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Image perception plays a fundamental role in the tomography-based approaches for microstructure characterization and has a
deep impact on all subsequent stages of image processing, such as segmentation and 3D analysis. The enhancement of image
perception, however, frequently involves observer-dependence, which reflects user-to-user dispersion and uncertainties in the
calculated parameters. This work presents an objective quantitative method, which uses convolutional neural networks (CNN) for
the quality assessment of the X-ray tomographic images. With only dozens of annotations, our method allows to evaluate directly
and precisely the quality of tomographic images. Different metrics were employed to evaluate the correlation between our
predicted scores and subjective human annotations. The evaluation results demonstrate that our method can be a direct tool to
guide the enhancement process in order to produce reliable segmentation results. The processing of the tomographic image can
thus evolve into a robust observer-independent procedure and advance towards the development of an efficient self-supervised

approach.
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INTRODUCTION

X-ray computed tomography (XCT) is considered a powerful
technique to study lithium-ion batteries (LIBs) since its nondes-
tructive 3D imaging across multiple length scales provides
quantitative and qualitative metrics for the characterization of
their complex microstructure'. The effects of microstructural
properties on the electrochemical performance of the battery
can therefore be investigated, allowing the optimization of the
electrode design. However, extracting reliable microstructural
properties from 3D tomographic images is not straightforward
and it usually follows a pre-processing step and a segmentation
process>3, The tomographic images contain many artifacts that
have an impact on the 3D reconstruction and on the image quality
as well, which affect the result of the analysis in evaluating the
area and phases. Besides, it also causes ambiguity when different
people process the same image. For instance, ring artifacts
resulting from different sensitivity in detection, and emphasized
after reconstruction, can be reduced using the flat-field correction
method but the residual effect usually remained*. Center of
rotation errors and cone beam errors affect the quality of the
tomographic reconstruction and induce the appearance of a
blurring effect in the image®. Several mechanisms can introduce
different types of noise into the X-ray image acquisition process,
such as statistical noise caused by the fluctuation of the raw x-ray
signal, structural noise created by variations in the detector
structure and in the differing response of elements, and scattering
noise of scattered X-ray photons inducing a spurious signal and
adding extra noise to the image®.

Hence, in X-ray computed tomography, image treatment is
required to reduce the uncertainty in the 3D studied object. Image
pre-processing is usually applied to improve the image quality,
such as denoise, deblur and ring artifact removal, which involves
the image feature enhancement (histogram equalization,

normalization, brightness, and contrast adjustment) and distortion
reduction. Segmentation is supposed to distribute pixels among
certain groups based on pixel values, with the aim of assigning
various regions of the image to different phases of the material.

In addition to the analysis, the pre-processing and the
segmentation procedure are both non-trivial issues that have a
significant impact on any subsequent image analyzes, such as the
calculation of porosity, tortuosity, and the surface area of a specific
phase. Due to the lack of a non-distorted reference image, the
quality of the pre-processing is typically assessed by subjective
visual inspection. However, image pre-processing has a profound
impact on following segmentation performance. Schluter et al.”
presented that, with suitable image enhancement prior to
segmentation, segmentation algorithms became more robust
and were less prone to operator bias. He analyzed the
segmentation accuracy of the images before and after pre-
processing and pointed out that the distortion leads to poor
segmentation. In addition, the absence of ground truth makes it
difficult to assess the quality of the segmentation. Pietsch et al®
proved that subjective judgment was not a reliable standard for
the selection of binarization criteria in the segmentation
procedure, leading to uncertainties in the results. Therefore, a
numerical metric to assess the quality of images is needed to
guide the pre-processing step (setting parameters, selecting
filters) so that the next segmentation step can result in further
highly reliable quantitative analysis.

Image quality assessment (IQA) aims to predict the perceptual
quality of a distorted image. However, the human vision system
(HVS)® needs a reference to quantify the discrepancy by
comparing the distorted image either directly with the original
undistorted image or implicitly with a hallucinated scene in
mind'®. It is time-consuming and labor-intensive to assess image
quality from a crowd of people. Moreover, due to different
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Fig. 1 Pipeline of our TIQA method. It is composed of two modules: data generation and score prediction. In score prediction, (1) is the self-
supervised learning for ranking the images and (2) is the fine tune procedure for regressing the ranks to a score in a fixed range.

cultures and living environments, people sometimes give different
views on the same picture. Especially for tomographic images,
inexperienced and laymen would like to give totally different
scores. Therefore, it is complicated to objectively assess the quality
of tomographic images.

To avoid the distinction caused by cognitive bias and to provide
robust professional estimation, some machine-assisted QA
methods have been proposed in recent decades. They are
generally divided into three categories: (a) Full-reference image
quality assessment (FR-IQA), which evaluates the distorted image
by comparing it to the reference image and measuring the
difference’'. (b) Reduced-reference image quality assessment
(RR-IQA) which measures image quality with part of the reference
image'>'. (c) No-reference image quality assessment (NR-IQA),
which requires little information about reference images and
estimates image quality directly from distorted images'>®,

The conventional metrics used for FR-IQA and RR-IQA are peak
signal-to-noise ratio (PSNR) and root mean square error (RMSE)
which compare image intensity of distorted images to the
reference images without considering HVS. By considering the
luminance, contrast, and structural information, SSIM'" used
average pooling to calculate a score from a similarity map. Based
on SSIM, MS-SSIM'” compared the distorted image to the
reference image at multiple scales. F-SIM'® leveraged phase
congruency and gradient magnitude feature to derive a quality
score, while GMSD'® only considered the image gradient as the
criterial features. Besides the gradient, MDSI?° utilized chromaticity
similarity and deviation pooling to imitate the HVS and achieved
better results.

Although the above methods can serve as an indicator,
reference images are not always available in real-world situations.
Hence, NR-IQA methods have recently attracted extensive
attention, which is also challenging due to the lack of reference
information. Early NR-IQA methods mainly focused on specific
types of distortions, such as noise?', contrast change?®?, blur?3, and
ring artifact?*?°, Since the types of distortion of the images are
unknown in real scenarios, these methods are impractical
compared to the general methods?®*?” which require no prior
information about the distortion-types.

With the development of deep neural networks (DNNs), the
deep learning methods have been exploited for NR-IQA?82°
without any prerequisites and have demonstrated superior
prediction performance. Le et al.3° firstly proposed a shallow
CNN to estimate the quality score for natural images. Ke et al'
introduced a deep learning-based image quality index for blind
image quality assessment, which was more efficient and robust.
Instead of the multi-stage methods, Sebastian et al.32 presented
an end-to-end neural network to regress the quality score by joint
learning of local quality and local weights. Instead of considering
the whole image in the network, Simone et al.3® cropped the
image into patches, estimated the scores separately, and finally
merged them, which was more suitable for cases of insufficient
training data. However, the lack of training data was a crucial
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obstacle for the aforementioned methods. To overcome the
limitation of data, Xialei et al.>* implemented data augmentation
by generating artificial distorted images and then trained a
Siamese network (RanklQA) to regress the quality scores. Kwan-
Yee et al.'® combined the generative neural network to generate
the reference images and the convolutional neural network to
regress the quality score from the discrepancy. Hancheng et al.3®
developed a meta-learning® method to estimate the quality score
of images with new distortion, which addressed the generalization
problem of IQA.

Although many methods have been provided for IQA and
achieved excellent results, most of them focus on natural images
and require a huge number of annotated labels, which are not
practical for X-ray tomography images. For example, the FR-IQA
methods need a reference image for each estimation of a
distorted image, which implies a high demand for annotations.
The already developed NR-IQA methods require less data than the
FR-IQA method but are still relatively large (hundreds of
annotations) to avoid overfitting. Besides, the existing open-
source datasets®”~3° of battery electrodes tomographic images are
not for IQA task, ie., without various distortion-types and
corresponding scores. Therefore, a light NR-IQA method, which
requires less annotated data and is strong enough to transfer
among different X-ray tomography images, is urgently demanded.

The main contributions of this work are summarized as follows:

® A no-reference tomographic image quality assessment (TIQA)
method is proposed for tomographic images, which requires
only dozens of annotated images for training and achieves
outperformed results.

® A data generation method is developed by imitating the
human observers to automatically label the distorted images
for the purpose of addressing the insufficient data problem.
Benefit from data generation, our TIQA method requires only
one-fifth of the number of images compared to other NR-IQA
methods.

® The correlation between image quality score and segmenta-
tion results is studied to guide the pre-processing step.

The remainder of the paper is organized as follows: In section
“Results”, we show the results of our data generation method and
TIQA method. Moreover, the segmentation result and the link
between quality score and segmentation performance are
demonstrated in this section as well. In section “Discussion”, we
summarize the results and emphasize the features of our method.
We also propose several potential applications and future
directions of our method. In section “Methods”, we introduce
our dataset and the experiment details.

RESULTS
Data generation results

As shown in Fig. 1, the first step of our approach is to generate the
data required for the subsequent training process of the score
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prediction network, whose purpose is to address the problem of
insufficient data. The detailed workflow of the data generation
process is illustrated in Fig. 2.

Firstly, the original image is resized and cropped into a fixed
size, 224%224 pixels. Notably, to verify whether the resize
operation affects the image quality scores, we compare the
annotations on the images before and after this operation. The
comparison results (Fig. S1) confirm that the pre-processing
operations do not affect the image quality. Next, three types of
distortion (ring artifact, blur, noise) that are commonly presented
in X-ray tomographic images, are added to generate distorted
images. (More generated images can be found in Fig. S2). Finally,
the label projection step systematically produces the annotations
of distorted images by comparing the HVS features of the original
image and distorted image using different FR-IQA metrics (more
details are in the Methods section).

To validate our method for data generation, we consider two
criteria to quantify the correlation between generated results from
the label projection step and corresponding labels from the
survey, including Pearson’s linear correlation coefficient (PLCC)
and Spearman’s rank-ordered correlation coefficient (SROCC). As
presented in Fig. 3 and Fig. S3, for all types of distortions, the
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generated scores have a positive correlation with the annotations.
Especially for the images with noise or blur, the correlation is high.
As for the ring artifact, the results demonstrate that the existing
general FR-IQA metrics cannot well handle this type of distortion.

Score prediction results

In the procedure of image quality score prediction, as shown in
Fig. 1, the network was first trained to rank the images according
to their distortion levels. Then, based on the prior “ranking”
knowledge, it was fine-tuned to regress the order information to a
comprehensive quality score that represents the image quality in
the range of 1 (worst) to 5 (best). In this work, we take the
EfficientNet* as the feature extractor instead of VGG*' used in
RanklQA?® because it has less parameters (about 9 million
parameters compared to VGG, about 138 million trainable
parameters), which means easier to converge and less possibility
for overfitting.

For the validation of the model, we predict the quality score of
56 images and compared the results with human annotations, as
presented in Fig. 4(c—f). The results of images with different types
of distortions were evaluated separately, which allows to observe

npj Computational Materials (2022) 194



npj

K. Zhang et al.
(a) (c) Ring artifact (e) Noise
2.00 == SROCC 08 == SROCC
’ 08 == PLeC - PLCC
07
1.95 06
< 06
§ 05
2> 1.90 1
= 04 04
©
ES 03
aé’ 1857 02 02
£ o1
1.801 00 o
) BRISQUE RankIQA TIQA(ours) BRISQUE RankIQA TIQA(ours)
Blur Al types
L1751 (d) = SROCC (f) = SROCC
- PLCC 0.8 mam pLCC
08
07
06
(b)
0s
04 04
03
02 02
o1
00
BRISQUE RanklQA TIQA(ours) BRISQUE RankIQA TIQA(ours)
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respectively. The last figure (f) illustrates the results of different methods for all types of distortions.

the performance of the model towards different distortions. Taken
together, these results indicate that there is a correlation between
our predicted results and the human-labeled scores, which
demonstrates that our method is able to imitate the HVS for the
IQA. Interestingly, for blurred images, it performs excellently on
both the relative order and the absolute score.

We also apply our method to two X-ray tomographic image
volumes to observe the consistency of the results. As demon-
strated in Fig. 4a, b, we generate two image volumes with
different quality and each of them contains 594 slices with a
size of 720 x 720. The images with higher quality are generated
by enhancing the boundary through a segmentation algorithm.
In the box plot, we can see that the volume (purple) with high
quality achieved a higher score while the one (cyan) with lower
quality had a lower score. A more detailed comparison of
different pre-processing methods can be found in Fig. S4. The
results show that our method can be quantitatively compared
with different pre-processing methods, allowing the selection
of the most appropriate method. Moreover, from the variance
of these two boxes, we can conclude that our method has
stable performance because the difference among confident
scores is small (less than 0.05) compared to human distinction.
Besides selecting pre-processing methods, our method could
also help to adjust filter parameters with the guidance of quality
scores.

To demonstrate the advantage of our method, we compare it to
other outstanding NR-IQA methods through two quantitative
metrics (SROCC and PLCC) and the full table is shown in Table S5.
Here we represent two of them, BRISQUE?® and RanklQA3* in
Fig. 4f. Overall, it shows that our method excels in assessing the
quality of tomography images since it yields the highest
correlation score among these three methods. In terms of
different types of distortion, our method outperforms BRISQUE
for all three distortions. When compared with RankIQA, our
method achieves better results for images with ring artifact and
noise and on performance on the images with blur distortion.
Besides, to avoid the shortcomings of correlation-based metrics,
we adopt Krasula’s metric*? as well, and the results are shown in
Fig. S6. The three analysis results show that the TIQA method
achieves higher AUC than the others.

npj Computational Materials (2022) 194

Segmentation evaluation method

The TIQA method provides us with an efficient tool to select the
image with the best quality among pre-processing methods, and
the clue of how the distortion affects the segmentation accuracy
could suggest the pre-processing step. Therefore, extra experi-
ments were conducted to inspect the relation between image
quality and segmentation accuracy. We implemented a CNN
based on D-linkNet* to predict the semantic segmentation results
and compared them with TIQA results to explore the influence of
the distortions.

As presented in Fig. 5, a CNN network for segmentation is
trained on X-ray tomography images and annotated segmenta-
tion ground truth before making predictions. The uncertainty map
is generated by calculating the entropy** of the possibility of each
pixel belonging to different classes. It represents the uncertainty
when the network assigns a phase (p) to each pixel. High
uncertainty is represented as a red pixel, while a low certainty is
displayed as a white pixel. From the uncertainty map, we can see
that a higher uncertainty exists at the interphases while a low one
exists at the bulk, which proves that the network usually produces
fuzzy boundaries. The segmentation results are obtained by
binarizing the probability map. Here, only two classes are
considered, but the segmentation process can be extended to
multiple classes.

Relation between IQA results and segmentation accuracy

In addition to the uncertainty map, the F1 score, which is
calculated from the confusion matrix, is also considered to
quantify the segmentation accuracy. The correlation between
the TIQA score and the segmentation accuracy is investigated. We
select an original image and its corresponding images with
different types of distortions as the data for both IQA and
segmentation (see Fig. 6). From the results, we can clearly see that
the distortion affects the image quality and the segmentation
performance. With distortion, images have a lower quality score
than the F1 score, which means lower segmentation accuracy. The
uncertainty map clearly presents the influence of distortion on
final segmentation results. Compared to these three types of
distortion, the noise causes a large amount of incertitude points in
the uncertainty map, shown as the red points in Fig. 6. Although it
seems that the blur distortion causes little uncertainty, it leads to
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Fig. 5 Pipeline of the segmentation evaluation procedure. In the uncertainty map, the red area means high uncertainty while the white area
means low uncertainty. In loU map, the red, black, and green areas represent true positive, true negative, and false negative, respectively.
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Fig. 6 Results of differently distorted images evaluated by TIQA and segmentation. For the F1 score, it is in the range of 0 (the worst) and 1

(the best).

Table 1. Quantitative results of the correlation between predicted
quality score and segmentation accuracy.

metric
SROCC PLCC
distortion
Ring artifact | 0.925 | 0.887
Noise 0.829 | 0.877
Blur 0.928 | 0.952

These measurements are calculated between the F1 score and IQA score.

vague boundaries and misclassification as well as a huge
reduction in HVS-based image quality score.

Moreover, the quantitative evaluation results of the TIQA and
segmentation accuracy are shown in Table 1. From the SROCC and

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

PLCC, we can see that the quality scores predicted by our
approach are well correlated to the segmentation accuracy. The
TIQA scores share a similar trend with the F1 scores, especially for
the images with ring artifact and blur distortions.

To inspect the impact of distortion on classification results from
a pixel perspective, we calculate the correlation point pixel by
pixel between predicted segmentation and ground truth. As
shown in Fig. 7, we can observe that the colorful lines (with
distortion) have a positive correlation with the black line (without
distortion). Nevertheless, they may have different sensitivity to
specific types of distortion. For example, the correlation point line
of the segmentation with noise do not converge at the reference
line and the fluctuation indicates the serious impact of noise on
segmentation results. Additionally, the third figure in Fig. 7
illustrates that, with the increase in distortion level, the IQA score
decreases quickly, but the segmentation accuracy keeps stable,
which implies that the network can tell very little difference in
pixel values in the image and classify the pixels to different
categories based on the distinction. Due to the limitation of HVS,
people cannot distinguish the little variation of the pixel
intensities, as the results of the blurred images shown in Fig. 7.

npj Computational Materials (2022) 194

npj



K. Zhang et al.

1 T T T T T

L
Med High 7

Distorsion Level

2.56
2.63 |
2.55

223 A
2.39

0 200 100 600 800 1000 1200
Distance in X-ais, 7 / Voxels
1 T T T T

L
Med High 4

o
©
=
1)
2

Distorsion Level

e
%

o
et

256 -+

2.58
2.53

I
=

=
©w

1.70
1.28

o
o

Normalised two point correlation, S(r)/S(0)
(=1
B

o

L ) 1 ) !
0 200 400 600 800 1000 1200
Distance in X-axis, r / Voxels

Low Med High

Distorsion Level

2.56
2.46
210 4

1.27
1.26

L L L L L
0 200 400 600 800 1000 1200
Distance in X-axis, r / Voxels

Fig. 7 Point correlation between predicted segmentation and
ground truth for black phase. Figures a-c set out the correlation
results from images with the ring, noise, and blur. The color bar
shows the distortion at different levels, from little distortion to
severe distortion. The solid line means the point correlation in X
direction. The number labeled at the end of each line is the image
quality score.

In summary, through the image quality score produced by our
method, especially for images with blur and ring artifact, as
described in Table 1, we can infer the corresponding segmenta-
tion performance without implementation. It greatly reduces the
time of choosing an appropriate pre-processing algorithm to
improve the image quality and achieve better segmentation
accuracy.
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DISCUSSION

Tomography images are widely used for analyzing the battery
microstructure. However, the essential pre-processing image
procedure is, mostly, observer-dependent*. This observer-
dependence can lead to dispersions and uncertainties in the
segmentation process. The latter might produce unreliable results
that deteriorate the subsequent quantitative analysis, especially
when the segmentation involves the supervised training proce-
dure (inaccurate ground truth). However, we believe that
observer-dependence can be reduced or eliminated by the
appropriate pre-processing step, that provides the image with
good quality according to HVS. Hence, a trust-worthy metric,
which can assess the image quality like human observers, to guide
the pre-processing procedure helps with dependable post-
processing workflow (segmentation and analysis).

In this paper, we propose a quantitative metric, denoted as
TIQA, for X-ray tomographic image quality assessment. Moreover,
we address the lack of data issues for X-ray tomographic images
through the data generation process. Overall, our approach shows
good performance and outperforms the other two IQA methods
(BRISQUE & RanklQA) for X-ray tomographic images, given only a
few annotations for training. It is worth noting that although we
try to reduce the demand for training annotations, a small number
of labels are still required so that it cannot be considered a totally
blind IQA method.

The correlation between our metric and the segmentation
performance has also been explored. The qualitative and
quantitative evaluation results prove that the segmentation
performance is associated with the predicted quality score, which
is also related to subjective human annotations. This correlation
gives us tips to reduce the uncertainties and variations of
segmentation results by applying pre-processing algorithms to
improve the image quality.

For the idea of using a neural network to evaluate the results of
IQA, we use a similar method as Samuel et al.*®, who investigated
the effect of image quality on DNN results by applying differently
distorted images on the same network, but we conducted more
types of distortion. Instead of focusing on the image classification
problem, which classifies an image into one category, we analyzed
the impact of distortion on the image segmentation problem, that
is concerned with pixels classification. Taking advantage of the
uncertainty map and loU map, the influence of distortion could be
clearly visualized.

In conclusion, this work provides a quantitative IQA metric to
guide the pre-processing step based on subjective human opinion
so that the observer-dependence can be alleviated or removed
from the pre-processing and the segmentation step. It greatly
reduces the tedious work of selecting good images and facilitates
the automation of analyzing X-ray tomography images. In addition,
it provides a more reliable assessment of pre-processing image
results, which avoids the conflicts of different human observers,
and promises an outperformed segmentation analysis.

However, some limitations remain to be solved. The undistorted
images are not well evaluated in our method due to the lack of
images with excellent quality. Although our approach does not
need hundreds of images for training, the estimation results of
image quality can still be improved with the larger dataset. These
limitations can be solved with the contribution of the community
by sharing open-source X-ray tomographic data, such as
Tomobank®7-%,

Interestingly, thanks to the demand for automatically analyzing
the tomography images, our TIQA method can be extended to
improve the image quality by using different image processing
methods. For example, by constructing a Teacher-Student model,
our method (teacher) can teach a distortion removal network
(student) to automatically eliminate the distortions. It will greatly
release the burden of human observers and reduce the impact of
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distortion on segmentation. In addition, the image quality
assessment can be extended to object-oriented assessment. For
instance, through the learning of object information, the network
can judge whether the materials inside of the battery are
destroyed or not.

METHODS
Dataset creation

We collected 40 8-bit images from 11 different types of batteries with
different resolutions. All the images were rescaled to the same resolution
224 x 224. To avoid deformation, we resized the original image to the
width or height equaling 255 while preserving the aspect ratio, then
randomly cropped the region with a size of 224 x 224. We also maintained
six original images for the analysis of the impact of the downsampling
operation on the image quality score. To expand the dataset, we applied
different algorithms with different parameters to generate images with
different types of distortion. For example, we generated several rings with
different radius and intensities based on original images and add them
together to imitate the ring artifact distortion. For blur and noise, we used
the methods implemented in scikit-image®’. Similar to Hanne's method*,
we manually set the parameter values that control the distortion amount
such that the visual quality of the distorted images varies, from an
expected rating from 1 (terrible) to 5 (excellent). The distortion parameter
values were chosen based on a small set of images and applied the same
for the remaining images in our database.

We performed two surveys for subjective image quality scores and
conveyed them to different people who included beginners and experts in
this field for annotation among five levels: terrible, bad, average, good, and
excellent. For each image, we collected annotations from 15 people and
set the average number as its quality score.

Data generation

As illustrated in Fig. 2, the preprocessed images were regarded as
reference images. Then several distortion filters, including noise, blur, and
ring artifact, were applied to the reference image to generate the distorted
images. The parameter values of the filters were set differently, as shown in
Table S7, to create different distortion before adding them to the reference
images to produce images at different levels of distortion. For label
projection, we used five FR-IQA evaluators, mimicking the human
observers, to calculate the difference between a reference image and a
distorted image and pass a score for a distorted image. Due to the range of
the score from each evaluator varies, we normalized and rescaled them to
the same range. Finally, we averaged the produced scores and set it as the
generated score.

Score prediction

As shown in Fig. 1, we took the EfficientNet network as the feature
extractor and change the last three layers to output a score for each input
image. Among the dense layers, we added dropout*® to avoid overfitting.
Instead of training the network from scratch, we transferred the weights
from the pre-trained model in ImageNet® to reduce the time of
convergence®'. The input image size was fixed at 224 x 224 x 3 and the
corresponding output was a score with a shape of 1x 1.

We built the image by pair by picking an original image, generating the
distorted images with distortions at different levels. The image with a
lower level of distortion was regarded as a better image than the one with
a higher level of distortion. Taking advantage of the generated ranking
information, the network could order the images by quality. The
corresponding rank loss>? function is

L(yi,yj) :max(O,er)A/i 7)7J-) (M

where y; — §; are the prediction results of a pair of images; m, set at 6 in
our experiment, is a margin to control the minimum distance of the
positive image pair.

After the image ordering process, the human annotations and the
generated machine labels were inputted into the network to regress the
output score to a fixed range by leveraging the Minor Square Error (MSE)
loss function.
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Training and testing parameters

In the score prediction module, we used 32 original images, which were
expanded to 512 images after data generation but without labels for
training the rank. The initial learning rate was set at 3e-5 and decayed after
several iterations. The network was trained for 30 epochs, and on each
epoch, it iterated on the whole dataset. The rate of the dropout was set at
0.5 to avoid overfitting. The Adam>3 optimizer was applied for optimizing
the rank loss.

After training the rank, the model was fine-tuned in the score regression
step. The training dataset contains 29 images with the size of 224 x 224 x 3
and their corresponding labels, which are in the range from 1 to 5. The
data generation method was also implemented to expand the training
dataset to 464 images with generated annotations. Then, they were
inputted into the network for regression with the MSE loss. The network
iterated 20 epochs with the initial learning rate at 5e-5, which decayed
every 4 epochs. The dropout rate was 0.5 in training. For the testing
procedure, a total of 56 images were tested and evaluated with
corresponding human annotations. All the experiments were conducted
in python with the TensorFlow®* library. The computing hardware was
Tesla K80.

Evaluation metrics

The PLCC (Pearson’s linear correlation coefficient) is the linear correlation
coefficient between the predicted score and human-labeled score. It
measures the prediction accuracy of an IQA metric, i.e., the capability of the
metric to predict the subjective scores with low error. The PLCC is
calculated as follows:

Zfiﬂ i - J?t:ug) (Vi — Yaug) :
(300 51— Taug)”) (04 0= Yeus)”)’

where y; and y; are the predicted score and the human-labeled score of the
ith image in a dataset of size M respectively, Yoy and ya,q are the average
of the predicted scores and human-labeled scores, respectively.

The SROCC (Spearman’s rank-ordered correlation coefficient) is the rank
correlation coefficient between the predicted score and labeled score, and
it compares the monotonicity of the prediction performance, i.e., the limit
to which the predicted scores agree with the relative magnitude of the
labels. The SROCC can be calculated via the following equation:

PLCC =

2

My \2
SROCC =1— M €)
Ma (M5 —1)

where the d; is the difference between the ith image’s rank in prediction
results and labels.

Segmentation-based evaluation method
To inspect the effect of distortion on segmentation accuracy, we applied
D-LinkNet*?, which is an encoder-decoder network connected by dilated
convolutions®, for tomography image segmentation. It segmented the
image into two classes and produced the probability map, which indicated
the possibility of each pixel belonging to a class. Finally, the classification
result is generated by setting a threshold to binarize the probability map.
The network ran for 200 epochs on 110 images with segmentation labels.
The size of the input image and label was 1024 x 1024 and they were
normalized to a range of 0 and 1 before inputting to the network. The
initial learning rate was 1e-4 and decayed to one-fifth of the previous value
after fixed steps. The optimizer was Adam and binary cross-entropy loss
was used to measure the difference between prediction and ground truth.
In the testing procedure, the output of the network was utilized to
generate the uncertainty map. We used the entropy function** to calculate
the uncertainty, which is described as follows,

Hlylx, X, Y] = _Zp(y: (9

X3X7Y)|ng(y:C|X7X7Y) (4)

where x is the test image, y is the predicted class, X and Y are the images
and labels in the training process, c is the class index.

The loU (intersection over union) and F1 scores were utilized to measure
the segmentation performance. loU means the area of overlap between
the predicted segmentation and the ground truth divided by the area of
union between them. It ranges from 0 to 1, with O signifying no
overlapping and 1 indicating perfect overlapping. Different from loU, the
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F1 score can be calculated by:
2x overla
_ i P &)
total pixels

where the total pixels mean the number of pixels in both segmentation
results and ground truth.

DATA AVAILABILITY

Contact the corresponding author with requests to view raw data. Sample image sets
are publicly available in the GitHub repository for this project (link provided below).

CODE AVAILABILITY

The python code for IQA and segmentation evaluation of the project is available at
https://github.com/kai-zhang-er/TomolQA.
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