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Abstract: Tungsten disulfide nanosheets were successfully prepared by one-step chemical vapor
deposition using tungsten oxide and thiourea in an inert gas environment. The size of the obtained
nanosheets was subsequently reduced down to below 20 nm in width and 150 nm in length using
high-energy ball milling, followed by 0.5 and 1 wt% graphene loading. The corresponding vibrational
and structural characterizations are consistent with the fabrication of a pure WS2 structure for
neat sampling and the presence of the graphene characteristic vibration modes in graphene@WS2

compounds. Additional morphological and crystal structures were examined and confirmed by high-
resolution electron microscopy. Subsequently, the investigations of the optical properties evidenced
the high optical absorption (98%) and lower band gap (1.75 eV) for the graphene@WS2 compared
to the other samples, with good band-edge alignment to water-splitting reaction. In addition, the
photoelectrochemical measurements revealed that the graphene@WS2 (1 wt%) exhibits an excellent
photocurrent density (95 µA/cm2 at 1.23 V bias) compared with RHE and higher applied bias
potential efficiency under standard simulated solar illumination AM1.5G. Precisely, graphene@WS2

(1 wt%) exhibits 3.3 times higher performance compared to pristine WS2 and higher charge transfer
ability, as measured by electrical impedance spectroscopy, suggesting its potential use as an efficient
photoanode for hydrogen evolution reaction.

Keywords: WS2 nanosheets; graphene@WS2; photochemical measurements; water splitting;
reversible hydrogen electrode (RHE); photoanode

1. Introduction

Hydrogen fuel is considered a promising source of clean energy that could partly
replace fossil fuels at the origin of greenhouse gas emissions. Today, there is a growing
universal tendency to focus research and development on green hydrogen production
by considering the general ecosystem to lower its costs and make it a more affordable
clean-energy source, especially through water splitting (WS) [1–5]. In this context, several
advanced materials were successfully examined and tested for enhancing the WS reaction,
such as noble metals combined with highly catalytic semiconductors, which have shown
an improved hydrogen evolution reaction (HER). However, their complex implementation
and high cost prohibited their adoption in realistic WS plants [6–9]. Therefore, cost-efficient
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and easy-to-produce alternative materials with improved WS performances have attracted
a great interest. To this end, WS2, a transition-metal dichalcogenide (TMD) semiconduc-
tor, constitutes a highly attractive option owing to its excellent band gap tunability, its
stability at high temperatures in corrosive media, and its easy and low-cost fabrication.
Recently, both computational and experimental studies carried out on WS2 have shown its
effective role in catalyzing HER with a relatively good yield [10–16]. WS2-like materials,
such as vertically aligned MoS2, have shown increasingly exposed edges as active sites
for HER electrocatalysis, while the basal plane is catalytically inert [17]. The increasing
interest in using TMDs as supporting electrodes is justified by their easy and low-cost
process [15,18–20]. To further improve WS2 performances, it is crucial to select an appropri-
ate catalyst-supporting material that can prevent high-surface-area WS2 nanostructures
from agglomerating, enhance electron mobility, and overcome the surface overpotential
to improve the overall HER performance. Graphene is the other two-dimensional carbon
material that would meet the aforementioned criteria. Due to its high ability in electronic ex-
citation and mobility, its mechanical properties, and its high stability, even at the nanoscale,
graphene has received rigorous scientific and industrial attention for a long time [21–26].
Indeed, graphene is reported to possess high specific surface area (~2600 m2/g), high elec-
tron mobility µe at room temperature (250,000 cm2/Vs), outstanding thermal conductivity
(5000 W m−1 K−1), and high electrical conductivity (5:6.4 × 106 S/m), as well as a very
low weight. These outstanding proprieties enable graphene to be considered an excellent
electrocatalyst support for WS2 nanostructures [21,22].

In this work, we first produced low-cost graphene@WS2 nanocomposite as electrodes
for improved WS reactions. Next, we conducted a systematic structural characterization
and assessment of the optical properties to evaluate the performance of the fabricated
samples in photocatalysis-driven WS.

2. Materials and Methods

The raw materials, namely tungsten oxide (WO3) and thiourea (CH4N2S) powders,
were acquired from Alfa Aesar™ (Thermo Fisher GmbH, Kandel, Germany). Graphene
nanoplatelets were purchased from Sigma Aldrich™ St. Louis, MO, USA. The indium tin
oxide (ITO) substrates used in this study are from Lumtec™ (Tapei, Taiwan), exhibiting
a resistance < 10 Ω/cm2. All used substrates were cleaned by immersion in detergent,
rinsed successively with acetone, ethanol, and deionized water, and dried under nitrogen
flow. WS2 nanosheets were prepared using four processing conditions consisting of various
WO3 and thiourea contents until achieving the complete suppression of the oxygen residue
and obtaining pure WS2 nanosheets. The initial materials’ contents and the corresponding
samples are summarized in the Table 1.

Table 1. The precursor masses used to prepare each WS2 sample.

Sample S1 S2 S3 S4

Thiourea (g) 4.5 5 5 7
WO3 (g) 0.23 0.23 0.22 0.2

In a typical processing route, WS2 nanosheets are prepared by mixing WO3 with
thiourea using a high-energy ball milling process E-Max Retsh™ (GmbH, Düsseldorf,
Germany) machine with tungsten carbide container and Zirconia oxide balls (Figure 1a).
After milling at 400 rpm for 30 min, the obtained mixture was collected into 50 mL alumina
crucible (Figure 1b). A tube furnace was used for the chemical vapor deposition (CVD)
reaction. The processing temperature was set to 850 ◦C under nitrogen gas flow of 500 sccm
at 20 ◦C/s heating rate. The mixture was introduced into the tube furnace at T = 400 ◦C,
and the CVD reaction took place for 1 h of dwell time at 850 ◦C, followed by air cooling.
The obtained WS2 exhibited its typical black color (Figure 1c).
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Figure 1. (a) Tungsten carbide container including sample mixture and ZrO2 balls; (b) ball-milled
mixture collected in alumina boat; (c) WS2 nanosheets obtained after CVD reaction.

The chemical reaction occurring during the CVD process is expressed as follows:

WO3 + 2(CH4N2S)→ ∆
N2
→ WS2 + 2(CH4N2) + O3,

For the graphene@WS2 nanocomposites, two graphene contents (0.5 wt% and 1 wt%)
were added to the optimized fabricated WS2 nanosheets (S4), followed by high-energy
ball milling at 400 rpm for 1 h. To investigate the different physical properties of the
resulting compounds, thin films were prepared on top of various substrates, such as glass,
quartz, and ITO. Figure 2 shows an illustration of the enhanced spray technique, where
two ultrasonic-solution dispersive devices were utilized to prevent WS2 nanosheets from
aggregating in the transferring tube. Ethanol was used as the host solution.
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Figure 2. Schematic diagram of the spray pyrolysis system used to prepare thin films out of
the graphene@WS2.

For all samples, the spraying procedure consisted of 0.1 g of a mixture made of WS2
with or without graphene, which was poured into a 40-megaliter ethanol container followed
by water-bath sonication, as shown in Figure 2. During the solution distribution through a
peristatic pump, a second sonication (ultrasound probe) was used to resuspend the mixture
towards the nozzle. Finally, an air pressure of 1.2 bar allowed spraying the dispersed
suspension though a nozzle over the desired substrate, which was kept at 45 ◦C with a hot
plate. The nozzle–substrate distance was maintained at 20 cm and the deposition rate was
set to 1 mL/min for a total deposition time of 30 min. The obtained film thickness was in
the range of 150 to 200 nm.

Subsequently, the structural characterization was carried out using a Bruker™ D4
Endeavor X-ray diffractometer with a 1.54 Å CuKα source, and the vibrational analyses
were performed with Raman spectroscopy Renishaw™ ( Wotton-under-Edge, UK) using a
green laser excitation source (532 nm). The microstructure analysis was performed with
a Zeiss™ (Oberkochen, Germany) Gemini 500 ultra-high resolution field emission elec-
tron microscope (FESEM) operating at low voltage (1 kV), using an In-lens detector. The
crystal structure and the morphology of the obtained nanocomposite were investigated
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by high-resolution transmission electron microscopy (HRTEM) Cs-corrected Titan from
Thermo Fisher Scientific™ (Waltham, MA, USA) operating at 300 kV. TEM samples were
prepared on holey carbon Cu grids using drop-casting method. The analysis of optical
properties was conducted on a UV-vis-near IR spectrometer V-700 JASCO™ (Easton, MD,
USA) and Fourier transform infrared spectroscopy (FTIR) from Thermo Fisher Scientific™
(Waltham, MA, USA). The electrical impedance spectroscopy (EIS) and the photoelectro-
chemical (PEC) measurements were performed using PalmSens4™ (Houten, Netherlands)
EIS electrochemical interface.

3. Results and Discussion
3.1. XRD Analysis

The XRD diagrams obtained for the four prepared WS2 samples are shown in Figure 3.
The XRD patterns were recorded in the range of 2-theta 10–80◦ and compared to the
observed reflection planes (002), (101), (102), (103), (110) and (203) with the standard
diffraction data file (JCPDF card no. 01-084-1398). These diffraction peaks were indexed
with the hexagonal WS2 phase of cell constants a = b = 3.15 Å, c = 12.32 Å.
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Figure 3. XRD diagrams for the four processed samples. Note the absence of WO3 peak in sample S4
indicating the high purity WS2 nanosheets.

The XRD diagrams of the samples S1, S2, and S3 exhibit an extra peak at (002) position
which corresponds to the WO3 structure. This indicates that the reaction of the WO3 with
the thiourea was not complete; hence, the resulting WS2 of these samples contained WO3
residue. It is worth noting that the strength of the WO3 residue peak was observed to
decrease with increasing thiourea content (from sample S1 to S3). By contrast, the WO3
peak was no longer visible at higher thiourea content as it disappeared for the sample S4.
This result suggests that the excess thiourea added to the mixture made it possible to obtain
the pure WS2 nanosheets.

3.2. Raman Spectroscopy

Figure 4 illustrates the vibrational modes of the four processed WS2 samples. All
the samples show common WS2 characteristic peaks, i.e., two strong peaks attributed to
E2g1 in-plane and A1g out-of-plane vibrational modes appearing at the 350 and 420 cm−1

positions, respectively. The E2g1 mode involves a displacement of W and S atoms, whereas
the A1g mode concerns only the S atoms.
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Figure 4. Raman spectra for the four prepared WS2 samples. Note the absence of WO3 vibration
modes at 286 cm−1, 666 cm−1, and 820 cm−1 in sample S4, which highlights the high purity of WS2.

Similar to the XRD results, the Raman spectra of the S1, S2, and S3 showed the presence
of WO3 vibration modes at the 293 cm−1, 675 cm−1, and 836 cm−1 positions, respectively,
while the S4 only exhibited the vibration modes E1

2g and A1g for WS2 occurring at 351 cm−1

and 415 cm−1, respectively. As mentioned above, these results confirm that the CVD
reaction was fully completed for the S4 and the oxygen was entirely consumed.

Furthermore, the Raman spectroscopy was carried out on graphene@WS2 samples,
and the typical Raman spectra are depicted in Figure 5. In addition to the presence of the
common WS2 peaks, graphene vibrational modes were also obtained for both samples at
1560–1575 cm−1 and at 2647–2700 cm−1 for the G-band and 2D-band, respectively. This
confirms the presence of the graphene in the processed graphene@WS2 samples.
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3.3. FTIR Spectroscopy

To further screen the presence of the graphene in the processed graphene@WS2
nanocomposite samples, FTIR absorption spectroscopy was conducted on pure WS2, WS2:
0.5 wt% Gr, and WS2: 1 wt% Gr, respectively, as shown in Figure 6.
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Figure 6. FTIR absorption spectra of WS2, WS2: 0.5 wt% Gr, and WS2: 1 wt% Gr. Note the presence
of the typical graphene absorption peak at 2780–3000 cm−1 for both graphene@WS2 samples.

As can be seen, the typical graphene absorption peak is present in the graphene@WS2
nanocomposites and the strength of this peak is more pronounced for the sample with the
higher graphene content.

3.4. Microstructure Analysis

A general view of the sprayed samples on the ITO substrate is given in Figure 7a.
As can be seen, the nanosheets are evenly distributed with relatively uniform thickness.
The insets shown in Figure 7b–d highlight the inner structures of the neat WS2, WS2:
0.5 wt% Gr, and WS2: 1 wt% Gr, respectively. Both the WS2 nanosheets and the graphene
platelets are visible. These samples were further investigated by HRTEM and used for the
photoelectrochemical measurements.

Figure 8 depicts the bright-field TEM image of the typical microstructure encountered
in WS2: 1 wt% Gr. The WS2 nanosheets (dark contrast) appeared to be encapsulated in
the graphene nanoplatelets (light contrast), as shown in Figure 8a. A higher-magnification
TEM image is given in Figure 8b; it shows a focus on entangled graphene@WS2 nanosheets.
The quality of the nanocomposite was further verified using HRTEM.

Figure 9a clearly shows the interconnections between the WS2 nanosheets and the
graphene nanoplatelets, delimited by the blue box highlighted in Figure 9b. Their corre-
sponding crystal structure conformed with the 2H-WS2 materials, as demonstrated by the
interplanar distances d(002) = 0.62 nm and d(100) = 0.27 nm, illustrated in the red box in
Figure 9c. The analysis of the interconnected WS2 and graphene regions given in Figure 9d
revealed the presence of both graphene and WS2, as demonstrated by the corresponding
fast Fourier transform (FFT) intensity image depicted in Figure 9e.
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(d) HRTEM image of interconnected graphene ws2 region and corresponding (e) FFT image.
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3.5. Optical Properties

The investigation of the optical properties was carried out using an optical spec-
trometer in the 350–800 nm range. Figure 10 shows the optical absorption of all the
considered samples.
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As can be seen, samples S1, S2, and S3 exhibited similar optical behavior, consisting of
a steady decrease in the optical absorption, which started at 93–97% and hit 80% for S1. This
suggests that the presence of WO3 impurities induces a decrease in the optical absorption
in the visible region. By contrast, the optimized sample S4 showed a relatively unchanged
optical absorption. In particular, it remained stable until it reached the excitons position
(around 620 nm), at which point it slightly increased. It is clear that the optimized WS2
sample S4 exhibited high broadband light absorption in the visible region, reaching more
than 98% compared to the other samples. Using the Tauc formula (αhυ)n = A(hϑ − Eg),
the band-gap energy was obtained, as depicted in Figure 11.

The obtained band-gap energies were 1.91 eV, 1.87 eV, 1.82 eV, and 1.8 eV for S1, S2,
S3, and S4, respectively. The S4 showed the lowest energy, which was in agreement with
the broadband optical absorption performances achieved.

To evaluate the effect of the graphene’s incorporation on the WS2 nanosheets, the
optical absorption was also measured for both graphene@WS2 samples, namely 0.5 wt% Gr
and 1 wt% Gr, and the results are shown in Figure 12.

The addition of WS2: 0.5 wt% Gr does not seem to enhance the optical absorp-
tion (Figure 10 vs. Figure 12a). Indeed, the optical absorption of this sample reaches
98% absorption but only in the 550–750 nm region in contrast to pristine WS2, which ex-
hibits a broadband absorption. Nevertheless, the WS2: 0.5 wt% Gr band gap energy appears
to slight decrease to 1.78 eV (Figure 12c). In contrast, the WS2: 1 wt% Gr sample does exhibit
an optical absorption exceeding 99% across the entire visible light spectrum. Moreover, its
band gap energy is further decreased to reach 1.75 eV. Considering these performances,
WS2 and WS2: 1 wt% Gr samples were selected to perform photochemical measurements.
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3.6. Photochemical Measurements

In this section, the photocatalytic performances of neat WS2 and WS2: 1 wt% Gr
samples are screened. Both samples were deposited on ITO substrate and immersed in
deionized water medium (pH = 6). Then, a linear sweep voltammetry (LSV) and chronoam-
perometry experiments were carried under standard solar simulator (energy~AM1.5G).
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To extract the potential of RHE, the following Nernst equation was used:

ERHE = E(Ag/AgCl) + (0.059× pH) + E0

where E0 ≈ 0.197 V at 25 ◦C and EAg/AgCl is the applied potential.
For both samples, the active surface is about 1 cm2 and the distance between the three

electrodes was kept at 5 mm. A Pt fishnet (0.5 cm outer diameter) was used as counter
electrode, while standard Ag/AgCl was used as the reference electrode. The LSV scan rate
was set to 0.1 V/s along 0–1.5 V range. Prior to LSV experiments, all measurements were
stabilized for 200 s under zero applied potential. The results are depicted in Figure 13.
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Figure 13. Photoelectrochemical measurements carried out on optimized WS2 S4 and graphene@WS2:
1 wt%: (a) generated current density as function of applied potential vs. RHE; (b) applied bias
potential efficiency as function of applied bias with respect to RHE. Chronoamperometry experiment
performed on WS2: 1 wt% Gr using solar simulator of AM1.5G: (c) cyclic and (d) steady state tests.

As can be seen in Figure 13a, a high-density current was obtained for the graphene@WS2,
which was observed to quickly increase with increasing RHE with respect to the applied
potential. Note that the highest current density obtained for the S4 WS2 at high applied
voltage was reached by the graphene@WS2 sample at very low applied voltage. Hence,
the addition of graphene dramatically enhanced the generated density current, six-folds,
which was beneficial to HER. To produce WS reactions, a theoretical potential value of
1.23 V versus RHE is required without considering the surface overpotential and the
voltage loss due to electron transport. As can be seen, the S4 WS2 nanosheets showed
the lowest photocurrent density, of 17 µA/cm2, at 1.23 V versus RHE over the entire
potential range. When the graphene was added, the photocurrent density increased
vigorously to 95 µA/cm2. The onset potentials of the S4 WS2 and WS2: 1 wt% Gr nanosheets
were 0.61 and 0.52 V, respectively. The cathodic shift in the onset potentials indicated an
enhanced charge transport; hence, a higher separation efficiency was obtained, even at low
ranges of applied potential.



Nanomaterials 2022, 12, 1914 11 of 14

Moreover, the applied bias potential efficiency (ABPE) was evaluated using the fol-
lowing equation:

ABPE =
J(1.23−Vbias)

Plight

where J is the current density, Vbias is the bias potential, and Plight is the light power.
The ABPE equation translates how much the cell device using the processed samples

as photoanodes is able to produce ionization current under an external applied voltage
at constant solar irradiation. Here, the light power was AM1.5G. The applied potentials
were converted into the corresponding potential versus RHE using the Nernst equation.
The ABPE findings given in Figure 13b indicate that the WS2/ITO photoanode exhibited
an ABPE of 0.79% at around 0.75 V versus RHE, while the WS2: 1 wt% Gr/ITO pho-
toanode reached 4.11% at the same voltage versus RHE. This increase in ABPE in the
graphhene@WS2 sample represented a fourfold-higher performance than that of the pris-
tine WS2 nanosheets. This underlines the beneficial effect of WS2 loaded with graphene on
photocatalytic WS reactions.

To examine the photoresponse of the photoanode WS2: 1 wt% Gr/ITO over time,
the transient photocurrent was recorded at 0 V of bias with the light on/off cycles at
AM1.5G/cm2, using a monitored mechanical shutter. The results depicted in Figure 13c
demonstrate a fair stability profile over more than 160 s and the fast response of the excited
photoanode over a duration of less than 10 s and a dwell time of 20 s. The stability of
the current density was screened by the steady-state measurements of the current density
generated (Figure 13d). The photocurrent stability of the WS2: 1 wt% Gr photoanode was
examined at a bias potential of 0 V under AM1.5G illumination. A fast decay occurred
for the first 100 s. Subsequently, a plateau was recorded, indicating that the photocur-
rent had reached a value of 0.4 nA/cm2 over the following 100 s. During this time, the
photogenerated electrons were transferred to the Pt counter electrode to boost the HER.
Consequently, the generated holes could actively participate in the oxidation process at
the photoanode site. In our case, the initiation of the WS experiment induced the accu-
mulation of the photogenerated holes at the photoanode site, since no bias potential was
applied. These holes could barely be scavenged by water molecules, and recombination
occurred, resulting in a decrease in the photocurrent with time. After about 100 s, the rate
of generation and consumption of the holes became constant and the photocurrent is sta-
ble [15]. Furthermore, we accounted for the efficiency of our photoelectrochemical process
for the neat WS2 NSs and WS2: 1 wt% Gr by evaluating the incident photon-to-current
efficiency (IPCE), which gives a good estimation of the number of produced electrons with
respect of the number of incident photons. The IPCE was determined by the following
expression: IPCE (%) = J × V/incident Power. The obtained IPCE was plotted against the
applied potential (V vs. RHE) and depicted in Figure 14.

Figure 14 shows an increase in IPCE for both samples as a function of the applied bias.
The IPCE reached 0.1% for the neat sample, whereas it approached more than 0.5% for the
WS2: 1 wt% Gr. Therefore, the incorporation of the graphene dramatically enhanced the
IPCE, which exhibited an exponential function profile. This indicates that the graphene
provided additional electrons circulating in the photochemical cell, which is further proof
of the beneficial effect of graphene in enhancing photochemical reactions.

To further examine the performance of the WS2: 1 wt% Gr photoanode, an EIS experi-
ment was carried out to evaluate its charge transfer capabilities. The EIS was conducted
on a three-electrode cell and deionized water electrolyte. A Pt fishnet and Ag/AgCl were
utilized as the counter and reference electrodes, respectively. The applied voltage was set to
1 V, with a frequency sweep in the range of 0.01 Hz–100 KHz under visible light irradiation
at 100 mW/cm2 of power density. The exposed surface area of all the samples was set
to 1 cm2. Nyquist plots of the optimized WS2 and WS2:1 wt% Gr and the corresponding
equivalent electrical circuit are shown in Figure 15.
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The comparison of the EIS measurements with the equivalent electrical circuit indi-
cated the higher resistance of the S4 WS2 nanosheets (45.8 KΩ) compared to the very low
resistance obtained for WS2: 1 wt% Gr (10 KΩ). This result clearly shows that the WS2
loaded with graphene promoted a fourfold better charge transfer compared to the neat
WS2 sample. This performance undoubtedly suggests that graphene@WS2 is more suitable
for use as a photoanode for HER.

In summary, in contrast to previously reported work [2,27], the materials used in the
present study were produced using a one-pot fabrication process yielding a nanocomposite
material made of WS2 NSs and graphene. Our findings demonstrate that processing
composite materials based on TMD materials combined with a semimetal achieves four-
to-five-times better current density at 1.23 V (V vs. RHE), which is necessary to drive
WS reactions and hydrogen-evolution reactions. This contrasts with the findings of a
previous study [23], in which the r-GO semiconductor was mixed with TMDs to produce
heterostructures exhibiting good performances at lower applied potentials (i.e., −0.3 V for
WS2/rGO and −0.4 V for neat WS2). These values remain low compared to the theoretical
potential of 1.23 V required to achieve WS and HER.
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4. Conclusions

Nanocomposite materials consisting of graphene and WS2 were produced in order to
be used as highly efficient photoanodes for hydrogen production via a water-splitting
reaction. The successful fabrication of the optimized WS2 nanosheets as well as the
graphene@WS2 with two graphene contents was confirmed by several combined tech-
niques, including XRD, Raman and FTIR spectroscopies, SEM, and HRTEM. Our main
findings indicate that the sample WS2 with 1 wt% graphene exhibited a broadband visible
light absorption reaching 98% and an appropriate band gap of 1.75 eV for water-splitting re-
actions. These outstanding optical properties led to an enhancement of the photogenerated
electrons and to a higher charge transfer, as recorded by the photochemical and electron
impedance spectroscopy measurements at ambient conditions. Furthermore, associating
graphene with WS2 at only 1 wt% content led to an increase in the current density from
17 to 95 µA/cm2 at 1.23 V versus RHE under AM1.5G illumination with ABPE, which was
fourfold higher than the pristine WS2 nanosheets. Hence, the graphene@WS2 could be
considered a desirable high-efficient photoanode for hydrogen-evolution reactions.
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