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Abstract A new approach to the sensorless speed control of six-phase induction machine (6PIM) using an 

Adaptive Neural Fuzzy Inference Systems (ANFIS) as a rotor speed estimator to avoid mechanical sensor is 

proposed in this paper. The ANFIS is first trained offline to estimate the rotor speed in a wide range of operation 

and then implemented online to perform the field-oriented control (FOC) of the 6PIM. Fuzzy-PI (FPI) 

controllers are associated to FOC to control the rotor speed and the stator currents. For this, the input-output 

scale factors of the FPI systems are determined using Genetic Algorithms (GA). Experimental results assess the 

feasibility of the proposed method with high accuracy and good dynamic behavior in speed estimation and 

control of the 6PIM. 

 

Keywords adaptive neural fuzzy inference systems (ANFIS), fuzzy-logic control, genetic algorithms, 

multiphase induction machine, real-time implementation, speed control 

1. Introduction 

Multiphase electric drives, dating back to 1969 [1], are nowadays considered  as the best alternative for all 

applications requiring reliability and fault tolerance. Indeed, with a multiphase machine, the loss of one or more 

phases does not affect the drive since three phases are remaining to produce torque or power [2]. In this way, 

multiphase machines are often considered for high power applications such as automotive, aerospace, military 

and nuclear [3, 4]. Among the numerous possibilities of multiphase ac machines, the six-phase induction 

machine (6PIM) is probably the most popular in industrial applications. 

Modern high-dynamic ac drives are equipped with a mechanical shaft sensor in order to estimate the flux 

position, which is required for field-oriented or direct torque control. Such sensor increases the drive cost, size, 

and maintenance requirements which decrease system reliability and robustness [5]. Different techniques for the 

speed-sensorless control of induction motors have been proposed in the literature during these last years [6]. 

However, parameter sensitivity, high computational effort, and stability at low and zero speeds can be the main 

shortcomings of sensorless control strategy [7] and recent research efforts are focused on extending the 

operating region of sensorless drives near zero stator frequency [8-11]. In this way, various control algorithms 

for eliminating the speed sensor have been proposed such as: algorithms using state equations [12], model 

reference adaptive systems [13], Luenberger- or Kalman-filter observers [14], saliency effects [15], sliding-

mode controls [16], artificial intelligence [17], sensorless vector control [18], direct controls of torque and flux 

[19], nonlinear inverter model and parameter identification [20] and so on. These algorithms, which are mainly 

based on the flux and speed estimations obtained from the terminal electrical quantities, are really complicated 

and present some difficulties in the speed estimation.  

Nevertheless, the designs of Soft computing tools such as Fuzzy Inference System (FIS), Artificial Neural 

http://www.rpi.edu/~bonisp/fuzzy-course/Papers-pdf/anfis.rpi04.pdf
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V30-4GDSDYP-1&_user=781134&_coverDate=08%2F31%2F2005&_alid=1560898481&_rdoc=1&_fmt=high&_orig=search&_origin=search&_zone=rslt_list_item&_cdi=5716&_sort=r&_st=13&_docanchor=&view=c&_ct=23779&_acct=C000043238&_version=1&_urlVersion=0&_userid=781134&md5=6edd43379f71c01c85f91da2ee0b6350&searchtype=a#bib1
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V30-4GDSDYP-1&_user=781134&_coverDate=08%2F31%2F2005&_alid=1560898481&_rdoc=1&_fmt=high&_orig=search&_origin=search&_zone=rslt_list_item&_cdi=5716&_sort=r&_st=13&_docanchor=&view=c&_ct=23779&_acct=C000043238&_version=1&_urlVersion=0&_userid=781134&md5=6edd43379f71c01c85f91da2ee0b6350&searchtype=a#bib2
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V30-4GDSDYP-1&_user=781134&_coverDate=08%2F31%2F2005&_alid=1560898481&_rdoc=1&_fmt=high&_orig=search&_origin=search&_zone=rslt_list_item&_cdi=5716&_sort=r&_st=13&_docanchor=&view=c&_ct=23779&_acct=C000043238&_version=1&_urlVersion=0&_userid=781134&md5=6edd43379f71c01c85f91da2ee0b6350&searchtype=a#bib4
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Networks (ANN) and Adaptive Neuro- Fuzzy Inference (ANFIS) do not need an exact mathematical model of 

the system and can be used in some power electronics applications, such as inverter current regulation [21], DC 

motor control [22], flux estimation [23], speed estimation [24] and observer-based control of induction 

machines [25]. The simple and less-intensive mathematical design requirements are the main features of 

intelligent systems, which are suitable to deal with nonlinearities and uncertainties of electric motors. However, 

a simple fuzzy-logic controller (FLC) has a narrow speed operation and needs much more manual adjustment by 

trial and error if high performance is desired. On the other hand, it is extremely tough to create a series of 

training data for ANNs that can handle all the operating modes [26], [27]. In this way, the concept of an ANFIS 

has emerged in recent years, as researchers have tried to combine the advantages of both FIS and ANN. The 

ANFIS uses the transparent linguistic representation of a fuzzy system with the learning ability of ANNs. Some 

of the advantages of ANFIS are the very fast convergence due to hybrid learning, and the ability to construct 

reasonably good input membership functions. The most striking feature of ANFIS is that it provides more 

choices over membership functions. It has more tracking ability and adaptability than the other controllers [28]. 

In this paper, an estimator of the rotor speed using ANFIS is associated to FOC with FPI controllers in such a 

way to control the speed of a 6PIM without requiring any speed sensor. The input and output scale factors of all 

FPI systems are tuned by genetic algorithms (GA) in order to minimize error of control variables. Section 1 is 

devoted to the modeling of the 6PIM used for simulation while Section 2 is dedicated to the estimation and 

control of the rotor speed using ANFIS and FPI regulators. Simulation tests are then presented in Section 4 to 

test feasibility of the proposed approach and the experimental results realized on a 90W 6PIM test bed show a 

high quality response and accurate performances of the proposed method in the estimation and control of the 

rotor speed for 6PIM. 

 

2. Model of the 6PIM 

It is well known that even for a three-phase induction machine, it is not easy to control the motor in the 

stationary reference frame. Therefore, it is necessary to transform the mathematical model of the system in a dq 

reference frame. In this way and in order to develop the model of the 6PIM in the dq reference frame, some 

assumptions have to be made beforehand. Hence, the windings are assumed to be sinusoidally distributed and 

the rotor cage is equivalent to a six-phase wound rotor.  Furthermore, the magnetic saturation, the mutual 

leakage inductances and the core losses are neglected. Then, the electrical equations in the stationary reference 

frame for the stator and the rotor may be written as following [3, 4]: 

           rsrssssss iLiLpiRV                               (1) 

         srsrrrrr iLiLpiR 0                             (2) 

where 
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rbrcrabrcrarr iiiiiiI ][   

Applying the transformation matrix [T6], where γ = π/3, the 6PIM can be decomposed into three two-

dimensional orthogonal subspaces: (α,β), (z1,z2) and (z3, z4) [1]. With this transformation, the 6PIM field 

oriented control (FOC) is similar to the classical 3PIM one. The components of the stator current in the rotating 

reference frame dq0 are obtained by applying the following transformation matrix: 
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By assuming that the quadratic component is equal to zero on the contrary of the direct component, it leads to 

the basic FOC equation φ = φr = φdr. Consequently, after these transformations, the 6PIM equations in a rotating 

reference frame can be written as: 
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3. Speed Controller and Estimator Design 

Fig. 1 shows the proposed control scheme with the matrix transformations, the decoupling terms, the current 

control loops, the speed control loop and the ANFIS speed estimation block. The proposed Fuzzy -PI (FPI) 

regulators have been introduced in the inner (current) and the outer (speed) loops to regulate iqs, and ids and ω. 

Indeed, the outer controller works on error of ω and calculates iqs
*
 while the inner ones regulate iqs (resp. ids) and 

calculate vqs  (resp. vds). 

In the sensorless speed control of induction motors with direct field orientation, the rotor flux and speed 

informations are given by the observers. However, the exact values of the parameters that build the observers 

are difficult to measure and changeable with respect to the operating conditions. ANFIS speed estimation 

algorithm can be used to estimate the motor speed in real time without a speed sensor. This algorithm needs two 

stator current and voltage signals and employs DSP techniques to filter and manipulate the speed-related 

harmonics.  

 

3.1. Fuzzy -PI Speed Controller 

A typical FPI controller scheme is shown in Fig. 2. Since the fuzzy controller is basically an input/output static 

nonlinear mapping, the controller action can be written as  

dtdEEdU                                     (7) 

where  and are nonlinear coefficients or gain factors. Integrating both sides results in equation: 

EdtEU                                                   (8) 
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Figure 1: General control scheme 
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Figure 2: Fuzzy-PI (FPI) controller scheme 

The basic FLC block is composed of fuzzification interface, fuzzy rules with inference mechanism, and 

defuzzification interface. The input/output variables are fuzzified by seven triangular membership functions 

(MF) normalized on the universe of discourse between −1 and +1 (NB—negative big, NM—negative medium, 

NS—negative small, ZE—zero, PS—positive small, PM—positive medium, and PB—positive big) as shown in 

Fig. 3. The fuzzy rule matrix are very close to Mac Vicar Whelan rules [4] associated with the Max–Min 

inference method. These rules were designed based on the dynamic behavior of the error signal, resulting in the 

symmetrical matrix. The output signal of the FLC is computed by center of gravity method. The input and 

output scale factors of the FPI controllers (K1, K2, K3 in Fig. 2) are tuned using an off-line genetic algorithm 

(GA) system to minimize the ω, iqs, ids errors. The fitness function used to evaluate the individuals of each 

generation has been chosen as integral with time of absolute error (ITAE):  


t

0
dt|)t(E|tITAE                               (9) 

During the search process, the GA looks for the optimal setting of the FPI controller gains which minimize the 

cost function. Individuals with low ITAE are considered as the fittest. Each chromosome represents a solution of 

the problem and hence it consists of three genes composing the chromosome vector [K1, K2, K3]. The genetic 

algorithm parameters chosen for the FPI tuning purpose are shown in Table 1. 
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Figure 3 : MF used in FPI controllers 
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Figure 4: ANFIS structure 
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Figure 5: MF for ANFIS 

Table 1: Genetic Algorithm Parameters to Determine FPI Controllers’ Scaling Factors 

Number of generations 50 

Number of chromosomes in each generation 30 

Number of genes in each chromosome 3 

Chromosome length 24 bit 

Crossover method single-point 

Crossover probability & Mutation rate 0.7 & 0.05 

 

3.2. ANFIS Speed Estimator 

The ANFIS has proven to be an excellent function approximation tool [30]. Fig. 4 shows a typical ANFIS 

structure with two inputs (x1 and x2) and one output (ƒ) with a first-order Sugeno-style fuzzy system as: 

Rule i: if x is Ai and y is Bi, then ƒi = pi x + qi y + ri           (10) 

where Ai and Bi are the fuzzy sets in the antecedent while pi, qi, and ri are the design parameters that are 

determined during the training process. As in Fig. 4, the ANFIS network is formed with five layers: 

Layer 1: This layer is also known as fuzzification one, where each node is represented by a square. Here, three 

membership functions are assigned to each input. The trapezoidal and triangular membership functions are 

employed to reduce the computation burden, as shown in Fig. 5. The value of parameters {ai, bi} changes 

according to the error, and accordingly generates the linguistic value of each membership function. Parameters 

in this layer are referred as premise parameters or precondition parameters. 
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Layer 2: Every node in this layer is a circle labeled as Π, which multiplies the incoming signals and forwards 

it to the next layer. Here, the output of each node represents the firing strength of a rule. 

Layer 3: Every node in this layer is represented as a circle. This layer calculates the normalized firing 

strength of each rule. 

Layer 4: Every node in this layer is a square node with a node function given in [29]. 

Layer 5: This layer is also called output layer, which computes the output. The output from this layer are now 

multiplied with the normalizing factor and passed through the low-pass filter to find the estimated value of the 

rotor speed of the 6PIM. 

Due to high dependency of the rotor speed to q-axis stator current (iqs) and voltage (vqs), it can be estimated 

using an adaptive neural fuzzy inference system (ANFIS) as shown in Fig. 4. From Speed-iqs and Speed-vqs data 

obtained from the motor operated in different speed phases, 60 data groups are obtained. Data used in training 

are given in Table 2. 

 

4. Simulation Results 

The effectiveness of the proposed scheme is validated by a MATLAB/Simulink program developed to model 

the whole system shown in Fig. 1. Simulation and experimental tests are performed on a 90-W inverter-duty 

induction motor, with parameters summarized in Table III. Prior to testing the control approach, the reference 

model performance is confirmed by considering the response of the model to a step change in reference speed, 

shown in Fig. 6. The ability of the proposed algorithm to reject load disturbance was simulated at 400 rpm 

reference speeds with 50% of nominal load. Fig. 7 shows the simulation of 6PIM speed response to a 

trapezoidal speed reference without load torque. The real and estimated percentage of speed error (11) is shown 

in the second row of the Fig. 7: 

100(%)E
*

.)est(real
*

.)est(real 



                     (11) 

Table 2: Data Used For Training of ANFIS 

iq
*
 vq ω(rpm) iq

*
 vq ω(rpm) 

0.003 0.002 10 0.083 0.075 310 

0.005 0.005 20 0.085 0.077 320 

0.008 0.007 30 0.088 0.080 330 

0.011 0.010 40 0.091 0.082 340 

0.013 0.012 50 0.093 0.084 350 

0.016 0.015 60 0.096 0.087 360 

0.018 0.017 70 0.099 0.090 370 

0.020 0.020 80 0.100 0.092 380 

0.024 0.022 90 0.104 0.094 390 

0.027 0.024 100 0.107 0.096 400 

0.029 0.027 110 0.109 0.099 410 

0.032 0.029 120 0.112 0.101 420 

0.035 0.031 130 0.115 0.104 430 

0.037 0.033 140 0.117 0.106 440 

0.040 0.036 150 0.120 0.109 450 

0.043 0.039 160 0.123 0.111 460 

0.045 0.040 170 0.125 0.113 470 

0.048 0.043 180 0.128 0.116 480 

0.050 0.046 190 0.131 0.118 490 

0.053 0.048 200 0.133 0.121 500 

0.056 0.050 210 0.136 0.123 510 

0.059 0.053 220 0.138 0.125 520 

0.061 0.055 230 0.141 0.128 530 
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0.064 0.058 240 0.144 0.130 540 

0.067 0.060 250 0.146 0.133 550 

0.069 0.063 260 0.149 0.135 560 

0.072 0.065 270 0.152 0.137 570 

0.075 0.068 280 0.154 0.140 580 

0.077 0.070 290 0.157 0.142 590 

0.080 0.072 300 0.160 0.145 600 

 

 
Figure 6: Simulation results of step speed response of the 6PIM at 50% of nominal load 

 
Figure 7: Simulation results of speed response of the 6PIM to a sequence of the speed steps 

The steady state error of the estimated and actual speed is negligible which shows the effectiveness of the 

proposed method. The third and fourth rows show performances of the FPI controller and the ANFIS estimator 

in control of iqs and ids. 

 

5. Experimental Results 

The experimental setup has been developed as shown in Fig. 8. Our test bed is composed of a 6PIM supplied by 

two three-phase voltage source inverters with MOSFET as power switches whose dc link voltage is 42 V. The 

switching frequency is set at 10 kHz using the classical sampled natural PWM technique generated by an FPGA. 

The digital control board has been built around an Intel-Pentium 4 processor allowing easily an actual sampling 

period of 100µs. This board receives the stator current data through six 12-bit A/D converters with a maximum 
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frequency of 20 kHz and the dc bus voltage with a frequency of 12.8 kHz. Figs. 9-10 show the experimental 

results of the same speed reference profiles introduced in the previous section. As it can be seen in the Fig. 10, 

the actual and estimated experimental speed error is very low, just as for simulation results. 

 
Figure 8: The exprimental setup 

Table 3: 6PIM Parameters 

Rated power 90 W 

Rated torque 0.3 N.m 

VSI DC source  42 V 

No. of poles 2 

Mutual inductance 30.9 mH 

Stator resistance 1.04 Ω 

Stator leakage 

inductance 

0.3 mH 

Rotor resistance 0.64 Ω 

Rotor leakage 

inductance 

0.65  mH 

Friction coefficient 4×10
-4

 N.m/rd/s 

Inertia coefficient (J) 9.5×10
-5

 Kg.m
2
 

 
Figure 9: Experimental results of step speed response of the 6PIM at 50% of nominal load 
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Figure 10: Experimental results of speed response of the 6PIM to a sequence of the speed steps 

 

6. Conclusion 

In this paper, an intelligent sensorless control algorithm has been implemented in order to obtain a high-

precision speed estimation and control for six-phase induction machine (6PIM) using Adaptive Neuro- Fuzzy 

Inference (ANFIS) and Fuzzy-PI (FPI) controller tuned by Genetic and low computational effort in real-time 

implementation. Numerical and real-time implementation of the novel Algorithm (GA). The advantages of the 

proposed scheme are a minimum number of parameters to be offline optimized, robustness to parameters 

uncertainties and noise, smooth operation at low speed and load speed reversal and stability at zero speed. 
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Nomenclature 

||X|| Euclidean norm of vector X 
T
 Transpose of vector X 

v Instantaneous phase voltage  

i Instantaneous phase current  

Φ Linkage flux 
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R Resistance 

L Inductance 

M Mutual inductance 

J Total shaft inertia 

F Friction coefficient 

Τ Electromagnetic torque 

ωs Stator MMF angular speed 

ω Rotor electrical angular speed (rpm) 

P Number of pole pares 

s Stator quantities 

r Rotor quantities 

d Direct axis component 

q Quadrature axis component 

P Derivative operator 

X
*
 

γ 

θ 

Reference value of variable X 

Phase shift between two consecutive stator windings 

Flux position 

 


