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Abstract

Electrical Impedance Tomography or EIT is an imaging technique
that reconstructs the conductivity distribution in the interior of an
object using electric currents. In this paper, we study the contin-
uum model for EIT in a domain where the geometric inclusions are
fixed and only the conductivity values inside these inclusions are un-
known. We show analytically and numerically how the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) algorithm, a quasi-Newton method,
can be effective in solving this inverse conductivity problem for EIT.
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1 Introduction

In Electrical Impedance Tomography (EIT), the conductivity distribution
within a body is recovered based on electrical measurements around the
body. Unlike x-ray tomography which exposes the subject to radiation, EIT
is non-invasive and hence, a non-hazardous alternative in imaging technology.
It also has the advantages of portability, low cost, and high-time resolution.
EIT is a thriving area of research due to the variety of possible applications
(e.g. geophysical, medical, and industrial). In particular, it is very useful in
monitoring organ functions such as lungs, hearts, and brain [1, 2, 3, 4, 5].

Let Ω be a bounded simply connected domain in R
d, d = 2, 3, with a

smooth boundary ∂Ω. In this paper, the domain Ω is considered to be a
union of the background domain Ω0 and the disjoint and fixed geometries
Ωm, m = 1, 2, . . . ,M , that is, Ω = ∪Mm=0 Ωi, where Ωi ∩ Ωj = ∅, ∀ i 6= j.

Mathematically, EIT is divided into two parts: the forward problem and
the inverse problem. In the forward problem, the electric potential u in Ω and
the boundary voltage U = u|∂Ω are computed given the boundary current
f ∈ L2(∂Ω) and the conductivity distribution σ ∈ L∞ (Ω). This is done by
solving the following boundary value-problem: Find u such that

{

∇ · (σ∇u) = 0 in Ω,

σ
∂u

∂n
= f on ∂Ω,

(1.1)

where n is the outward normal direction at ∂Ω. To satisfy the conservation

of charge, f is chosen so that

∫

∂Ω

f dS = 0. Moreover, the electric potential

u must satisfy

∫

∂Ω

u dS = 0, which is equivalent to choosing the reference

voltage. The conductivity σ ∈ L∞(Ω) is defined as

σ(x) =

M
∑

m=0

σmχm(x), (1.2)

where χm(x) is the characteristic function of the subset Ωm, and σm ∈ R with
σmin ≤ σm ≤ σmax, for some positive constants σmin and σmax. The problem
(1.1) is called the continuum model for EIT [10, 12]. We focus our study on
this choice. For instance, we refer the readers to [6, 10] for a presentation of
other forward models for EIT.

Let us introduce the space L̃2(∂Ω) =

{

f ∈ L2(Ω) :

∫

∂Ω

f(x) dS = 0

}

.
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For a fixed boundary current f ∈ L̃2(∂Ω), we define the measurement oper-
ator F : L∞(Ω)→ L̃2(∂Ω) by

F(σ) = u|∂Ω, (1.3)

where u is the solution of (1.1) given σ and f . Let σ⋆ be the actual con-
ductivity distribution in Ω. The inverse problem we are concerned with,
is: Given a measurement Uobs (observed boundary voltage), reconstruct the
conductivity distribution σ⋆ such that

F(σ⋆) = Uobs. (1.4)

In particular, the problem consists of determining the values (σm)1≤m≤M

inside the known respective inclusions (Ωm)1≤m≤M . The background con-
ductivity value σ0 is assumed to be known. Though the forward problem is
well-posed, the inverse problem is severely ill-posed. This is an active area
of research. In the mathematical literature, the inverse problem of EIT is
also known as Calderón’s problem [7]. Earlier results on EIT inverse problem
are focused on the identifiability question that the conductivity distribution
in the domain can be uniquely determined using the entire corresponding
voltage-to-current or Dirichlet-to-Neumann map. The first identifiability re-
sult for the continuum model was given by Kohn and Vogelius in [8]. Astala
and Päivärinta later extended the identifiability property to an L∞ conduc-
tivity in two dimensions [9]. For more details, we refer the readers to the
review papers [10, 11].

The inverse problem is the main part of the EIT problem. In this work,
we assume that the geometries Ωm, m = 0, . . . ,M , defined in (1.2), are
known. Furthermore, we assume that σ0 is given (compare with [13, 17, 20]).
A possible application is in monitoring the function of a body organ where
the locations and geometries of the organs are already known. This can be
achieved if, for example, the MRI data of the organs are available. Thus, to
reconstruct σ in (1.2), we only need to determine the values of the positive
scalars σm, m = 1, . . . ,M . This means that the inverse problem is reduced
to determining the coefficient vector σ̃

σ̃ = {σm}
M

m=1 (1.5)

such that (1.4) is satisfied. To solve (1.4), we reformulate it into a minimiza-
tion problem in R

M . We define the cost functional J : RM → R as

J(σ̃) =
1

2

∫

∂Ω

|F(σ)− Uobs|
2 dS, (1.6)
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where σ depends on σ̃ because of (1.2). We propose to minimize J in (1.6)
using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method, which is a
gradient-based optimization algorithm. The paper is organized as follows: in
the first section, we introduce the BFGS method and a convergence property.
Then, we present some estimates for the solution of (1.1) and prove the local
convergence of the BFGS method when applied to the minimization of J
(1.6). Two− and three−dimensional numerical results illustrate the efficiency
and accuracy of the proposed approach. Finally, we give some concluding
remarks and perspectives for future studies.

2 The BFGS method

The BFGS algorithm belongs to quasi-Newton-type methods. Such methods
use the update

yk+1 = yk + αkdk, (2.7)

where dk = −Dk∇J(yk) such that the matrix Dk is symmetric and posi-
tive definite. Furthermore, Dk is chosen so that the direction dk tends to
approximate the Newton direction.

Ideally, the step length αk solves the problem αk = argminα≥0 J(yk +
αdk). This means that a univariate minimization is done at every iteration.
For computationally-expensive problems like the inverse EIT problem, this
is not judicious. One alternative approach consists of using a criterion called
the Wolfe’s rule, that is, find αk satisfying the two conditions

{

J(yk + αkdk) ≤ J(yk) + c1αk∇J(yk)Tdk and

J(yk + αkdk)
Tdk ≥ c2∇J(yk)Tdk,

(2.8)

where 0 < c1 < c2 < 1. The quasi-Newton method (BFGS) is summarized
in Algorithm 1.

The BFGS method equipped with the Wolfe’s rule for step length selection
has the following convergence property.

Theorem 2.1. Consider the iteration in (2.7), where dk is a BFGS direction

vector and αk satisfies (2.8). Suppose J is bounded below in R and is continu-

ously differentiable on an open set N containing L = {x : J(x) ≤ J(y0)} with
y0 as the initial guess. Moreover, assume that the gradient of J is Lipschitz

continuous on N , then

lim
k→+∞

‖∇J(yk)‖ = 0.
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Algorithm 1: BFGS QUASI-NEWTON METHOD

Input : objective function J , initial guess y0, tolerance ǫ

Output: minimizer y⋆

1 Set k = 0, and Dk = Id.

2 Set the direction vector dk = −
Dk∇J(yk)

‖Dk∇J(yk)‖
, where

Dk+1 = Dk +
pkp

T
k

pTk qk
−

Dkqkq
T
k Dk

τk
+ τkνkν

T
k , νk =

pk

pTk qk
−

Dkqk

τk
,

τk = qTk Dkqk, pk = yk+1 − xk, and qk = ∇J(yk+1)−∇J(yk). Here,
‖·‖ denotes the 2-norm.

3 Find αk that satisfies (2.8).

4 Update the estimate: yk+1 = yk + αkdk.

5 If ‖DJ(yk)‖ < ǫ or |J(yk+1)− J(yk)| < ǫ, stop. Else, k ← k + 1 and
go back to Step 2.

The proof of the theorem above and the more detailed discussion of BFGS
method can be found in [14].

3 Local Convergence Result

In this section, we present some estimates arising from the analysis of the
continuum model (1.1). We also provide a brief discussion of the BFGS
method. Then we show that the gradient of J is Lipschitz. We use this
property to prove the local convergence of BFGS method for the minimization
of J . We start with the following definition.

Definition 3.1. Let σ ∈ L∞(Ω) such that 0 < σ ≤ σ(x) ≤ σ, ∀ x ∈ Ω, for
some σ, σ ∈ R. Suppose u solves (1.1). We refer u := u(σ) as the forward

solution. Let Uobs be the observed boundary data. We define the adjoint

solution u∗ := u∗(σ) as the solution of

{

∇ · (σ∇u∗) = 0, in Ω,

σ
∂u∗

∂n
= F(σ)− Uobs, on ∂Ω.

(3.9)

We have the following results. For the proof, we refer the readers to [12].

Lemma 3.2. Define H̃1(Ω) :=

{

u ∈ H1 (Ω) :

∫

∂Ω

u dS = 0

}

and let f ∈
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L̃2(∂Ω). The forward problem (1.1) has a unique solution in H̃1(Ω), and the

adjoint problem (3.9) shares this property, too. The following estimates hold

‖u‖H1(Ω) ≤ C1 ‖f‖L̃2(∂Ω) (3.10)

and

‖u∗‖H1(Ω) ≤ C2

(

‖f‖L̃2(∂Ω) + ‖Uobs‖L̃2(∂Ω)

)

, (3.11)

for some positive constants C1 and C2. Furthermore, let ρ, η ∈ L∞(Ω) be

conductivity distributions such that 0 < σ ≤ ρ(x), η(x) ≤ σ, ∀ x ∈ Ω. Then,

we have

‖∇u(ρ)−∇u(η)‖L2(Ω) ≤ C3‖ρ− η‖L∞(Ω) (3.12)

and

‖∇u∗(ρ)−∇u∗(η)‖L2(Ω) ≤ C4‖ρ− η‖L∞(Ω), (3.13)

for some constants C3, C4 > 0.

Because BFGS method is gradient-based, we need to differentiate J . In
order to do so, we need the following result. The proof can be found in [13].

Lemma 3.3. Let δσ be a sufficiently smooth perturbation of σ ∈ L∞(Ω) with
compact support such that δσ|∂Ω = 0. Then,

∫

∂Ω

F ′(σ)(δσ)(F(σ)− Uobs) dS = −

∫

Ω

δσ∇u · ∇u∗ dV. (3.14)

We can now compute the gradient of J which is denoted by DJ =
[

∂J

∂σi

]M

i=1

.

Proposition 3.4. Let i ∈ {1, . . . ,M}. The partial derivative of J with re-

spect to σi is given by

∂J

∂σi

(σ̃) = −

∫

Ωi

∇u · ∇u∗ dV.

Proof. Applying chain rule on J in (1.6) and differentiating σ in (1.2) with
respect to σi, we get

∂J

∂σi

(σ̃) =

∫

∂Ω

F
′

(σ)(χi)(F(σ)− Uobs) dS.
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We now use (3.14) by setting δσ = χi. Clearly, χi has a compact support.
Furthermore, χi|∂Ω = 0 because Ωi is only nonzero at the boundary if i = 0.
Thus, we have

∂J

∂σi

(σ̃) =

∫

∂Ω

F
′

(σ)(χi)(F(σ)− Uobs) dS

=−

∫

Ω

χi∇u · ∇u
∗ dV = −

∫

Ωi

∇u · ∇u∗ dV. (3.15)

To show that the BFGS method locally converges when applied to J , the
following result is needed.

Theorem 3.5. The gradient DJ of the cost functional J is Lipschitz con-

tinuous.

Proof. Let ρ and η be conductivity distributions and denote ρ̃ = {ρm}
M

m=1

and η̃ = {ηm}
M

m=1 to be their corresponding coefficient vectors in R
M based

on (1.2) and (1.5). It is sufficient to show that

∣

∣

∣

∣

∂J(ρ̃)

∂σi

−
∂J(η̃)

∂σi

∣

∣

∣

∣

≤ C‖ρ̃− η̃‖ (3.16)

for some positive constant C and ‖ · ‖ the 2-norm on R
M . Observe that by

triangle inequality, the definition of the L∞−norm, and the equivalence of
finite-dimensional norms, we get

‖ρ− η‖L∞(Ω) ≤
M
∑

m=1

‖(ρm − ηm)χm‖L∞(Ω)

=

M
∑

m=1

|ρm − ηm| ‖χm‖L∞(Ω) = ‖ρ̃− η̃‖1

≤ C5‖ρ̃− η̃‖ (3.17)

(where ‖·‖1 denotes the l1−norm) for some positive constant C5. Let us

define A :=

∣

∣

∣

∣

∂J(ρ̃)

∂σi

−
∂J(η̃)

∂σi

∣

∣

∣

∣

. Using Proposition 3.4, the triangle inequality,
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and the fact that Ωi ⊂ Ω, we get

A =

∣

∣

∣

∣

−

∫

Ωi

∇u(ρ) · ∇u∗(ρ) dV +

∫

Ωi

∇u(η) · ∇u∗(η) dV

∣

∣

∣

∣

≤

∫

Ωi

|∇u(ρ) · (∇u∗(ρ)−∇u∗(η))|+

∫

Ωi

|∇u∗(η) · (∇u(ρ)−∇u(η))| dV

≤

∫

Ω

|∇u(ρ) · (∇u∗(ρ)−∇u∗(η))|+

∫

Ω

|∇u∗(η) · (∇u(ρ)−∇u(η))| dV.

(3.18)

We can apply the Cauchy-Schwarz inequality on the right-hand side of
(3.18). The estimates (3.10), (3.11), (3.12), (3.13), and the definition of the
H1−norm give

A ≤ ‖∇u‖L2(Ω)‖∇u
∗(ρ)−∇u∗(η)‖L2(Ω) + ‖∇u

∗‖L2(Ω)‖∇u(ρ)−∇u(η)‖L2(Ω)

≤ C‖ρ− η‖L∞(Ω) (3.19)

by combining (3.17), (3.18), and (3.19), the inequality (3.16) and by taking

C := C5

(

C1C4 ‖f‖L̃2(∂Ω) + C2C3

(

‖f‖L̃2(∂Ω) + ‖Uobs‖L̃2(∂Ω)

))

.

Remark 3.6. Notice that the functional J in (1.6) satisfies the assumptions

of Theorem 2.1 because of Proposition 3.4, Theorem 3.5, and the fact that J ≥
0. Hence, convergence of the algorithm to a stationary point is guaranteed.

However, the convexity of the cost function J is needed to prove that the said

stationary point is the one where the cost function is minimal. Unfortunately,

proving that the cost function is convex is not trivial. In the next section, we

show numerically that the algorithm converges to the minimizer regardless of

the starting point.

4 Numerical Implementation

We consider two−dimensional and three−dimensional numerical examples.
The forward problem is solved using the Finite Element Method (FEM).
Lagrange finite elements of type P1 are used. We implemented the numeri-
cal solver with FreeFem++ [16]. For the analysis of the numerical solution
of (1.1) using FEM, we refer the readers to [19]. The inverse problem is
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solved in MATLAB using the built-in command for BFGS algorithm, fmin-

unc. Tolerance is set to be the default, ǫ = 10−16. We work with synthetic
data which are obtained by solving the continnum model (1.1) with the exact
conductivity distribution σ∗ in Ω and an injected current f on the boundary
of the object. To model possible experimental errors, a 1% additive noise is
included [17]. Finally, a finite number of initial vectors y0 (which are coeffi-
cient vectors as (1.5)) are generated in the range of the parameters. The aim
is to emphasize that the algorithm for the numerical resolution of the inverse
problem will still converge using different initial guesses.

Consider a two-dimensional representation of thorax using an MRI im-
age [18]. The background conductivity is taken to be equal to σ0 = 0.67
S.m−1 and the unknown parameters in this case are the conductivity values
inside the lungs and the heart. We take the values [σ1, σ2] = [0.1, 0.63]S.m−1,
for the lungs’ and heart’s conductivity values, respectively, to generate the
synthetic boundary data. The conductivity distribution σ and the injected
current f for simulating the data are shown in Figure 1. A mesh structure
with 47 579 triangular elements, 24 052 nodes was considered for the reso-
lution of the forward problem and in order to avoid an inverse crime, the
inverse computations are done on a different mesh with 25 297 triangular el-
ements and 12 839 nodes. We compute the approximate solution using 2 300
different initial points inside the square [0.5, 8]× [1.0, 8]. We then get their
corresponding relative errors and plot them in Figure 2. We observe that the
error ranges from 0.0121 to 0.0132. This shows numerically the convergence
of the BFGS algorithm to the stationary point for each chosen initial couple
of conductivity values. Table 1 gives the true solution, the mean approximate
solution of the different approximate solutions, the mean relative error, the
standard deviation of the errors, and the mean cost. The BFGS algorithm is
consistent in converging to the approximate solution with minimal error and
cost.

Thorax
True solution Mean solution Mean error St. dev. error Mean cost

[1.0, 6.3] [0.9942, 6.3835] 0.0131 2.3496E-05 0.0333

Table 1: Thorax. True solution, mean of the 2 300 approximate solutions,
mean relative error, standard deviation of the errors, and mean cost.

We now present numerical results for the case when the domain is a unit
sphere with one spherical inclusion. The background conductivity is equal
to σ0 = 0.33 S.m−1 and the unknown parameter is the conductivity value
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Figure 1: Thorax. Left: the conductivity distribution used for the gener-
ation of synthetic data. The conductivity of the lungs and the heart are
respectively, σ1 =0.1S.m−1 and σ2 =0.63S.cm−1. Right: the current density
f injected on the boundary.

inside the perturbation. The true value is fixed to be σ1 = 1.0 S.m−1. The
conductivity distribution and the injected current are given in Figure 3. The
forward problem is solved using 177 032 tetrahedrons, 32 384 nodes, and 19
566 boundary triangles while the mesh for the inversion process uses 86 931
tetrahedrons, 16 356 nodes, and 11 186 boundary triangles. The approximate
solution is computed using 50 different initial values in the interval from 10−6

to 10. We report their corresponding relative errors in Figure 4 (right). The
range of the error is a small interval from 0.013076 to 0.013009. The values
presented in Table 2 suggest the consistency of the algorithm.

Sphere
True solution Mean solution Mean error St. dev. error Mean cost

1.0 1.0130 0.0130 2.6618E-07 0.1269

Table 2: Unit sphere. True solution, mean approximate solution of the 50
approximate solutions, mean relative error, standard deviation of the errors,
and mean cost.
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Figure 2: Thorax. Left: reconstructed conductivity distribution (mean of
the 2 300 approximate solutions). Right: the relative errors for the 2 300
approximate solutions.

Figure 3: Sphere. Left: the conductivity distribution used for the generation
of synthetic data. Right: the current density f injected on the boundary.

5 Conclusion and Perspectives

In this work, we studied the inverse conductivity problem in EIT where the
geometry of the inclusions are known. We have shown how the BFGS method
equipped with the Wolfe’s rule can effectively solve such an inverse coefficient
problem. We proved that the algorithm converges to a stationary point. We
also showed numerically that the method converges regardless of the choice
of the initial guess.

For future work, one may consider other models of the EIT, especially the
Complete Electrode Model [6, 21]. Furthermore, the proof of the convexity
of the cost function is still an open question.
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Figure 4: Unit sphere. Left: reconstructed conductivity distribution (mean
of the 50 approximate solutions). Right: the relative errors for the 50 ap-
proximate solutions.
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