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Abstract: This paper deals with an efficient 3D modelling of a radial ball bearing to predict the
operating lubrication regime under mechanical loading and mounting conditions by using the
Discrete Element Method (DEM). Due to the relevance of such an approach, especially for multicontact
systems, the lubrication regime associated with specific operating conditions can be predicted
accurately. By means of an elastohydrodynamic lubrication formulation depending on parameters
related to the size of contact area, mechanical properties of materials, roughness and fluid viscosity,
the lubricant film thickness is predicted and used to take into consideration the fluid film damping
effect and friction coefficient variation. The lubrication regime can be identified according to Stribeck
curve with the assumption of a piezo-viscous-elastic behaviour of the lubricant. The numerical
simulations performed with MULTICOR-3D software on an operating ball bearing shown that the
lubrication regime at the rolling element-raceway contact can be easily monitored and quantitatively
identified. To assess the efficiency of the discrete modelling, a parametric study is carried out
in order to exhibit how the operating conditions affect the lubrication regimes and the fluid film
spread in the loaded zone. The adequacy between the choice of lubricant and the bearing tribofinition
is sought to optimize the component lifetime.

Keywords: ball bearings; DEM; lubrication; EHL; multicontact systems; tribology; wear; friction;
Stribeck curve

1. Introduction

Rolling bearings are widely used components in both industrial and domestic rotating machinery.
There is a large number of bearings for all possible applications, among them radial and oblique
ball bearings, roller bearings, ball and roller thrust bearings, and many others. However, statistical
studies show that in industrial applications more than 50% of malfunctions of rotating machineries
are caused by shaft misalignment [1]. Therefore this recurrent defect unfortunately plays a central
role in the degradation of bearings and malfunctions in rotating machinery. In the modern area of
the smart factory (Factory 4.0) [2,3], when attempts are being made to obtain relevant real time
information on rotating machines, using connected devices called Internet of Things (IoT) is sought,
and also with increasing demands on industry to reduce energy consumption and gas emissions,
the effort to increase the efficiency of machine components is no doubt more intense than ever.
In order to ensure the industrial systems’ availability and the safety of goods and persons, the
monitoring and diagnosis of bearing malfunctions have to be considered with prime importance,
thereby ensuring good maintenance. Moreover, the challenges in terms of productivity and economic
cost are obviously non-negligible. Therefore, defect tracking of rolling bearings components has led to
extensive research over many years. Several experimental methods and various types of signal analysis
have been developed for the detection and diagnosis of rolling bearing defects, such as vibration
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measurements [4], acoustic emission [5], defect signatures in the stator current of motors [6], thermal
and lubrication analysis [7].

However, another very important and key aspect on which the performance of rolling bearings
depends concerns lubrication. Because of its preponderant role, lubrication in fact plays a vital
role in most machine components in ensuring that they work properly, are efficient and have a
satisfactory service life. With clearance and alignment correction, lubrication is the main maintenance
operation, without dismounting. Hamrock and Dowson [8,9] performed pioneering studies on
lubricated contacts. The authors implemented a series of EHL (Elasto-Hydrodynamic Lubrication)
numerical analysis for elliptical contacts and considered a wide range of load, velocity and material
properties variations. Several curve-fit formulas derived form their numerical results characterize
different fluid film thickness regimes, and which are still the most popular and frequently used today.
More recently, Masjedi and Khonsari [10] have improved the EHL model, initially introduced by
Hamrock and Dowson, proposing formulas to take into account the effect of surface roughness to
predict central fluid film thickness, minimum film thickness and the asperity load ratio. It is, therefore,
strongly advised that mechanical systems with non-conformal contacts should be mounted with
sufficient clearance because the lubricant film should be thick enough as far as possible to avoid
contact between the mating surfaces. This ensures the limitation of wear mechanisms that could
occur at the contact interface between two surfaces. In this case, the friction coefficient is rather low.
On the other hand, when the rotating machines are subjected to more severe operating conditions,
typically under very high loads or at low speeds, then the load carried by the contacting asperities
should be taken into consideration. According to Stribeck analysis [11], the relation between the
friction coefficient µ and the fluid parameter Λ f (Sommerfeld number or Hersey number) is often
used as an indicator to distinguish between the different lubrication regimes. Moreover, the increasing
developments related to tribological studies have considerably enhanced our understanding of the
mechanisms of lubrication that take place in highly loaded non-conformal contacts, in the case of rolling
bearings, gears and cams [12,13], as well as for the identification of the fluid film thickness [14,15] and
the characterization of the friction behaviour [16,17].

Wear and fatigue damage behaviour in bearings is hard to describe theoretically and numerically.
Indeed, both wear and fatigue mechanisms are quite complex and essentially dependent on operating
conditions, lubricant quality associated with a good mounting and a suitable bearing design.
To overcome these limitations, a numerical twin of bearings, based on DEM using MULTICOR-2D
software, has been developed to enable users to access outputs relative to damage initiation and to
improve coupling models for monitoring [18,19]. Moreover, since 2008, several studies carried out in
our research laboratory (LTI EA-3899) have clearly established the relevance of electrical measurements
located on dynamic interfaces and have generated a promising approach for the monitoring of
bearings and preventing material wear in wind plant applications [20,21]. By using a refined electrical
resistivity circuit, some recent work has also shown the relevance of electrical measurements in
characterizing the lubrication regime at the contact interface [22] and investigating the influence
of the spin coating process on the oil film lifetime [23]. Combining an improved electrical signal,
where the lubricated contact and friction play a key role, with the existing monitoring methods [24]
should lead to a high-performance rotating machine tracking tool. From an industrial point of view,
obtaining real-time information including a qualitative definition of the rolling contact quality based
on electrical measurements would allow the lifetime of rotating machines to be optimized. From a
numerical point of view, generating mechanical responses of a bearing using DEM allows us to go
further in the knowledge of monitoring signals, instead of investigating mechanisms responsible for
wear. For example, wear debris can contaminate lubricated bearings and impede contacts resulting in
lubrication failure and subsequent overheating. Our recent article [18] exhibits the potential of DEM
simulations to investigate fatigue mechanism by accessing stress in rings.

A focus on the potential offered by the DEM for simulating the dynamic behavior of bearings
with a 2D description is well described in our previous work [25,26], assuming a simple contact
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model without tribology enrichments. In this paper, a 3D DEM model is enriched with the
phenomenological contribution of lubrication, in order to develop a monitoring tool based on an
electrical measurement [21]. In this sense, the lubricant consideration must remain sufficiently
adapted to the scale of the apparent contact, where the competition between the metal-metal
contact with asperities (resistive) and the contact through the fluid (capacitive) plays an essential
role in electromechanical coupling. To achieve this proposal, from a mechanical standpoint, a three
dimensional dynamic model for ball bearings based on MULTICOR-3D software is developed.
The aim is to create a lubrication model by using a discrete formulation. The proposed model
implements a major part of the functionalities according to the state of the art, such as the slice model,
the mutual influences of neighbouring elements with clearance, elastic contact models, lubricant
film estimation, damping forces, centrifugal forces, etc. In particular, the DEM model with strong
assumptions introduces the basics of lubrication regimes in order to maintain efficiency in solving,
as long as it could be simulated in an acceptable computational time. Technically, the smooth DEM
methodology selects stiffnesses and damping coefficients (critical damping) and a constant coefficient of
friction for simulations related to granular media [27,28]. Following this tutorial dedicated to
bearing application, stiffnesses are calibrated for bearings and typical load-deflections relationship are
validated [20,29]. Dampings [30] and friction [31] acquire a more physical meaning when a lubricant is
considered [8,32,33]. The friction coefficients, usually considered as an input parameter are now
implicitly set at each contact. When the roughness is known, the parameter that indicates a good
lubrication regime is the minimum fluid film thickness. This parameter must has values that do not
fall below the roughness because a film thickness that is too small leads to risks of metal-metal contact,
causing irreversible damage. Future numerical developments and experimental investigations will
attempt to define electromechanical coupling models implemented in DEM simulations, based on the
capacitive and resistive behaviour of lubricating contacts. When lubrication is introduced under a
restrictive assumption on the fluid rheology, the resulting damping forces should be included.

The paper is divided into four sections, including two sections dedicated to the introduction
and conclusion, respectively. The second section deals with a three-dimensional discrete modelling
performed on a ball bearing, with a powerful computational tool to manage several contacts under
dynamic loadings. The simulated radial ball bearing of 6208 series is designed fully and accurately in
accordance with its geometrical conformity. Moreover, a mechanical formulation, based on contact
stiffness for elliptic areas and viscous damping effects is developed. With the assumption of
piezo-viscous-elastic fluid behaviour, an EHL model is implemented in the numerical software allowing
the determination of the viscous damping due to the fluid film. Numerical simulations are carried
out with MULTICOR-3D software to validate the proposed discrete model of radial ball bearing and
are presented and discussed in Appendix A. The third section treats the qualitative prediction of the
lubrication regimes in an operating radial ball bearing. To exhibit the relevance of the DEM approach,
several operating conditions are considered. The effects of radial load, diametral clearance and shaft
angular speed are considered and discussed, from a lubrication regime point of view. In the conclusion,
we summarize the contributions of this work and we end with a few thoughts on future work.

2. Three Dimensional Modelling of Radial Ball Bearing Using DEM

To overcome the 2D modelling limitations from the out-of-plane effects (gyroscopic effect,
axial loading, free contact angle, etc.) are ignored [20], we proposed a three-dimensional description of
a ball bearing [29] using DEM (Figure 1b) with the aim of investigating the lubrication regime in
relation to the kinematic and mechanical operating conditions. The radial ball bearing of 6208 series
(SKF 6208 TN9/DBGA) is considered in this study (Figure 1a).

The dimensions and geometrical conformity of the bearing considered are listed in Table 1.
The number of balls in contact with the inner and outer raceways is Z = 9. Nine additional smaller
balls of radius Rz in contact with two toruses are considered to play the role of a cage (Figure 1c).
Even if the cage is different in shape in comparison to the standard form, the design does not at all affect
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the contact forces between rolling elements and cage [25]. In addition, the proposed description of the
cage mainly has two roles. The first is that it ensures a conform internal radial load distribution, while
the second is that it allows intermittent rolling elements/cage contacts to be taken into account when
the ball bearing operates. However, details should be supplied about the cage in the sense that the
only other possible interactions involving the cage elements may be occur between rolling elements.

(a) (b) (c)

Figure 1. (a) Radial ball bearing of 6208 series; (b) DEM modelling using MULTICOR-3D software;
(c) Exploded view.

Table 1. Geometrical characteristics of radial ball bearing of 6208 series.

Component Ball Inner Ring Outer Ring Raceway Cage

Radius Rb Ri Ro Rc Rz
Dimension (mm) 6.3 24.0 36.6 6.552 4.19

The ball bearing design performed by DEM allowed us to numerically achieve bearing frequencies,
namely FTF, BPFI, BPFO and BSF with a good accuracy and gives the opportunity to take into account
all bearing components without any restriction.

2.1. Contact Stiffness and Damping Effect

The contact stiffness model used in the discrete modelling is based on a smoothed
formulation established by Cundall et al. [27]. The contact forces are obtained by means of
Kelvin-Voigt Spring-Dashpot Model and a Coulomb’s law if sliding occurs at the contact (Figure 2).
The main assumption made with DEM is that the particles in contact are assumed perfectly rigid and
therefore, there is no elastic deformation of particles. The elasticity is only considered at the contact
between particles.

Figure 2. Contact modelling in smoothed formulation of DEM.

The contact forces Fn,t in normal and tangential directions according to the local frame at the
contact plane, are described with an explicit mechanical model depending on elastic force displacement
law, Coulomb friction and viscous damping coefficients (Equation (1)).
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Fn,t = Kn,t δn,t + Cn,t vn,t

with

Ft = −min (Ft, µFn)× sgn (vt)

(1)

where δn,t are the normal and tangential relative displacements, Kn,t the normal and tangential
stiffnesses, Cn,t the normal and tangential viscous damping coefficients, vn,t the normal and tangential
relative speeds according to the local frame and µ the Coulomb friction coefficient in the case of a
sliding contact. The normal viscous damping coefficient Cn to ensure a satisfactory mechanical steady
state is a function of two damping types, namely hysteretic and elastohydrodynamic, related to the
contact shape, roughness, fluid properties, temperature, operating conditions, etc. In considering a
reasonable assumption, the expressions of both hysteretic and fluid damping coefficients are discussed
later. The tangential viscous damping coefficient Ct is more difficult to evaluate. For convenience,
the ratio Ct

Cn
is considered to range in the interval [0, 1]. The normal contact stiffness Kn is related to

mechanical characteristics and curvatures of the surfaces in contact according to non-linear model ;
Fn ∝ δ

3/2
n . Considering a rolling element in contact with inner-raceway (or outer-raceway) the normal

stiffness is given as function of the curvature sum radius and the approximate elliptic integrals as
proposed in [34]: 

Kn = 2πkG
√

2ERcurve
9F 3 δ

1/2
n

Rcurve =
Rx Ry

Rx+Ry

Rx = R1x R2x
R2x±R1x

, Ry =
R1yR2y

R2y−R1y

(2)

with Rcurve the curvature sum radius, Rx the effective radius in x direction, Ry the effective radius in

y direction, k the ellipticity parameter
(

k = α
2
π , α =

Ry
Rx

)
, F the approximate elliptic integral of first

kind
(
F = 1 + q lnα, q = π

2 − 1
)

and E the approximate elliptic integral of second kind
(
E = 1 + q

α

)
(Figure 3). The equivalent radius Rx is calculated by taking into account the cases of convex contact
(ball-inner-raceway) and concave contact (ball-outer-raceway), as given in Equation (2). For the sake of
clarity, we note that Rb = R1x = R1y, R2x = Ri and R2y = Rr. G = E

2(1+ν)
is the shear modulus of steel

in the case of identical materials in contact, E the Young’s modulus (E = 210 GPa) and ν the Poisson’s
ratio (ν = 0.3).

(a) (b)

Figure 3. Curvatures in contact in two orthogonal cross sections of a ball bearing: (a) x–z plane ;
(b) y–z plane.
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When interactions between rolling element and cage ball occur the contact is assumed to be in
boundary lubrication regime without friction dissipation and the damping coefficient is considered
critical. The normal stiffness is only taken into account, and therefore the following equation is
considered [35]:

Kn =
4G
√

Req

(1− ν)
δ

1/2
n (3)

where Req =
rirj

ri+rj
is the equivalent radius of two balls in contact of radius ri and rj, respectively.

The tangential stiffness is related to the normal stiffness so that the ratio Kt
Kn

ranges over the interval
[ 2

3 , 1] [27]. The tangential stiffness Kt can be calculated by means of the normal interaction Fn,
the curvature radii and the mechanical properties of both rolling element and cage ball [35].

The steady regime of the ball bearing in dynamic mode is achieved with viscous damping and
local friction added as dissipative forces to the mechanical model (1). The primal viscous effect is the
hysteretic damping coefficient Chyst in the normal direction~n and related to the plastic strain of surface
roughness due to the normal interactions (4).

Chyst =
3αeKnδn

2
(4)

where αe = 0.08 s·m−1 denotes the restitution coefficient of steel [36]. In the case of a boundary
lubrication regime in ball bearing, typically at heavy radial load and low rotation speed, this means
that metal-metal contact predominates, involving a high coefficient of friction (µ ' 0.1).

Bearing, cam mechanisms and gears are considered with non-conformal contacts endowed with
EHL regime. Such mechanical systems are often designed for the lubricant film to be thick enough,
more than 1 µm, to avoid contact between the mating surfaces. According to the relation given in [30],
the damping coefficient C f luid due to the lubrication film in the normal direction of contact is written
as follows (5):

C f luid =
3πηa√

2

(
Rb

hmin

)3/2

(5)

with η = 0.04 Pa·s the dynamic viscosity of the fluid at operating temperature and atmospheric
pressure [37], a the semi-major axis of the Hertz’s elliptical contact [9], hmin the minimum fluid
thickness of the ball-inner-raceway (or -outer-raceway) contact at an azimuth angle ψ.

2.2. Fluid Film Thickness and Fluid Parameters

In the field of elastohydrodynamic lubrication, grease rheology influences the fluid film thickness
under operating conditions [38]. Given that the viscosity of lubricant increases with respect to pressure,
this means that the lubricant exhibits piezo-viscous behaviour. Temperature also plays a role in
grease viscosity changes. Taking into account the piezo effects of the fluid, we have, in the discrete
modelling, considered the piezo-viscous-elastic regime to evaluate the minimum fluid film thickness
hmin [34]. For hard surfaces in contact, hmin is expressed according to the following elastohydrodynamic
Formula (6):

hmin = 3.63 U 0.68
r E 0.49 W −0.073

(
1− e−0.68k

)
Rx (6)

E, Ur, W are three dimensionless parameters: E = ξE′, with ξ the viscosity-pressure coefficient of
the lubricant at operating temperature and atmospheric pressure (ξ = 2.3× 10−8 m2·N−1), E′ = E

1−ν2

the effective elastic modulus of steel ; Ur =
ηUr
E′Rx

, with Ur the rolling velocity ; W =
Qψ

E′R2
x
, with Qψ the

ball-inner-raceway (or -outer-raceway) normal load (Figure 4).
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Figure 4. Radial shift δr due to the imposed radial load Fr.

It should be noted that the deformation of the surface asperities is not taken into account in the
fluid film thickness model. Masjedi and Khonsari [10] proposed a curve-fit expression for the film
thickness and asperity load ratio in point-contact EHL of rough surfaces, in order to take into account
the deformation of surface asperities. In the case of a deep groove ball bearing, the authors obtained
a very low asperity load ratio for medium angular shaft speed (ωsha f t > 200 rad·s−1). However,
for a rotational speed of one order of magnitude lower, the asperity load ratio at both outer and inner
races reaches a value of the order of 10% to 12%. In the context of this work, the numerical simulations
are at least performed with angular speed of two orders of magnitude. Therefore, it is reasonable to
assume that the roughness deformation slightly affects the fluid film thickness.

Commonly, a simply way to identify which lubrication regime a system is running in is by
the use of a dimensionless parameter, Λ f , proposed by Tallian and called the fluid parameter [39].
Λ f is the ratio of the minimum fluid film thickness to the surface roughness. This parameter is
also related to the friction coefficient µ as shown through a schematic representation of the
Stribeck curve [11] for non-conformal contact (Figure 5).

Λ f =
hmin(Qψ, ω)

1.25×
√

σ2
a1 + σ2

a2

'
hmin(Qψ, ω)

3.75× 10−7 (7)

where ω is the shaft angular speed (i.e., inner ring), σa1 and σa2 denotes the arithmetic mean
roughnesses of the measured surfaces for the inner-raceway (or outer-raceway) and rolling elements,
respectively. The finishing process known as “Superfinishing” enables surface condition values of
a dozen nanometres [40,41]. We assume that the races have σa1 ∼ 3× 10−7 m and rolling element
roughness can be neglected (σa2 << σa1). Ball-on-disk tests, known as tribometer usually involve
similar orders of magnitude [15,42].

At fully flooded condition, the normal damping coefficient Cn is strongly dependent on the
EHL regimes. Since the rheology of the fluid is taken into account through the assumption of a
piezo-viscous-elastic model, we postulate that regimes simulated under the considered operating
conditions do not increase Kn with an additional fluid film stiffness by considering Kn(Λ f ) [30].
As long as the mechanics of the surfaces are responsible for the stiffness of the component, within the
piezo-viscous-elastic limits, the film parameter allows us to select the “predominant” viscous damping
Cn(Λ f ) according to the following Table 2.
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Figure 5. Schematic representation of Stribeck curve: friction coefficient and fluid film thickness as
function of fluid parameter.

Table 2. Identification of lubrication regimes for non-conformal contacts.

Cn(Λ f ) Chyst

(
1

Chyst
+ 1

C f luid

)−1
C f luid

hmin < σa ∼ σa >> σa
Λ f ≤ 1 ∈]1,3] ∈]3,5]

µ(Λ f ) high moderate low

When the applied load is mainly carried by asperities of the surfaces in contact, this means that
only the hysteretic effect plays a role in normal damping, Cn = Chyst. In mixed lubrication regime the
normal damping Cn is considered to be a function of both hysteretic and fluid damping. By assuming

that the two effects act in parallel, then Cn =
ChystC f luid

Chyst+C f luid
. In the case of fully developed lubrication film,

the hysteretic effect is not possible and only the fluid effect remains, so Cn = C f luid. Figure 6 gives an
illustration of viscous damping status according to the fluid parameter Λ f .

Figure 6. The three status of viscous damping: hysteretic, mixed and fluid.

This approach might appear simplistic in view of the complexity of the mechanisms put into in
play at a lubricated contact. Nevertheless, this postulate is also correlated with the electromechnical
analysis of a lubricated contact, where electrical contacts between asperities are resistive and the
electrical response of the fluid film is capacitive [21]. The electrical circuit of an apparent contact
behaves as a parallel RC circuit according to the lubricated regime. The dissipative properties of a
contact are updated according to the lubrication regime. To do this, it was necessary to identify the
fluid parameter Λ f as a discriminant.
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2.3. Space and Time Discretization of the DEM Ball Bearing Model

To perform numerical simulations using DEM, we assumed that the friction coefficient µ(Λ f )

ranges over the interval [0.01, 0.1] as for the case of rolling/sliding concentrated contacts [43]. Typically,
µ = 0.1 for Λ f < 1, which means that the applied load is completely carried by the asperities of the
contacting surfaces. When Λ f increases up to 1, µ decreases considerably passing from 0.1 to 0.01.
In this range, the mixed regime is reached so that the applied load is carried by both lubricant film and
asperities of the contacting surfaces. If Λ f becomes greater than 3 the fully fluid regime is established
and the friction coefficient is kept constant, µ = 0.01. However, it should be mentioned that the
friction coefficient is usually assumed constant in numerical simulations by DEM. Taking the fact
that the lubricated contacts in a ball bearing must be considered individually, namely with their own
friction coefficient and viscous damping, therefore, this can be achieved through an identification
on the Strikeck curve by means of the fluid parameter Λ f . This can be done through a linear fitting
made on the Stribeck curve (Figure 5). From a numerical standpoint, at a given time step of DEM
simulation, the kinematic and mechanical conditions are known at each contact (rolling speed, relative
speed, normal load), so that the lubrication regime may individually be determined through the fluid
parameter expression (7). Hence, the friction coefficient µ(Λ f ) and the viscous damping Cn(Λ f ) are
calculated to carry out mechanical resolution for the next time step.

We note that regarding the direction~t, the effect of the tangential damping Ct, in the context of
radial ball bearing, is assumed to be weaker than the normal damping and could be then neglected.
Therefore, following the tangential direction the dissipation is basically related to the friction
coefficient µ.

The contact stiffness model based on the elliptic integrals and damping model related to
lubrication regimes described above, are implemented in the numerical tool using DEM. Therefore,
Equation (1) is rewritten under the following form (8):{

Fn = Knδn + Cn(Λ f )vn

Ft = −min(Ktδt, µ(Λ f )Fn)× sign(vt)
(8)

In Equation (8), the coefficient of friction µ(Λ f ) is then considered as function of the fluid
parameter Λ f . It should, however, be stated that the correlation of the operating conditions to
the friction coefficient remains difficult to apprehend numerically. M. Björling et al. [44] studied
numerically and experimentally the variation of the friction coefficient at different Slide-to-Roll
ratios (SRRs) and drive speeds. Guegan et al. [42] also investigated friction and film thickness in
elastohydrodynamic contacts through different Stribeck curves, where the authors achieved a
dependency on the SRRs and drive speeds. In fact, and based on these results, it seems crucial to be
aware of the dependence of friction coefficient on the operating conditions.

The DEM modelling is by solving Newton’s second law for each rolling element. Equation (9)
takes into account dynamical effects of rolling elements, such as centrifugal forces and gyroscopic
effects, when the bearing is functioning.

miüi = Fext
i + ∑

j
F j−→i

Ii θ̈i = Mext
i + ∑

j
M j−→i

(9)

where the subscript i denotes a given rolling element (or cage element). mi and Ii are the mass and the
quadratic moment of inertia. üi and θ̈i are the linear and angular accelerations. Fext

i and Mext
i are the

external force and moment acting on element i. F j−→i and M j−→i are the reaction force and moment
interaction of the element j on the element i.

The mechanical resolution of ball bearing, composed of 2× Z balls (rolling and cage elements),
requires an explicit time integration based on the velocity-Verlet scheme (10).
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{
u(t + ∆t) = u(t) + ∆t u̇(t) + ∆t2

2 ü(t)

u̇(t + ∆t) = u̇(t) + ∆t
2 (ü(t) + ü(t + ∆t))

(10)

where u, u̇ are the displacement and velocity vectors, respectively, t the current time and ∆t the
integration time step. The numerical simulations are conducted with ∆t of 1 µs. Choosing a
large time step induces numerical instabilities and moreover it does not allow a steady mechanical
state to be achieved.

The effectiveness of the DEM lies in the fact that a discrete formulation allows each contact
(ball-inner-raceway, ball-outer-raceway or ball-cage) to be easily tracked instantaneously when the
ball bearing under operating conditions is simulated. Before studying the lubrication regime when
the ball bearing operates under dynamical conditions, we first carried out a quasistatically loaded
ball bearing to investigate the validity of the numerical response. The loading protocol of the ball
bearing is of prime importance in performing realistic simulations in accordance with standard
theoretical models for bearings as described in [34,45]. Parameters related to the normal loading
and radial deflection in ball bearing together with numerical results are introduced and discussed
in Appendix A.

3. Numerical Prediction of Lubrication Regimes in Operating Radial Ball Bearing

As the relevance of the DEM is clearly established for accurately predicting the mechanical
state in a radial ball bearing (Appendix A), we will now focus on the lubrication regimes under
operating conditions. Ball bearings require fluid lubrication in order to perform satisfactorily for long
periods time. Elastohydrodynamic lubrication (EHL) theory is concerned with the formation of a
thin fluid film at the contact area between rolling elements and raceways [9,46]. Under favourable
conditions of mounting, speed rotation, loading and fluid viscosity, the lubricant film is assumed
sufficiently thicker to separate the rolling surfaces. Obviously, the rolling bearings operating under
a fully fluid regime have significant reduction of wear, and therefore, the expected bearing lifetime
will be much longer than in the case of bearings operating in boundary lubrication regime. Generally,
the minimum thickness of the fluid film is of the order of the roughness; nevertheless, in the case of
optimal conditions at high speed and adequate viscosity, the fluid film exceeds the size of the surface
asperities so that a fluid film thickness of several micrometers can be reached, 3 to 10× σa [47,48].

In this section, numerical simulations carried out with MULTICOR-3D software will be discussed.
The lubrication regimes of a radial ball bearing under operating conditions are investigated by taking
into account both imposed mechanical loading and fixed kinematic conditions. Sensitivity analyses
are performed on the main driven parameters, namely the radial load Fr, the diametral clearance Pd
and the angular speed ω of the inner ring, which more or less may affect the lubrication regime.

3.1. Effect of Radial Load and Diametral Clearance

The lubrication regime related to the film parameter Λ f (ψ) is identified on a given rolling
element at each azimuth angle ψ(t) with respect to time t. A rolling element at an initial azimuth angle
ψ ' 0 is considered and followed during the simulation. The tracked rolling element exactly reflects the
lubrication regime of the radial ball bearing, from the starting phase, when the rotation is imposed on
the inner ring, until the slowdown phase after going through the steady phase. The three phases are
then studied to investigate the lubrication regime.

As an example, numerical simulation, aimed to check the efficiency of the discrete formulation,
is initially conducted with the following conditions: ω = 500 rad·s−1, Pd = 0 (ε = 0.5) and
Fr = 3000 N. For the sake of conciseness, we have only been interested in lubrication regimes at
the contact interface between rolling elements and the outer-raceway. Obviously, the same numerical
analysis can be done for the rolling elements in contact with the inner-raceway. In the steady state,
the theoretical expression for angular speed in pure rolling, is given by ωball =

ω×Ri
2×Rb

. Under the above
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kinematic conditions, the expected analytic solution of the angular speed of the rolling element is
ωball = 952.38 rad·s−1. Figure 7a depicts the variations of both shaft and ball angular speeds as a
function of time. The solid curve depicts the angular speed of the shaft during the start-up phase
(in royalblue), steady phase (in red) and slowdown phase (in dark-yellow). The dashed curve depicts
the ball angular speed for the same operating phases. The discrete model of the radial ball bearing
achieves numerical results in good agreement with analytic solution.

(a) (b)

Figure 7. (a) Imposed shaft angular speed ω and simulated angular speed ωball of rolling element and
(b) SRR for a single rolling element.

The SRR is calculated and plotted for a single rolling element in order to track the status of
the rolling element/inner-receway contact, inside and outside the loaded zone of the ball bearing,
at start-up, steady and slowdown phases (Figure 7b). The SRR is very low because the rolling element
has a pure rolling regime when the steady state is reached, except for start-up and slowdown regimes.
Obviously, the SRR of the rest of the rolling elements is just the same that for the plotted one.

The transition from one lubrication regime to another at the ball-outer-raceway contact is well
depicted in Figure 8a,b. The plotted curves exhibit the fluid film thickness changing, starting from
the start-up phase to the slowdown one, passing through the steady phase. The fluid film thickness
hout

min increases from zero to steady values (curve in royalblue), corresponding to the start-up phase,
while for the slowdown phase (curve in dark-yellow), hout

min decreases from steady values to zero.
The steady regime plotted in red describes the transition of the rolling element from the loaded
zone (low value of hout

min) to the unloaded zone (high value of hout
min). When the steady regime is

reached the hout
min (curve in red) is still the same for each contact occurring between rolling element and

outer-raceway, inside and outside the loaded zone. For these operating conditions for both start-up and
slowdown phases the lubrication regime in the ball bearing changes according to the fluid parameter
Λ f , so the value ranging of Λ f is between 0 to 3. However, the ball bearing only operates in mixed
regime when the steady phase is reached, with Λ f varying between 2.15 and 3.

On the other hand, in Figure 8a,b at the steady phase we observe the influence of the loaded
zone on the fluid film thickness and the fluid parameter, hout

min and Λout
f , respectively. The fluid film

thickness decreases for ψ ranging over the interval
[
−π

2 , π
2
]

in accordance with the load parameter
ε = 0.5. The minimum value of hout

min is reached at ψ = 0, (hout
min < 1 µm), in accordance with the

applied radial load Fr. Consequently, the numerical simulation using DEM may be considered as an
efficient predictive tool for monitoring the transition between lubrication regimes in ball bearings and
in operating conditions.

Secondly, we are now interested in the radial load effect on the lubrication regime in a ball bearing.
The operating conditions and the diametral clearance are kept the same, with ω = 500 rad·s−1 and
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Pd = 0 (ε = 0.5). We have only considered the steady phase and lubricated ball-outer-raceway contact
for each simulated radial load Fr. We assumed that both outer and inner contacts achieve similar
lubrication regimes in the loaded zone of ball bearing for a fixed angular speed. Numerical simulations
have carried out for six values of Fr ranging in the interval [750 N, 7500 N].

(a) (b)

Figure 8. (a) Film fluid thickness hout
min and (b) fluid parameter Λout

f with respect to azimuth angle ψ of
the ball-outer-raceway contact.

In Figure 9a is plotted the fluid parameter for all the simulated radial loads with respect to fixed
operating conditions. It turns out that Fr does not play a significant role because the lubrication of
the ball bearing is still in mixed lubrication regime the radial load. This is well observed in Figure 9b
on a logarithmic scale, where the fluid parameter Λout

f decreases slightly with increasing maximum
normal load Qmax as function of the radial load Fr. In addition, the fit made on the curve of the fluid
parameter Λout

f , as a function of the maximum normal load Qmax, leads to a linear regression with
a negative slope a1 of −0.0727. This value is expected since it is related to the EHL model through
the dimensionless parameter W raised to the power −0.073. Also, the second fit made on the curve
depicted the variation of Fr with respect to Qmax leads to a slope a2 very close to 1, which is in good
agreement with Equation (A3).

(a) (b)

Figure 9. (a) Fluid parameter Λout
f as function of azimuth angle ψ; (b) Fluid parameter Λout

f and
maximum normal load Qmax in the loaded zone at ψ = 0.

Thirdly, we have studied what effect the diametral clearance has on the fluid film thickness.
The numerical simulations that we have conducted on the radial ball bearing with variation of
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diametral clearances aim to study the fluid film spread according to variation of the loaded zone.
Both negative and positive diametral clearances are taken into account in the ball bearing model.
Numerical simulations have been carried out for several values of Pd. The same operating conditions
are considered, namely shaft angular speed ω = 500 rad · s−1 and radial load Fr = 3000 N.

In view of the curves plotted in Figure 10a of the fluid parameter Λout
f , the diametral clearance Pd

does not notably affect the lubrication regime. In addition, Λout
f clearly describes a plateau at azimuth

angle ψ = 0 (Figure 10b). However, the fluid parameter distribution differs considerably in shape
when the diametral clearance varies, passing from positive values to negative values. Indeed, passing
from a negative value of Pd to a positive one, it directly affects the fluid parameter with respect to
azimuth angle ψ of rolling element. The loaded zone of the ball bearing with a diametral preload
(Pd < 0, ε > 0.5) is larger than the case with a diametral clearance (Pd > 0, ε < 0.5) (Figure 10a).
Inversely, the maximum normal load Qmax increases when a diametral clearance is considered
(Figure 10b). In such a mechanical configuration, we have an overloading in the ball bearing with
a reduction of the loaded zone size. Therefore, the ball bearing operates under severe conditions
that could potentially induce early wear mechanisms because of the concentration of normal load
Qmax in the loaded zone. Moreover, the manufacturers advise users to avoid the case with a load
parameter ε < 0.5 because of the risk of premature degradation of ball bearings. It is admitted by
the manufacturers of bearings, that the lifetime of the components is optimized, provided that the
mounting is done with a zero clearance (Pd = 0, ε = 0.5) and a sufficient lubricant amount.

(a) (b)

Figure 10. (a) Fluid parameter Λout
f as a function of azimuth angle ψ; (b) Fluid parameter Λout

f and
load parameter ε as function of normal load Qmax at ψ = 0.

One can state that the radial load Fr, the diametral clearance Pd > 0 and the diametral preload
Pd < 0 do not have a significant effect on the lubrication regime. As shown by the previous numerical
simulations, when the operating steady phase is reached in the ball bearing, no change is expected in
the established EHL regime.

3.2. Effect of Angular Speed

We are now interested in the influence of the shaft angular speed on the lubrication regime of
the radial ball bearing. The angular speed ω (rad·s−1) ranges over the interval [100, 1700] and varies
in steps of 200. A radial load Fr of 3000 N and a zero clearance (Pd = 0, ε = 0.5) are considered.
The lubrication regimes are investigated for both ball-inner-raceway and ball-outer-raceway contacts.
We anticipate that the lubrication regime will be more sensitive to the angular speed of the shaft
this time as well because the lubricant gains in lift. The viscosity and the rolling speed have more
significant effects on the minimum fluid film thickness hmin as indicated by Equation (6). We note that
the rolling velocity Ur is for pure rolling; the relative sliding velocity is assumed negligible. However,



Lubricants 2018, 6, 46 14 of 20

if the sliding velocity becomes significant then the dimensionless rolling velocity Ur is expressed as a
function of both rolling and sliding velocities [37].

In addition, the fluid film thickness at the contact with the outer-raceway can be estimated at
each revolution of the inner ring. Indeed, because of centrifugal effects the contacts are persistent
between the rolling elements and the outer ring (Figure 11a). Furthermore, a disturbance of the fluid
film thickness is observed at ω = 100 rad·s−1 in particular when the rolling element is outside the
loaded zone. This effect is mainly due to changes in rolling velocity of the ball. However, when the
angular speed of the inner ring becomes higher and higher, allowing the rolling element to reach
a more steady velocity, the disturbance totally disappears. On the other hand, because of the load
parameter ε = 0.5, corresponding to zero clearance (Pd = 0), the fluid film thickness at the contact
with the inner-raceway can only be predicted within the loaded zone varying in the interval

[
−π

2 , π
2
]

(Figure 11b). Hence, we have loss of contact with the rolling element in the unloaded zone. Obviously,
the latter is kept under a lubrication regime due to the switching with the loaded zone even if the fluid
parameter Λinn

f is not predicted numerically.

(a) (b)

Figure 11. Fluid parameter as function of azimuth angle ψ: (a) Λout
f for ball-outer-raceway contact;

(b) Λinn
f for ball-inner-raceway contact.

The numerical simulations conducted on radial ball bearings allow us to distinguish between the
lubrication regimes for both ball-outer-raceway and ball-inner-raceway contacts. As is well depicted in
Figure 11a,b, the film parameter Λinn

f related to the fluid film thickness at the ball-inner-raceway contact
is lower because the equivalent radius of convex curvatures is lower than that of concave curvatures(

Λinn
f < Λout

f

)
. Indeed, the comparison of the inner and the outer dimensionless loads Winn,out, upon

which depends Equation (6), indicates a higher value for the ball-inner-raceway contact (Figure 12a).
These results in higher contact forces act on the fluid film thickness and lead to a maximum pressure at
the convex contact with the inner-raceway. Hence, it is sufficient to estimate the fluid film thickness
hinn

min at the contact with the inner-raceway to predict the lubrication regime. Nevertheless, for a ball
bearing operating at high speed, the centrifugal force of the rolling element is added to the normal
force at the contact with the outer-raceway. The fluid film thickness hout

min may be only estimated at
the contact with the outer-raceway. This centrifugal effect is clearly observed in Figure 12b at the
ball-outer-raceway contact where the maximum normal load Qmax increases in comparison to the
ball-inner-raceway contact, where Qmax remains close to the analytic solution in static mode, with
Qth

max = 1457 N. Moreover, the fit made on the curve of the fluid parameter Λinn
f , as function of the

angular speed of shaft ω (Figure 11a), achieves a linear regression with a positive slope a of 0.6797.
This value is very close to the exponent of the dimensionless term of the EHL model, related to the
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rolling velocity U 0.68
r . This confirms once again that the DEM approach is well done, and above all

allows fast monitoring of the lubrication regime of the ball bearing under operating conditions.

(a) (b)

Figure 12. (a) Fluid parameter and maximum contact pressure at ψ = 0 as function of angular speed ω;
(b) Minimum fluid film thickness and maximum normal load at ψ = 0 as function of angular speed ω

In Table 3 are summarized the lubrication regimes with respect to imposed angular speed.
We remark when the ball bearing operates at a specific angular speed ω the rolling elements may
simultaneously be under two lubrication regimes. For example, in the case of ω in the interval
[900, 1700], we have at the same time both mixed and fully fluid regimes at the inner-raceway and
outer-raceway contacts, respectively (Table 3). Unlike the cases when radial load Fr and diametral
clearance Pd are considered to study their influence on the lubrication regime, the imposed angular
speed plays a more significant role in lubrication regime transition. The EHL model is more sensitive to
the rolling speed since the dimensionless rolling velocity U 0.68

r prevails over the dimensionless
load W −0.073.

Table 3. Lubrication regime in the loaded zone at ψ = 0 of radial ball bearing with zero clearance
(Pd = 0, ε = 0.5).

Angular Speed
(
rad · s−1) Lubrication Regime

Inner Contact Outer Contact

ω ≤ 100 Λ f < 1
100 < ω ≤ 1100 1 < Λ f < 3 1 < Λ f < 4
1100 < ω ≤ 1700 3 < Λ f ≤ 4 4 < Λ f < 5

4. Conclusions and Perspectives

Through this study we wanted to highlight the relevance of the DEM approach in describing the
dynamic behaviour of multicontact systems such as rolling bearings. Under a quasi-static radial load,
the proposed discrete description of a radial ball bearing, using a contact stiffness model based on
elliptic integrals, achieves very similar radial deflection and normal load distributions in comparison to
analytic formulation [45]. The implementation of the discrete model in the MULTICOR-3D software
allowed us to investigate the lubrication regimes from a qualitative point of view under operating
conditions. Moreover, in the context of the EHL study, the DEM has proven to be a useful numerical
tool since it enables continuous prediction of the lubrication regimes and dynamic management of
the contact interface. By driving various parameters to be investigated, such as the radial load,
diametral clearance and shaft angular speed, it has clearly been shown that the lubrication regime is
basically dependent on the angular speed of the inner ring. In other words, the transition between
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the different lubrication regimes is mainly related to the rolling speed at the lubricated contact
in the loaded zone of the ball bearing. As shown in figures consecutive to the parametric study,
once the ball bearing reaches the steady state, both the radial load and diametral clearance have a
minor effect on the lubrication regime. Starting from the mechanical behaviour at the contact interface
and lubrication regime identification, the proposed discrete modelling may be extended to further
studies, for example, dealing with a ball bearing operating under abnormal load or noisy kinematic
conditions. In fact, such undesirable defects appear often when ball bearings are subjected to extreme
operating conditions, typically under heavy loadings, in the presence of severe shocks, or in case of
inadequate mounting. Furthermore, the innovative monitoring method recently developed and
based on electrical measurements [20] may be also performed for ball bearing diagnosis taking into
consideration the capacitive behaviour or the dielectric properties of the lubricant. In addition, thermal
effects due to the operating conditions of the rolling bearing involve significant modifications of
the lubricant properties, in terms of viscosity and contamination by debris. These thermal aspects
must also be considered in the discrete modelling to investigate the lubricant aging effects on the
lubrication regime.
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Nomenclature

αe Restitution coefficient of steel
δr Radial shift
δn,t Normal/tangential relative displacement
η Dynamic viscosity of the fluid
Λ f Fluid number
µ Friction coefficient
ν Poisson’s ratio of steel
ω Shaft/inner-ring angular speed
E Approximate elliptic integral of second kind
F Approximate elliptic integral of first kind
ψ Azimuth angle
σa1,2 Roughness parameter
ε Load parameter

ξ Viscosity-pressure coefficient of the lubricant
a Restitution coefficient of steel
Cn,t Normal/tangential viscous damping coefficient
E Young’s modulus of stee
E′ Effective elastic modulus of steel
Fr Applied radial load
G Shear modulus of stee
hmin Semi-major axis of the Hertz’s elliptical contact
Jr Radial integral
k Ellipticity parameter
Kn,t Contact normal/tangential stiffness
Pd Diametral clearance
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Qmax Maximum normal load at ψ = 0
Rb Rolling element radius
Rc Curvature radius of inner/outer raceway
Ri Inner ring radius
Ro Outer ring radius
Rz Cage element radius
Rcurve Curvature sum radius
Ur Rolling velocity
vt Sliding velocity
Z Number of rolling elements

Appendix A. Normal Load and Radial Deflection in Radial Ball Bearing

For a rigidly supported ball bearing under a radial load Fr, the radial deflection δψ at an azimuth
angle ψ is given by (4):

δψ = δr cosψ− 1
2

Pd (A1)

with δr the inner-ring radial shift. According to the standard theory, the mechanical state of a
bearing is provided by a dimensionless load parameter, ε = 1

2

(
1− Pd

2 δr

)
, related to the diametral

clearance/preload Pd and the inner-ring radial shift δr. The dimensionless load parameter ε reflects
schematically the percentage of rolling elements that are put in play by the radial load Fr. From a
deformation point of view, the radial ball bearing may be in one of the following three configurations:
diametral preload (Pd < 0, ε > 0.5), zero clearance or zero preload (Pd = 0, ε = 0.5) and diametral
clearance (Pd > 0, ε < 0.5). The ball-inner-raceway (-outer-raceway) normal load Qψ at an azimuth
angle ψ is determined as function of the load parameter ε such that:

Qψ = Qmax

[
1− (1− cosψ)

2 ε

]3/2

(A2)

where Qmax is the maximum normal load at ψ = 0. For a radial ball bearing with zero clearance under
radial load Fr, Stribeck [11] determined that:

Qmax =
Fr

Z Jr (ε)
(A3)

with Z the number of rolling elements (Z = 9) and Jr the radial integral. For example, for a radial ball
bearing with zero clearance (Pd = 0, ε = 0.5) the radial integral Jr is of 0.2288 [45].

To validate the discrete model of a radial ball bearing, numerical simulations are performed
with MULTICOR-3D software under quasistatic loading. Figure A1a,b exhibit the radial deflection δψ

and the normal load Qψ plotted with respect to azimuth angle ψ of rolling element. Three types of
clearance are considered, ε = 0.685, ε = 0.5 and ε = 0.4 which corresponds to three configurations with
negative clearance (Pd = −12.6 µm), zero clearance (Pd = 0) and positive clearance (Pd = 12.6 µm),
respectively. The azimuth angle ψ of the rolling element is varied by driving the inner ring at a slow
angular speed (ω = 1 rad·s−1) to avoid any centrifugal effect. One can conclude that the discrete element
approach achieves results very close to the analytic solution given in [45]. As a reminder, lubrication
does not have a significant effect in this validation study because of the quasi-static assumption, which
means only the boundary regime may be expected, involving the hysteretic damping coefficient Chyst
and friction coefficients µ of 0.1.
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(a) (b)

Figure A1. (a) Radial deflection δψ and (b) normal load Qψ distributions under radial load Fr = 3000 N.

In Figure A2a,b are plotted both radial deflection δψ and normal load Qψ for radial load Fr

starting at 1000 N and increasing in steps of 1000 N up to 3000 N. The numerical simulations achieve a
mechanical state in the radial ball bearing in good agreement with analytic formulation. The more
radial load Fr there is, the larger the radial deflection δψ and normal load Qψ. To prove the efficiency of
the DEM approach, a simple assessment can be made on δψ and Qψ at ψ = ±π

2 with zero clearance
(Pd = 0, ε = 0.5). In accordance with Equations (A1) and (A2), the numerical simulations lead to
δψ=± π

2
= 0 and Qψ=± π

2
= 0, which is nicely shown in Figure A2a,b.

(a) (b)

Figure A2. (a) Radial deflection δψ and (b) normal load Qψ distributions under several radial load Fr.
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