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Abstract: In this study, we prepared spheroid microstructures of monoclinic bismuth phosphate
BiPO4 by a facile solid-state reaction at 500 ◦C. The crystal structure was refined using the Rietveld
method, where the crystal cell was resolved using a monoclinic system (parameters a, b, c, β) with
space group P21/n. SEM images showed that the solid catalyst presented homogeneous morphologies.
These BiPO4 microparticles (BiP-500) have been used as photocatalysts to photodegrade, under UV
light irradiation, three cationic dyes (Rhodamine B, RhB; Methylene Blue, MB; and Toluidine Blue,
TB), three anionic dyes (Congo Red, CR; Orange G, OG; and Methyl Orange, MO) and mixtures
of RhB-MB, RhB-OG and MO-OG organic dyes. The photodegradation efficiency of these BiP-500
microparticles is found to be optimal in the case of RhB solutions, RhB-MB and RhB-OG binary
mixtures. The BiP-500 catalyst shows a high selectivity for the conversion of the mixture of dyes
into CO2 and H2O. Total organic carbon analysis of an anionic dye and a cationic dye (RhB, OG
and RhB-MB) confirms the mineralization of the pollutants in the presence of BiP-500 particles. The
photocatalytic efficiency of our BiP-500 photocatalyst has been confirmed, with a view to facilitate
applications in the field of the depollution of wastewater in the agricultural environment by the
degradation of parathion-methyl (PM) as a pollutant.

Keywords: BiPO4; solid-state reaction; photocatalysis; selectivity; parathion-methyl; anionic and
cationic dyes

1. Introduction

In recent works [1–9], innovative approaches allowing the photodegradation of organic
pollutants in aqueous medium using new photocatalysts were described. Indeed, various
advanced oxidation techniques for the degradation of gaseous or aqueous pollutants al-
ready exist. These techniques are based on the generation of highly reactive hydroxyl and
superoxide radicals allowing the destruction of a wide range of pollutants. In particular, het-
erogeneous photocatalysis involving photonic excitation of semiconductors appears to be a
simple, economical and practical method which can totally decompose organic pollutants
into H2O and CO2 [10,11]. In the process of photocatalysis, the choice of the photocatalyst
is important to ensure better efficiency and total degradation. In this sense, in recent years,
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several phosphate powders were used as effective photocatalysts in photocatalysis and elec-
trodegradation, such as BiPO4 [12–15], Cu2(OH)PO4 [16], Ag3PO4 [17], Na3Bi2(PO4)3 [18],
Na2MnPO4F [19], LiFePO4 [20], ZnS/Zn3(PO4)2, 4H2O [21], SrHPO4 [22,23], BaHPO4 [24]
and Zn3(PO4)2/ZnO [25].

Bismuth phosphate (BiPO4: BiP) is an exceptionally interesting new photocatalyst for
the degradation of organic dyes and pesticides, first discussed in 2010 by Pan et al. [12].
BiP is a material recognized as being a valuable analytical reagent used in several ap-
plications of catalysis, ion detection, as a material with photoluminescence and catalytic
properties [26,27], and can also be used for separate the radioactive elements.

According to the literature, BiP has three polymorphic varieties of crystals [28]. Specif-
ically, it can crystallize in hexagonal phase with space group P3121, and in two monoclinic
anhydrous varieties, with space group P21/n and space group P21/m.

Presently, we used the monoclinic phase of BiPO4 (BiP-500) with space group P21/n,
obtained from the solid-state method at 500 ◦C (see [15]), to photodegrade six anionic
and cationic dyes (Rhodamine B, Methylene Blue, Toluidine Blue, Congo Red, Orange G
and Methyl Orange), mixtures of dyes and parathion-methyl as a pesticide pollutant. The
affinity of the BiP-500 photocatalyst with the two types of dyes was studied and confirmed.

2. Experimental Section
2.1. Sample Preparation

Several methods can be used to synthesize phosphate-based materials in polycrys-
talline form, such as the low-temperature coprecipitation method in aqueous medium and
the high-temperature solid-state method commonly adopted for the elaboration of powder
materials. In principle, this high-temperature approach requires a series of grinding and
thermal treatments, associated with variations in temperatures and heating times.

The BiPO4 bismuth phosphate was synthesized [15] from bismuth oxide Bi2O3 (Fluka
Chemika > 99%) and ammonium hydrogen phosphate (NH4)H2PO4 (ProLabo ≥ 98.0%).
Suitable amounts of these starting precursors were ground in an agate mortar and then
thermally treated at 500 ◦C for 3 h.

2.2. Sample Characterization

The identification of the polycrystalline BiP-500 phase was carried out by X-ray diffrac-
tion (XRD). The XRD pattern of the polycrystalline sample was recorded at room tempera-
ture using an Empyrean Panalytical diffractometer operating at 45 kV/35 mA, using the
CuK(α1–α2) radiation (λ = 1.5406 and 1.5444 Å) of copper source with Ni filter, and working
in continuous mode with a step size of 0.003282◦. Scanning electron microscopy (SEM)
analysis was used to observe the morphology and the local composition of the crystalline
phase. The device used was a Supra 40 VP Column Gemini Zeiss operated at 20 KeV,
coupled with an Energy Dispersive X-ray Spectroscopy (EDXS) type analyzer, allowing
the determination of the local elemental compositions of our material. To determine the
gap energy of the as-synthesized BiPO4, the UV-Vis diffuse reflectance spectrum (DRS) was
plotted in the wavelength range from 200 nm to 400 nm, using a Shimadzu type UV-Vis
spectrophotometer, UV-2600i, at room temperature.

Fourier transform infrared (FTIR) spectroscopy allowed us to characterize the poly-
crystalline sample using an IRAffinity-1S SHIMADZU spectrometer, equipped with a Jasco
ATR PRO ONE module, in the wavenumber range from 400 to 4000 cm−1, with a resolution
of 4 cm−1. The samples were packaged as a dispersion in a pellet comprising 1 wt % of
BiPO4 mixed and ground with 99 wt % KBr.

2.3. Calculation Methods

Electronic structure calculations of BiPO4 (P21/n) were executed by the QUANTUM
ESPRESSO program [29], with exchange and correlation treated by generalized gradient
approximation (GGA) with the Perdew–Burke–Ernzerhof (PBE) function [30], using a norm-
conserving pseudo potential for the Bi atom and ultra-soft pseudo potentials for P and O
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atoms. The atomic configurations of the Bi, P and O atoms are Bi, [Xe]4f145d106s26p3; P,
[Ne]3s23p3; and O, [He]2s22p4. All calculations were performed with kinetic energy cutoffs
of 80 and 720 Ry for wave functions and charge density, respectively, and with a 4 × 4 × 4
as Monkhorst−Pack k-point [31]. The geometry of BiPO4 (Figure 1) was optimized by
the Broyden–Fletcher–Goldfarb–Shanno (BFGS) method on a P21/n monoclinic unit cell
(a = 6.7553(1) Å, b = 6.9419(1) Å, c = 6.4772(1) Å and β = 103.690(1)◦), using 14 µeV/atom
as the total energy convergence.
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2.4. Photocatalytic Experiments

The UV degradation reactor used in this work consisted of a cubic-shaped geometry
with 5 low-pressure mercury lamps (Osram, PURITEC HNS Germicidal Lamps G23), each
at a nominal power of 7 w and 1.8 w for radiated power 200 ≤ λ ≤ 280 nm (UV-C) with a
distance of 20 cm above the beaker, which contains the catalyst with the pollutant. The UV
intensity at a wavelength of 253.4 nm of each lamp is of the order of 0.140 w m−2. A cooling
system was applied to avoid the effect of temperature. The temperature of the solution
was maintained between 26 ◦C and 28 ◦C. The homogeneity of the solution was ensured
by a magnetic stirrer. The different photocatalytic activities under UV light irradiation of
BiP-500 particles in aqueous medium were evaluated by the analyses of photodegradation
as a function of irradiation time of three cationic dyes (Rhodamine B, Methylene Blue and
Toluidine Blue), three anionic dyes (Congo Red, Orange G and Methyl Orange), mixtures of
these dyes and parathion-methyl. A fixed mass of 100 mg of photocatalyst was suspended
in 100 mL of dye solution (with a fixed concentration of 5 mg L−1). Before irradiation,
the solution was stirred for 1 h inside the reactor in the dark to obtain the adsorption–
desorption equilibrium between the support and pollutant. During irradiation, 3 mL
solution was collected every 2 min of irradiation. UV-Vis JENWAY-6705 spectrometry was
used to determine the concentration of the pollutant as a function of irradiation time.

2.5. Point of Zero Charge Determination

The point of zero charge pHpzc is defined as the pH value for which the surface charge
is equal to zero, namely, the pH at which the charge due to the positive surface groups is
equal to that due to the negative ones. The pHpzc of the BiP-500 surface was determined
following the method described by Al-Harahsheh [32]: 50 mg catalyst was added into
six beakers containing 50 mL of 0.1 M potassium nitrate solution. The initial pH values
(pHi) of these solutions were adjusted to 2, 4.01, 6.25, 8.21, 10.03 and 12.02 by adding a few
drops of either 0.1 M sodium hydroxide (NaOH) or 0.1 M nitric acid (HNO3). The solution
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was equilibrated for 48 h. The suspension was then filtered, and the final pH values (pHf)
of these solutions were determined.

2.6. Total Organic Carbon Analysis

The mineralization of cationic and anionic dyes and their intermediates during the
photocatalytic reaction was evaluated by measuring the total organic carbon (TOC) present
in aqueous solution. The analysis was performed with a Shimadzu TOC-5000-A system
equipped with a non-dispersive infrared detector and an ASI-5000-A auto-sampler. Potas-
sium hydrogen phthalate solutions with known carbon concentrations were used to draw
the calibration line. The temperature of the solution was maintained at 25 ± 4 ◦C.

3. Characterizations of the BiPO4 Photocatalyst
3.1. Structural Studies

The identification of the as-synthesized BiP-500 polycrystalline phase was carried out
by X-ray diffraction (see Figure 2a), using the JCPDS file (No. 01-080-0209). To characterize
the obtained phase and clearly show the absence of any residual other phase in the powder,
Rietveld analysis was performed using FullProf software [33] and introducing the initial
atom coordinates obtained from literature data [34]. The standard deviations were multi-
plied by the Berar factor to correct the local correlations according to J. F. Berar et al. [35].
A very good agreement between observed and calculated XRD profiles was obtained
(Figure 2b). Table 1 shows the main results. The calculated cell parameters are in good
agreement with literature results:

a(
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Figure 2. (a) XRD pattern of monoclinic BiPO4 (space group P21/n). (b) Results of Rietveld refinement
calculations for the monoclinic BiP-500 compound.

Table 1. X-ray diffraction results at 25 ◦C: Rietveld structure refinement of the BiPO4 phase thermally
treated at 500 ◦C.

Cell Parameters (10−10 m)
Volume (10−30 m)

Standard Deviations
in Parentheses: ( )

Lattice System,
Space Group

Reference
JCPDS 80-0209

a = 6.7553(1)

Monoclinic
P21/n

a = 6.7626(1)
b = 6.9419(1) b = 6.9516(1)
c = 6.4772(1) c = 6.4822(8)
β = 103.690(1) β = 103.736(1)
V = 295.115(8) V = 296.018(8)

RB = 100. {∑|Ik
obs − Iki

calc|/∑|Ik
obs|} =3.5%

RF = 100. {∑|Fk
obs − Fki

calc|/∑|Fk
obs|} =2.9%

Rp = 100. {∑|yi
obs − yi

calc|/∑|yi
obs|} =5.5%

Rwp = 100. {|∑ wi|yi
obs − yi

calc|2/∑ wi|yi
obs|2]1/2} =7.7%

Rexp = 100. {[(N − P + C)/∑ wi|yi
obs|2]1/2} =6.2%

Where N, P and C are the number of observations, parameters and constraints, respectively.
Atom (Wyckoff) x y z Biso (Å2) (*)

Bi 0.2855(3) 0.1453(3) 0.0864(3) 0.56(5)
P 0.296(2) 0.161(2) 0.615(2) 0.84(27)

O1 0.263(3) −0.002(2) 0.438(3) 0.33(67)
O2 0.377(3) 0.344(4) 0.515(3) 1.24(65)
O3 0.458(3) 0.105(3) 0.815(3) 1.13(68)
O4 0.115(3) 0.198(3) 0.709(3) 1.37(72)

(*) Note: Isotropic Debye–Waller thermal factor: B = (8π2/3). <R2> with R associated with vibration amplitudes
of atoms.

The calculated full width at half maximum (FWHM) of Bragg peaks confirmed the high
level of crystallization of this as-prepared BiP-500 sample (this can be easily evidenced from
the observation of the separation of Kα1–Kα2 doublets in Bragg peal profiles). Figure 2b
shows that no additional phase is observed.
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3.2. Scanning Electron Microscopy

Scanning electron microscopy images associated with local chemical EDX analyses
are shown in Figure 3a–c. A spheroid morphology is observed and the linear dimensions
D of these BiP-500 particles range between 200 and 300 nm (<D> = 250 (±50) nm). This
confirms the high level of crystallization observed in our XRD analyses (see Section 3.1).
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Figure 3. SEM images and EDX spectrum of BiPO4 treated at 500 ◦C.

The EDX analysis of the red zone in Figure 3d is given in Figure 3e—the presence of the
three elements Bi, P and O is confirmed, with an atomic ratio of Bi/P (49.5/50.5) close to 1.

3.3. FT-IR Spectroscopy Analyses

The FTIR spectrum of the as-synthesized BiP-500 sample (Figure 4) is composed of
different bands. The [PO4] group is characterized by two types of vibration modes in
the range 450–650 cm−1 and 900–1100 cm−1 [34,36–39]. Based on previous studies on
phosphate, the 1072, 1001 and 954 cm−1 observed bands can be assigned to the asymmetric
stretching vibration ν3 of the P–O bonds, and the 925 cm−1 observed band can be assigned
to the corresponding ν1 symmetric vibration. The bending vibration modes of O–P–O
bonds are observed around 615, 557, 549 and 526 cm−1.
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3.4. UV-Vis Diffuse Reflectance Spectroscopy

Diffuse reflectance surface (DRS) analysis was performed to investigate the opti-
cal absorption properties of as-synthesized BiP-500 phase. As shown in Figure 5, BiP-
500 has a broad band gap with excellent optical absorption in the range of 260 nm to
350 nm. Therefore, BiP-500 can only be excited by UV irradiations with wavelengths
lower than 260 nm. The band gap energy (Eg) was calculated according to Tauc’s formula
(α·hν)1/γ = B(hν − Eg) [40], where α is the absorption coefficient, h is the Planck constant,
ν is the photon’s frequency and γ is the factor depending on the type of band gap of
the semiconductor—it can be equal to 1/2 or 2 for direct or indirect band gaps, respec-
tively. Based on the literature, the monoclinic BiPO4 has an indirect transition band gap
(γ = 2) [41]. Hence, the value Eg = 4.38 eV was finally obtained from the plot of (α·hν)1/2

vs. hν (Figure 5). This energy value agrees with that of other works [32] on the monoclinic
phase (P21/n, noted nMBIP).
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Figure 5. UV-Vis diffuse reflectance of BiP-500 with inset of the band gap energy obtained by Tauc’s
plot (indirect band gap).

3.5. Density Functional Theory Calculations Results

To deeply investigate the photocatalytic degradation mechanism, band gap, total
density of states (TDOS) and partial density of states (PDOS) were implemented on the
optimized bulk structure of BiPO4 (space group P21/n). As presented in Figure 6, BiPO4 is
an n-type semiconductor with an indirect band gap, with the conduction band minimum
(CBM) and valence band maximum (VBM) located at the k-points of D and Г, respectively.
It has a wide band gap of 4.45 eV along the high symmetry directions. This energy value
is estimated to be 0.07 eV or 1.6% compared to the experimental one, Eg 4.38; however, it
is in good agreement with other theoretical band gaps [42]. TDOS and PDOS are shown
in Figure 7a,b, revealing the greatest intensity in the curves, which could be interpreted
by the greater generation of the electrons at the surface of BiPO4, consequently producing
more reactive oxidizing species during the photocatalytic reactions. Based on the PDOS in
the −8 to 12 eV region, it is possible to identify the states contributing to the photocatalytic
activities. The valence band maximum of BiPO4 (VBM) is mainly composed of O (2p), and
some contribution from Bi (6s) and Bi (6p) states. The other conduction band minimum
(CBM) is composed of Bi (6p) (Figure 7b).
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4. Evaluation of the Photocatalytic Activity of BiP-500
4.1. Photolysis and Adsorption Test of BiP-500

In order to show the efficiency of our BiP-500 photocatalyst, it is essential to charac-
terize the direct adsorption of the pollutant in the absence of UV-Vis light. The photolysis
test allows the determination of the photocatalytic degradation contribution under our
operating conditions. In this sense, we carried out a preliminary study to verify the part of
adsorption and photolysis of pollutants (case of RhB).

Figure 8a shows the absorption spectra of rhodamine (B) in the presence of BiP-500. It
is noted that the decrease in intensity of the maximum absorption band of RhB does not
exceed 5.1% after 5 h of contact, which corresponds to a very weak adsorption of RhB by
the photocatalyst BiP-500.
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Figure 8. (a) Absorption spectrum of RhB in the presence of BiP particles and in the absence of UV
irradiation; (b) photocatalytic degradation of RhB dye under UV light irradiation in the absence of
the catalyst.

On the other hand, the distribution of the particles presented in Figure 9 and the areal
parameters illustrated in Table 2 show that BiP-500 is characterized by a specific surface of
the order of 3.52 m2/g, in good agreement with the measurements found in the literature.
This is well correlated with the very low adsorption capacity of this material in the presence
of the organic pollutant and in the absence of UV-Vis irradiation.
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Table 2. Areal parameters of the BiP-500 catalyst.

Areal Parameters of the BiP-500 Catalyst

Mass of photocatalyst (in mg) 100
Crystallite size D in nm 250

Exposed surface Sexp (m2) 0.35
SSA (m2/g) 3.52
-Specific surface areas of crystallites in the form of a sphere:

Exposed surface: Sexp = (6/D)(m/µ); specific surface area: SSA = (6/Dµ); m = total mass of
photocatalyst; µ = theoretical density of the material from crystallographic data.

The direct photolysis test (in the absence of the photocatalyst) was carried out on a
solution (RhB) with an initial concentration of 5 mg L−1 under UV-Vis irradiation.

Figure 8b shows that in the absence of the BiP-500 photocatalyst, only a degradation
of 2 (±1)% of the RhB is obtained after 12 min of irradiation. These results agree with the
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results in the literature on the degradation of rhodamine B by direct photolysis and with
UV-Vis irradiation at λ = 254 nm.

Given these results, it can be concluded that the process responsible for the degradation
of the organic pollutants in the presence of the photocatalyst BiP-500 will be, essentially,
the photocatalytic photodegradation, and not the adsorption and direct photolysis.

4.2. Photodegradation of Various Organic Dyes

The photocatalytic performances of the BiP-500 particles were evaluated by determin-
ing the photodegradation as a function of the irradiation time of different organic dyes
(cationic and anionic) in an aqueous solution, under UV light irradiation.

The aqueous solutions of the organic dyes (5 ppm) of RhB, MB, TB, MO, CR and OG,
with a concentration of 5 mg L−1 (5 ppm), were prepared by dissolving the analytical-grade
dye in distilled water. In each dye solution (5 ppm), particles of BiP-500 were dispersed
with a fixed concentration of 1.0 g L−1, at room temperature.

Before any irradiation, each solution was stirred magnetically for one hour in the dark
to establish the adsorption–desorption equilibrium. Under irradiation and in the absence
of BiP-500 photocatalysts, very weak degradation of the various dyes occurred, indicating
a high stability of these molecules.

The photodegradation process was analyzed by measuring the intensity of the different
absorption bands at well-determined wavelengths: 554, 663, 630, 450, 498 and 481 nm
for Rhodamine B (RhB), Methylene Blue, Toluidine Blue, Methyl Orange, Congo Red and
Orange G, respectively. Each absorption band intensity was assumed to be proportional to
the concentration of the pollutant.

The mixed suspensions (pollutant + BiP-500) were irradiated with 5 × 7 W UV-Vis
lamps (λ = 254.7 nm). Every 2 min, 3 mL aliquot was taken out; the suspension was
removed by centrifugation before determining the concentration of residual dye by UV-Vis
spectrophotometry.

The efficiency of photodegradation was determined via the Ct/C0 ratios (Equation (1)),
where Ct and C0 are the concentrations of BiP-500 particles at times t and t = 0. The nature
of kinetics was analyzed through the relation:

ln(Ct/C0) = −kobs t (1)

In this relation, the apparent kinetics constant kobs would characterize a behavior
corresponding to a first-order kinetics rate law (Langmuir–Hinshelwood model).

Figure 10 shows that the various intensities of UV-Vis absorption spectra of the solu-
tions of dyes decrease as a function of irradiation time. This indicates that the decreasing
concentrations of dyes Ct (RhB, MB, TB, CR, OG and MO) are directly due to photocat-
alytic degradation.

Figure 11a gathers the six Ct/C0 curves obtained from the various UV-Vis absorption
spectra. The results show that the photocatalytic activities of the cationic dyes RhB, MB
and TB are higher than those of the anionic dyes MO, RC and OG.

Figure 11b represents the variations in ln (C0/Ct) as a function of the irradiation time
(t). A linear correlation between ln (C0/Ct) and t can be clearly observed for all pollutants.
The various rate constants kobs for the photodegradation of RhB, MB, TB, CR, OG and MO
dyes are 0.289 (±0.003), 0.179 (±0.009), 0.148 (±0.005, 0.122 (±0.005), 0.111 (±0.0004) and
0.063 (±0.005) min−1, respectively.
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This result indicates that the photocatalytic efficiency of the BiP-500 particles appears
the highest in the case of the photodegradation of the RhB dye (Figure 11c). It is also noted
that for the photodegradation of this RhB dye, the photocatalytic activity of the BiP-500
phase is greater than that of the BiP-400 and BiP-600 phases in our previous work [14] (these
phases were synthesized by the coprecipitation method followed by thermal decomposition
at 400 ◦C and 600 ◦C, respectively).
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Figure 11. (a) Variation in Ct/C0 ratio as a function of time for the different pollutants (RhB, MB, TB,
GR, OG, OM); (b) pseudo-first-order kinetics of the photodegradation mechanism for all pollutants;
(c) evolution of the associated apparent rate constant kobs as a function of pollutants; (d) efficiency of
degradation after irradiation time of 12 min for the degradation of different pollutants.

After 12 min of irradiation under UV, the elimination rates for the RhB, MB, TB, CR,
OG and MO dyes are 96.7%, 87.8, 84%, 77%, 73% and 51%, respectively (Figure 11d).
Figure 11d shows that the least degraded OM dye, however, reaches a degradation rate of
50% in the presence of this BiP-500 photocatalyst.

To better understand the high photodegradation efficiency observed in the case of
cationic dyes compared to anionic dyes, we determined the pH at the point of zero charge,
pHpzc (Figure 12). The effect of the pH of solution on photodegradation is related to the
acid–base property of the semiconductor surface (Bi-O-) that can be characterized by the
determination of the point of zero charge [17,43–45]. Figure 10 shows the graph reporting
the difference (pHf–pHi) as a function of pHi. The pHpzc of BiP-500 corresponds to the
specific aqueous solution for which pHf = pHi; this pHzpc is of the order of 4.01. At
pHi values either below or above pHzpc, the BiP-500 surface charge is either positive or
negative, respectively. In other words, the surfaces of BiP-500 particles can be negatively or
positively charged depending on the pH of the environment (Equations (2) and (3)). The
corresponding reactions can be expected as follows:

pH < pHpzc BiPO4: Bi-OH + H+ → BiOH2
+ (2)

pH > pHpzc BiPO4: Bi-OH + OH− → BiO− + H2O (3)
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4.3. Photodegradation of Dyes Mixtures

The different photocatalytic performances of the BiP-500 particles were tested in the
cases of photodegradation of mixtures of cationic–cationic (RhB and MB), cationic–anionic
(RhB and OG) and anionic–anionic (MO and OG) dyes. The photodegradation experiments
of the solutions of each mixture under UV-Vis irradiation were carried out for 14 min with
samples taken every 2 min. In Figure 13a–c, all binary solutions ((a) RhB-BM, (b) RhB-OG
and (c) MO-OG) show a decrease in absorption bands as a function of time in the presence of
BiP-500. The complete disappearance of the absorption bands was obtained after 14 min of
irradiation for the three mixtures. This new experimental approach involving dye mixtures
could be of value in the depollution of real wastewater, using a non-toxic photocatalyst.

Table 3 shows the photocatalytic efficiency of BiPO4-based catalysts reported in the
literature using several synthesis methods, examined pollutants and irradiation sources.
It is clear from the table that the activity of BiP-500 used in this work has been improved
towards the degradation of various types and systems of organic pollutants compared to
other catalysts based on BiPO4. The high activity of BiPO4 is due to the high separation of
the electron–hole pair during the photocatalytic illumination.

Table 3. Comparison of the photocatalytic activity of the BiP-500 catalyst with other reported
photocatalysts.

Catalyst Pollutant
Examined Synthesis Method Operating Conditions

(C0; Light Source)
Degradation Efficiency;

Time Ref.

BiPO4 RhB Hydrothermal 5 ppm, UV 254 nm kapp = 0.1225 min−1, 30 min [46]
BiPO4 RhB Solvothermal 5 ppm, UV 254 nm kapp = 0.53 h−1, 180 min [47]
BiPO4 MO Microwave 10 ppm, 500 W Xe lamp kapp =0.035 min−1 [48]
BiPO4 MB Coprecipitation 15 ppm, UV 254 nm kapp = 0.1089 min−1 [49]
BiPO4 MB Flux 5 ppm, UV 254 nm kapp = 0.193 min−1 [50]
BiPO4 RhB Coprecipitation 5 ppm, UV 254 nm 98%, 160 min [14]

BiP-500 RhB Solid-state 5 ppm, UV 254 nm 96.7%, 12 min This study
BiP-500 MB – – 87.8%, 12 min This study
BiP-500 TB – – 84%, 12 min This study
BiP-500 CR – – 77%, 12 min This study
BiP-500 OG – – 73%, 12 min This study
BiP-500 MO – – 51%, 12 min This study
BiP-500 PM Solid-state 10 ppm, UV 254 nm 93%, 30 min This study
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4.4. Mineralization of Pollutants RhB, OG and Mixture Dyes (RhB-MB)

The determination of total organic carbon (TOC) removal can allow us to determine
the level of mineralization of pollutants after photocatalysis and constitutes an additional
approach of the photocatalytic performance of photocatalysts. Figure 14 shows the TOC
removal efficiency using the BiP-500 photocatalyst towards the photodegradation of RhB,
OG and mixture dyes between two dyes (RhB-MB). After 12 min of irradiation, the removal
of TOC from the photocatalytic reaction of RhB and OG reached about 82% and 63%,
respectively. In other words, this photocatalyst can transform RhB and OG molecules, with
relatively high efficiency, into CO2 and H2O, which can be crucial for water treatment.
For the removal of dye mixtures, for example, in the case of RhB-MB, the analysis of total
organic carbon shows catalytic degradation with an efficiency of 79.5% after 14 min of
UV-Vis irradiation.
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4.5. Role of Active Species

As we mentioned earlier, the degradation of Rhodamine B, for example, is complete
after 12 min under UV-Vis irradiation at an initial concentration of 5 mg L−1. To determine
the photocatalytic mechanism through the identification of the main oxidative species, such
as hydroxyl radical (OH•), hole (h+) and superoxide radical (O2

•−), active species-trapping
experiments were carried out. Isopropanol alcohol (IPA), disodium ethylenediaminete-
traacetic acid (EDTA 2Na) and L-ascorbic acid were used as scavengers of (OH•) species,
holes (h+) and (O2

•−) species, respectively.
Figure 15a shows the effect of these scavengers on the photocatalytic efficiency of our

BiP particles. We note that the photocatalytic degradation efficiency of RhB is 96.6% without
scavengers. When IPA, EDTA-2Na and L-ascorbic acid are added, this efficiency decreases
to 72.7%, 31.6%, and 12.8%, respectively. Thus, it could be inferred that h+ holes and
O2
•− ions should be the dominant active species in the photodegradation of Rhodamine B,

while hydroxyl radicals (OH•) should play a minor role in the photocatalytic illumination.
These results confirm what we found in our previous article [15]. From these results, the
proposition of the photocatalytic degradation mechanism is given in Figure 15b.
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results, the proposition of the photocatalytic degradation mechanism is given in Figure 
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Figure 15. (a) Photocatalytic degradation of RhB using BiPO4 in the presence of a series of scavengers.
Irradiation time: 12 min, RhB = 5 mg L−1 and (scavenger) = 4 mmol L−1. (b) Schematic diagram
representing proposed degradation mechanism of BiP-500 ◦C.

4.6. Photodegradation of Parathion-Methyl (PM)

To confirm the performance of our BiP-500 photocatalyst, we studied its efficiency in
the degradation of the pesticide parathion-methyl. The physicochemical properties [51] of
parathion-methyl (PM) are presented in Table 4.

Table 4. Physicochemical properties of parathion-methyl [51].

Brute Formula C8H10NO5PS

Chemical structure
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Chemical name O,O-Dimethyl O-(p-nitrophenyl) phosphorothioate
Molecular mass 263.8 g/mol
Physical state Crystallized solid

Water solubility 55 mg/L
Melting point 35–36 ◦C

λmax 278 nm

The UV-Vis absorbance measurements of parathion-methyl in the presence of the
BiP-500 photocatalyst reveal that the intensity of the maximum absorption band, located at
278 nm, decreases as a function of time, and that its centroid shifts to longer wavelengths.
Figure 16 shows the absorbance spectra of a PM solution, with a concentration of 10 ppm,
in the presence of 100 mg of BiP-500 photocatalyst (BiP-500) = 1.0 g L−1.
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Figure 16. Evolution of the UV-Vis absorbance spectrum of parathion-methyl (PM = 10 mg L−1).

We clearly observe a pronounced photodegradation of the PM until its total disap-
pearance after 30 min of irradiation. We also observe a shift in the absorption maximum
of the band from 278 nm to 283 nm associated with a modification of the absorption band
profile. These modifications mainly occur during the first 5 min of irradiation under UV-Vis
(254.3 nm) and reflect the appearance of degradation products.

5. Conclusions

In this study, bismuth phosphate BiPO4 was obtained by a facile solid-state reac-
tion at 500 ◦C. X-ray diffraction associated with Rietveld method calculations showed
the presence of the unique polymorph BiPO4 with space group P21/n. The polycrys-
talline material was characterized by a high degree of crystallization. The optical studies
performed using DRS revealed an indirect band gap of 4.38 eV, which is in agreement
with the value obtained using DFT. The BiP-500 photocatalyst was used to photode-
grade six solutions of pollutants with variable performances decreasing from RhB to
MO (RhB > MB > TB > CR > OG > MO). The point of zero charge study confirmed the
affinity of the BiP-500 photocatalyst to degrade cationic dyes compared to anionic dyes.
The photodegradation of mixtures of dyes and parathion-methyl as a toxic water pollutant
in the agricultural sector completed the study, showing the capacity of BiP-500 particles to
be used as photocatalysts for wastewater treatment.
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