when training the neural network.
The optimizer is exploited to adjust the weight and offset of the model so that the algorithm
converges rapidly to the optimal value and then loss can be minimized [20]. Considering E
is an energy function of n variables u1 to u2 [21]:

E(u) = E(u1, u2, . . . , un). (18)

The gradient vector can be given as:

∂E
∂u

=

(
∂E
∂u1

,
∂E
∂u2

, . . . ,
∂E
∂un

)
. (19)

To converge to the minimum of E, if each element of the gradient vector is negative
then the variable of this element is increased. However, if each element of this vector is
positive, then the corresponding variable is decreased. Using this technique, the recursive
equation, to update the variables, is established as:

ui+1 = ui − α
∂E
∂ui

⇒ 4ui = −α
∂E
∂ui

, (20)

where α represents the learning rate. It is a positive parameter. ui gives the value of
variables in the ith iteration of running the algorithm. In this work, the Adam algorithm
is chosen as the suitable optimizer that can update the network weights and improve the



Sensors 2022, 22, 4062 9 of 20

performances of our model. This algorithm needs less memory and is well adapted to
solving problems that implicate the learning of complex and large datasets.

3.6.2. Dropout

The deep learning neural network has a powerful memory. However, the network
tends to learn the features of data that cannot be generalized, resulting in overfitting.
Dropout is one of the most popular regularization techniques that was proposed to solve
this problem. It returns the output of a proportion of the hidden units to zero randomly
according to the Dropout in order to reduce the neural network complexity [22]. The
dropout layer deactivates some of neurons in the training process. In this work, we have
integrated a dropout layer between the two GRU layers to facilitate and accelerate the
training step.

3.6.3. Training and Testing Dataset

The dataset has been divided into three groups: training, validation and test groups
as shown in Figure 8. The training dataset is a dataset of examples used during the
learning process and is used to fit the network parameters, such as the weights, and to
determine the optimal combinations of variables that will generate a good forecasting
model. The validation dataset is a sample of data held back from training the model used
to give an estimate of model skill while tuning the model′s hyperparameters in order to
avoid the overfitting. Finally, the test set is generally what is used to evaluate competing
models. In this work, the training set consists of 80% of the whole dataset. So, we run our
model with different ratios and then this percentage is selected because it produces the best
accurate predicted values. Indeed, the prediction model has been developed based on the
training group. The rest, which represent 20% of the whole dataset, have been allocated
as the test set for the model evaluation. Generally, the RNN model has been excused
under different ratios based on training and testing data such as 90:10, 80:20, 70:30, 10:90
etc. train/test splits. Then this model selects the best train-to-test for the prediction [23].
The choice of the ratio depends on several factors such as the architecture of the model,
type of data and the horizon of prediction. We train the LSTM, the GRU and the Drop-GRU
algorithms with 280, 600 and 750 hidden units for the prediction of, respectively, one day,
three days and a week. So, the window size of input and output parameters depends on the
time scale of the load forecasting. We also use the Adam technique as an optimizer in our
study. The learning rate is set to 0.01 and it decays every 50 epochs. Several Dropouts can
also lead to various results, so we choose the appropriate Dropout by the experimental test.

Training Validation Testing

History Data

Figure 8. The specific category of the history data.

3.7. Performance Evaluation Indicators

Many factors can influence the accuracy of prediction, including the authenticity of
the data sources, the prediction techniques, the experimental conditions, etc. It is therefore
necessary to use general indicators to evaluate the forecasting quality. The accuracy
indicator is the most critical one, which proves the quality of a forecasting model directly.
For this study, we have adopted three metrics to evaluate the model. They are: RMSE (Root
Mean Square Error) and MAE (Mean Absolute Error) and the R (the correlation coefficient),
which represent three ways of a number of approaches of comparing forecasts with their
eventual outcomes. The formulations of these metrics are defined as [24,25]:

RMSE =

√
1
N

n

∑
i=1

(yi − ỹi)2 (21)
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MAE =
∑n

i=1|yi − ỹi|
N

(22)

R =
cov(yi, ỹi)

σyi σỹi

, (23)

where yi is the real value; ỹi is the prediction result of yi and N is the total number of testing
samples. cov(yi, ỹi) is the covariance of the two variables and σyi , σỹi represent the standard
deviations of yi and ỹi, respectively.

4. Experimental Results

In this work, we present a prediction of the power consumption of a survey area for
different prediction horizons of “one day”, “three days”, “one week” and “two weeks”.
In the proposed methodology, we have implemented three models, namely LSTM, GRU
and Drop-GRU. For the several architecture structures of the various models, the network
performance is dissimilar. The internal architecture of the proposed models is predefined
and unchangeable; each topology admits a vector input of n values which are the current
power consumption at time t = 0 and the previous consumptions. We construct four neural
networks of different architectures; each one is adapted to its prediction horizon. These
networks are able to predict consumption after 30 min. Through the repetition process and
the right choice of parameters for these networks, we can predict the entire period of the
desired horizon. The parameters of each network (number of inputs, number of neurons
in the hidden layer, number of iterations, number of outputs, . . . ) are determined by the
process of training on real data. The choice of the number of data for training is set at
four times greater than the prediction horizon. The choice of these parameters is illustrated
in Table 2.

Table 2. LSTM forecasting architecture.

Number of Days to Predict 1 Day 3 Days 7 Days 15 Days

Data size (measure) 288 720 1680 3600

Number of training data 240 576 1344 1880

Number of data to predict 48 144 336 720

Number of units (LSTM /GRU) in the hidden layer (h) 280 600 750 1000

Number of inputs for the LSTM/GRU network (n) 200 300 300 600

Number of outputs for the LSTM/GRU network (m) 1 1 1 1

Number of trainable weights (NTW) for the LSTM network 539,001 2,163,001 3,153,751 6,405,001

Number of iterations 100 100 100 200

As shown in this table, the neural network architecture depends on the number of
days to predict. Indeed, the number of inputs, the number of units in the hidden layer and
the size of training data are proportional to the prediction horizon.

4.1. Training and Validation Processes

Machine learning models are usually evaluated by the validation process to measure
the interpolation power. Figures 9–12 illustrate this process. As shown, the validated curve
of each neural network algorithm follows the trend of the original curve samples at a great
percentage. Thus, only very small errors are seen in the validation of each approach which
prove the performance of the model′s architecture.
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Figure 9. Training and validation for 1 day forecasting.
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Figure 10. Training and validation for 3 days forecasting.
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Figure 11. Training and validation for 7 days forecasting.
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Figure 12. Training and validation for 15 days forecasting.

4.2. Prediction of Power Consumption

The graph for each experiment prediction model against the actual values is given in
the Figures 13–19 below.

• Experiment 1: 1 Day prediction

In the first experiment, we present the power consumption prediction of a studied
area for one day. Figure 13 illustrates the prediction results of the three methods—LSTM,
GRU and Drop-GRU. These results are similar to the true data value.
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Drop-GRU

Figure 13. Prediction results of 1 day power consumption.

• Experiment 2: 3 Days prediction

The second experiment represents the power forecasting results over 3 days. Figure 14
shows the results prediction of the proposed algorithms. Figure 15 represents the zoomed
version of these prediction results. It seems clear that the prediction curves keep the shape
of the actual data curve and the three models, LSTM, GRU and Drop-GRU, are able to
forecast the peaks of power consumption.
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Figure 14. Prediction results of 3 days power consumption.
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Figure 15. Zoom version Prediction of 3 days power consumption.

• Experiment 3: 7 Days prediction

In this experiment, a weekly prediction of the power consumption for the chosen area
is presented in Figure 16 and the zoomed versions is illustrated in Figure 17. As shown,
the prediction results detect the peaks of the power consumption at the same time as the
actual data, but the prediction values of the numerous peaks are lower than the actual
values. It can also be noted that the GRU model is the best one in the forecast of high values
of power consumption.
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Figure 16. Prediction results of 7 days power consumption for the first area.
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Figure 17. Zoom version Prediction of 7 days power consumption for the first area.

• Experiment 4: 15 Days prediction

This last experiment gives the forecasting power results for the horizon time of 15 days.
Figures 18 and 19 show the prediction results of the three techniques. These experimental
results illustrate the performance prediction of these models, especially in the detection of
power peaks compared with the previous experiments.
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Figure 18. Prediction of 15 days power consumption for the first area.
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Figure 19. Zoom version Prediction of 15 days power consumption for the first area.

4.3. Detection of Power Consumption Peaks and Load Shedding

To define the instant at which the load should be disconnected, we determine the
moving mean power consumption and we consider that the maximum power consump-
tion should not exceed 15% of the average power. So, if the predicted power consump-
tion exceeds the predefined value, a peak is detected and then the load is disconnected.
Figures 20–25 illustrate the detection of power consumption peaks.
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Figure 20. Detection of power consumption peaks during 1 day using the LSTM model.
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Figure 21. Detection of power consumption peaks during 1 days using the GRU model.
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Figure 22. Detection of power consumption peaks during 1 days using the Drop-GRU model.
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Figure 23. Detection of power consumption peaks during 3 days using the LSTM model.
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Figure 24. Detection of power consumption peaks during 3 days using the GRU model.
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Figure 25. Detection of power consumption peaks during 3 days using the Drop-GRU model.

As shown from these figures, the three models are able to predict the peaks of the
power consumption with a very low shift of time compared to the real time. The power
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consumption forecasted by the GRU and Drop-GRU are very similar to the true data but
the GRU model is better at the prediction of high values.

4.4. Analysis of Results

In this work, we mainly use three metrics to evaluate the performance of the proposed
approaches on two aspects: accuracy and running time. Table 3 illustrates the results for
the accuracy measurement and the execution time in seconds.

Table 3. Performance criteria of the studied area.

Algorithm Evaluation Indices Number of Days to Predict
1 Day 3 Days 7 Days 15 Days

LSTM

RMSE 0.0508 0.0904 0.0844 0.0837
MAE 0.0399 0.0682 0.0606 0.0583

R 0.9666 0.8716 0.8045 07337
Execution time (s) 4.8058 9.1943 11.67130 43.8825

GRU

RMSE 0.0466 0.0868 0.0823 0.0873
MAE 0.0381 0.0678 0.0616 0.0621

R 0.9708 0.8781 0.8155 0.7067
Execution time (s) 4.0829 7.7684 9.6836 33.6734

Drop-GRU

RMSE 0.0472 0.0727 0.0866 0.0813
MAE 0.0363 0.0555 0.0612 0.0574

R 0.9696 0.9097 0.8287 0.7482
Execution time (s) 4.1069 7.7501 9.5361 33.5519

In this table, it is observed that the uncertainty of the predicted results of the three
models and the execution times increase with the increasing of the prediction horizon.
The statistics of simulation results of the LSTM, GRU and Drop-GRU models for the testing
dataset show that the four RMSE and the four MAE values of LSTM models are larger
than those of the GRU and GRU-Drop models. In contrast, the four correlation values
R are smaller than those of GRU and Drop-GRU. Three of four correlation values of the
Drop-GRU models are also larger than those of the GRU models.

The results show that the Drop-GRU neural network is more efficient and performs
better than the GRU and the LSTM models. The Drop-GRU algorithm produces better
results in terms of accuracy and prediction speed compared to the LSTM and GRU models.
The GRU performed better than the Drop-GRU in the detection of high values of power con-
sumption but it is less fast. We can deduce that the Drop-GRU architecture produces very
satisfactory results and the prediction results are precise and reliable. The two performance
indices, RMSE and MAE, have low values and R has perfect values (near +1), as shown in
Table 3 and in the different prediction curves (Figures 13–23). The consumption forecasts
are close and representative of the actual consumption. We emphasize that the learning
time depends on the approach used for forecasting. This learning time is proportional to
the size of the network and to the prediction horizon.

To conclude, the three models are able to simulate power prediction processes accu-
rately by employing time sequences input. The experimental results show the effectiveness
of the proposed prediction algorithms for medium-short time period power load fore-
casting. GRU and LSTM models predict power consumption with good accuracy. Given
that GRU has simpler structures and fewer parameters, and requires less time for model
training, it may be the preferred method for short term prediction and it can be improved
by hybridization with other techniques such as the dropout.

5. Conclusions

This paper presents an energy management strategy based on the forecasting pro-
cess and proposes three deep neural networks: LSTM, GRU and Drop-GRU. The main
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objective of these approaches is to forecast and control the load consumption. The power
consumption prediction methods firstly treated the input data, performed effective fea-
ture extraction and then built the appropriate network structure to optimize the ability
prediction. Finally, a comparative study of the proposed algorithms is performed. These
three techniques were implemented and tested on a set of power load data and the results
indicated that the Drop-GRU was superior to the GRU and the LSTM. More specifically,
the GRU approach is very suitable for our project to forecast the energy consumption over
a defined horizon based on previous consumption readings, which will allow us to predict
consumption peaks and predict in advance an optimal decision-making scenario for load
shedding. The future direction of the research is to develop hybrid models with an even
higher accuracy and even higher speeds and we can further improve these results by taking
into account other external factors such as meteorological information and information on
holidays. So, from the prediction results and the external data on the production capac-
ity, it is easy to detect high consumption points that exceed the authorized consumption
threshold and then protect the electrical grid.
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