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NUMERICAL STUDY OF QUINTIC NLS EQUATION WITH DEFECT

L. Di Menza1, O. Goubet2, E. Hamraoui3

Abstract.– In this work, we numerically investigate how a defect can affect
the behavior of traveling explosive solutions of quintic NLS equation in the one-
dimensional case. Our numerical method is based on a Crank-Nicolson scheme in
the time, finite difference method in space including a Perfectly Matched Layer
(PML) treatment for the boundary conditions. It is observed that the defect
splits the incident wave in one reflected part and one transmitted part; hence
the dynamics of the solution may be changed and the blow-up may be prevented
depending on the values of the defect amplitude Z. Moreover, it is numerically
found that the defect can be considered as a barrier for large Z.

Keywords.– Quintic NLS equation, delta-function, explosive traveling solution, blow-up.

1. Introduction

Nonlinear Schrödinger equation (NLS) plays an important role in the understanding of many
physical phenomena such as wave propagation in nonlinear media, quantum mechanics or
plasma physics. During the last decade, an intensive effort has been paid on the study of
the influence of a single defect on the behavior of the solutions that can be physically inter-
preted as an impurity in the domain.
In this paper, we study the one-dimensional NLS equation with a quintic nonlinearity and a
defect represented by a delta-function:

(1)

{
iut + uxx + Zuδ0 + |u|4u = 0, x ∈ R t > 0

u(0, x) = u0(x) x ∈ R

where ut = ∂u
∂t

and uxx = ∂2u
∂x2

. Here, Z stands for the amplitude of the defect and u = u(t, x) ∈
C. The exponent involved in the nonlinearity is known as the critical exponent, for which
blow-up may occur at finite time.

In the literature, recent efforts have been paid to study the solutions of Schrödinger equations
involving a delta functions. For example, in a serie of papers, Holmer, Marzuela and Zworski
analyzed the splitting of a soliton in presence of the defect, using the scattering properties in
the cubic one-dimensional integrable case (see [8], [9]) for which the Cauchy problem is globally
well-posed in H1(R). Asymptotic rates for the transmission coefficients of solitons have been
obtained and numerically illustrated. The stability question of standing waves solutions for
this perturbed model has been adressed in [11]. In the defocusing case, the H1 asymptotic
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2 NUMERICAL STUDY OF QUINTIC NLS EQUATION WITH DEFECT

completeness for the scattering operator has been proved in the defocusing case. The Gross-
Pitaevskii equation with non-zero boundary conditions at infinity has also been investigated in
[10].

The aim of this work is to study the influence of the defect on the behavior of the well-known
solutions in the absence of defect in the quintic critical case, especially traveling standing wave
solutions and blowing-up solutions that may be encountered in this case. Since this equation
is not integrable, the inverse scattering method is not available which makes the numerical
investigation crucial in order to have a good qualitative understanding of the solution dynamics.
The paper is organized as follows: in Section 2, some theoretical results are given for the
mathematical analysis of equation (1). In Section 3, the numerical method that will be used
for simulations is presented. Finally, numerical results are discussed in Section 4.

2. Main theorical results

In this section, we recall the characteristics and the theoretical results of the NLS equation with
a point defect. This ensures a good understanding of numerical approaches used afterwards.
The following theorem concerns the well-posedness of equation (1) in H1(R) (see Theorem 3.7.1
in [2]):

Theorem 2.1. For any u0 ∈ H1(R), there exists T > 0 and a unique u ∈ C([0, T ), H1(R)) ∩
C([0, T ), H−1(R)) solving (1) such that either T = +∞ or T < +∞ and ‖ux‖L2 →∞ as t→ T .
Moreover, u satisfies the conservation of mass M(u(t)) = M(u0) and conservation of energy
EZ(u(t)) = EZ(u0) for t ∈ [0, T ), where M and EZ are formally defined for a given function
v = v(x) as

M(v) = ‖v‖2
L2 and EZ(v) = ‖vx‖2

L2 − Z|v(0)|2 − 1

3
‖v‖6

L6 .

We now recall some elementary properties of the solutions of (1), proved in [4] (and in the
references therein) for smooth solutions

Proposition 2.2. Assume that the initial data u0 is smooth (say C∞) and has compact support
in (−∞, 0). Let u ∈ C([0, T ];H1(R)) solution of (1). Then for each t, we have u(t) ∈ H2(R∗)∩
H1(R) and satisfies both iut+uxx+|u|4u = 0 for x ∈ R∗, t > 0 as well as the boundary condition

(2) ux(t, 0
+)− ux(t, 0−) = −Zu(t, 0).

This result comes from the initial formulation of (1) set in a distributional sense. Indeed, the
linear part acting on a test-function ϕ ∈ C∞0 writes

< uxx + Zδ0u, ϕ >= − < ux, ϕx > +Zu(t, 0)ϕ(0).

Assuming that u belongs to H1, u is continuous at x = 0. Moreover, if the first spatial derivative
of u coincides with a C1 fonction in the two half-lines with a finite jump at x = 0, this product
reduces to

< uxx + Zδ0u, ϕ >=

∫ +∞

−∞
uxxϕdx+ [ux(t, 0

+)− ux(t, 0−) + Zu(t, 0)]ϕ(0)

using two distinct integrations by parts performed on (−∞, 0) and (0,+∞). By choosing ϕ
adequately, we finally obtain (2) and the NLS equation for x 6= 0.
From the mathematical point of view, the solution belongs to C([0,+∞);D(A)) where A is
the unbounded operator −∆ whose domain is D(A) = {u ∈ H2(R∗) ∩ H1(R); the condition
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(2) is valid}. The condition (2) can be seen as a jump condition at the defect location. Note
that for Z = 0, this reduces to the continuity of the first derivative at zero. For a general
nonlinearity |u|p−1u where p ∈ [1,+∞), Fukuizumi, Ohta and Ozawa in [4] proved the existence
and uniqueness of a local solution in time with initial values u0 in H1(R). They also showed
that the Cauchy problem is globally well-posed in H1(R) for 1 < p < 5.

2.1. Global solutions. In the case Z = 0, Weinstein proved in [14] that the Cauchy problem
for the quintic NLS equation is globally well-posed in H1(R) for sufficiently small initial-value
u0. This reads as

Theorem 2.3. Given Z = 0 and u0 ∈ H1(R), a sufficient condition for global existence in the
initial-value problem (1) is

(3) ‖u0‖L2 < ‖R‖L2 ,

where R is the positive solution of the equation −φ+ φxx + φ5 = 0, of minimal L2 norm, often
referred as the ground state.

This result shows that ‖R‖L2 appears as the critical mass for the formation of singularity for
the solutions of NLS equation

(4) iut + uxx + |u|4u = 0, x ∈ R, t > 0.

One may wonder if there exists a similar but different result for solutions of (1). We know
(see [11]) that for some values of Z, there exists ground states that are different of the usual
ground state without defect. Actually, the condition (3) comes from a precise formulation of
the Gagliardo-Nirenberg inequality that reads (see [5])

(5) ‖u‖6
L6
≤ 3
( ‖u‖L2

‖R‖L2

)4

‖ux‖2
L2
.

One may wonder for instance in the case Z < 0 what is the best constant in the modified
Gagliardo-Nirenberg inequality that reads

(6) ‖u‖6
L6
≤ CZ‖u‖4

L2
(‖ux‖2

L2
− Z|u(0)|2),

for any u in H1(R), where ‖ux‖2
L2 −Z|u(0)|2 = (Au, u). We have straightforwardly CZ ≤ C0 =

3
‖R‖4L2

. Conversely, taking u(x) = R(x−µ) and letting µ→ +∞, we have that in fact CZ = C0.

It transpires from this simple computations that of course the defect does not play any role for
solutions whose location is very far from 0. We will see numerically in the sequel that the point
defect does play a role for solutions that encounter its location.

Actually, an analogous result of theorem 2.3 holds true if Z 6= 0.

Proposition 2.4. A sufficient condition for global existence in the initial value problem (1) for
Z 6= 0 and u0 ∈ H1(R) is

‖u0‖L2 < ‖R‖L2 .

Proof. We prove that under this smallness assumption, the L2 norm of the gradient remains
uniformly bounded. Due to the conservation of energy, we have that

(7) Z|uZ(t, 0)|2 = ‖uZx ‖2
L2 −

1

3
‖uZ‖6

L6 − EZ(u0) ≥ ‖uZx ‖2
L2

(
1−

( ‖u‖L2

‖R‖L2

)4
)
− EZ(u0)
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due to Gagliardo-Nirenberg inequality (5). We now claim that for any ε > 0, we have

(8) |Z||uZ(t, 0)|2 ≤ |Z|‖uZ‖L2‖uZx ‖L2 ≤ Z2

2ε
‖uZ‖2

L2 +
ε

2
‖uZx ‖2

L2 .

using Agmon inequality and Young inequality. Combining (7) and (8), we then find that

‖uZx ‖2
L2

(
1−

(‖u0‖L2

‖R‖L2

)4

− ε

2

)
≤ EZ(u0) +

Z2

2ε
‖u0‖2

L2

since the mass conservation holds. Choosing then ε sufficiently small such that each term is
strictly positive, which is possible since ‖u0‖L2 < ‖R‖L2 , we conclude that ‖uZx ‖L2 is bounded
which implies that the solution uZ is global in H1. This concludes the proof. �

2.2. Blow-up solutions and the virial identity. For sufficiently large initial data, Glassey
[6] produced the necessary conditions for blow-up for solutions of (4) introducing the momentum
and virial of a given function u as respectively

q(u) =

∫
R
x2|u|2 dx and V (u) = =m

(∫
R
xuxu dx

)
.

Set E(u) = E0(u) for the energy in the case Z = 0. We recall from [5, 6]

Theorem 2.5. Let u be a solution of (4) such that q(u0) < +∞. Assume that either E(u0) < 0
or E(u0) = 0 and V (u0) < 0. Then there exists a finite blow-up time T ∗ such that

lim
t→T ∗

‖ux‖L2 = +∞ and lim
t→T ∗

‖u‖L∞ = +∞.

The key argument in the proof is that q(u) cannot exist for any positive time t. Actually, we
may address the same strategy in the case Z 6= 0 and we have (see [11]):

Theorem 2.6. Let u0 ∈ H1(R) such that xu0 ∈ L2(R) and let u solves (1). Setting q(t) :=
q(u(t)) and V (t) := V (u(t)), we have for t ∈ (0, T )

(9) q′(t) = 4V (t)

and

(10) V ′(t) = 2EZ(u0) + Z|u(t, 0)|2.

The calculations we present in the following are formal. A rigorous proof of the virial theorem
is given in [11].

Proof. We first calculate q′(t). We formally have

q′(t) = 2<e
(∫

R

x2utu dx

)
.

Recalling that ut = iuxx + i|u|4u and that ux(t, 0
+)− ux(t, 0−) = −Zu(t, 0) for each t ∈ (0, T ),

we deduce with integrations by parts performed on (−∞, 0) and (0,+∞) that

(11)

q′(t) = −2=m
(∫

R
x2uxxu dx

)
= 2=m

(∫
R
ux(x

2u)x dx

)
− 2=m

(
[x2uxu]0

+

0−

)
,

= 4

∫
R
x uxu dx = 4V (t).
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We also have

V ′(t) = −2=m
(∫

R
x utux dx

)
+ =m

(∫
R
x(utu)x dx

)
.

On one hand,

(12)

=m
(∫

R
x (utu)x dx

)
= −=m

(∫
R
utudx+ [x utu]0

−

0+

)
= −=m

(∫
R
(iuxx+ i|u|4u) u dx

)
= ‖ux‖2

L2 − ‖u‖6
L6 − [uxu]0

−

0+ ,

Using the transmission condition in zero, the first integral rewrites

=m
(∫

R
x(utu)x dx

)
= ‖ux‖2

L2 − ‖u‖6
L6 − Z|u(t, 0)|2.

On the other hand,

−2=m
(∫

R
x utux dx

)
= −2<e

(∫
R
x (uxx + |u|4u)ux dx

)

= −2<e
(∫

R
x uxxux dx

)
− 2<e

(∫
R
x |u|4uux dx

)
= ‖ux‖2

L2 +
1

3
‖u‖6

L6 .

It follows that V ′(t) = 2‖ux‖2
L2 −Z|u(t, 0)|2− 2

3
‖u‖6

L6 which finally leads to V ′(t) = 2EZ(u0) +
Z|u(t, 0)|2. �

A sufficient condition for blow-up is the following:

Proposition 2.7. Let Z < 0 and let u solves (1) with finite momentum. If EZ(u0) < 0, then
there exists a finite time T ∗ such that

lim
t→T ∗

‖ux‖L2 = +∞.

Proof. If Z < 0 and EZ(u0) < 0, the energy conservation and virial equality (10) shows that
V (t) is a decreasing function, that implies

(13) 0 ≤ q(t) ≤ q(0) + 4V (u0)t+ 4EZ(u0)t2.

Hence, the solution cannot last forever since t → +∞ leads to a contradiction if EZ(u0) < 0.
�
Once again, at a first glance, Z does not play a role for all blow-up solutions. We will discuss
numerically in the sequel that in fact it does.

2.3. The wall effect while |Z| → +∞. We now focus on the case |Z| → +∞. In this case,
Z can be seen as a penalization term in transmission condition (2). This means that when |Z|
is large, this condition formally reduces to Dirichlet condition u(t, 0) = 0. We intend here to
derive a rigorous asymptotic.
We then give the following statement
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Theorem 2.8. Let the initial data u0 ∈ H1(R) of the problem (1) be such that supp(u0) ⊂
(−∞, 0) and that

(14) ‖u0‖2
L2 < ‖R‖2

L2

where ‖R‖2
L2 is related to the best constant involved in the one-dimensional Gagliardo-Nirenberg

inequality (5). Then, when Z converges to −∞, the solution u = uZ of the problem (1)
converges to u∞ solution of the limit problem

(15)


ivt + vxx + |v|4v = 0, x ∈ (−∞, 0) t > 0

v(0, x) = u0(x) x ∈ (−∞, 0)

v(t, 0) = 0 t > 0.

Proof. Using the energy conservation and since supp(u0) ⊂ (−∞, 0) we obtain

(16) ‖uZx ‖2
L2 − Z|uZ(t, 0)|2 − 1

3
‖uZ‖6

L6 = ‖(u0)x‖2
L2 −

1

3
‖u0‖6

L6 = E0(u0).

Using assumption (14), the Gagliardo-Nirenberg inequality implies that E0(u0) is a positive
constant, since

‖(u0)x‖2
L2 −

1

3
‖u0‖6

L6 ≥ ‖(u0)x‖2
L2

(
1−

(‖u0‖L2

‖R‖L2

)4
)
.

Furthermore, in the case Z < 0, (16) implies

E0(u0) ≥ ‖uZx ‖2
L2 −

1

3
‖uZ‖6

L6 ≥ ‖uZx ‖2
L2

(
1−

(‖u0‖L2

‖R‖L2

)4
)
.

Consequently the H1 norm of the solution is uniformly bounded in time: indeed, we have

‖uZ‖2
H1 = ‖uZ‖2

L2 + ‖uZx ‖2
L2 = ‖u0‖2

L2 + ‖uZx ‖2
L2 ≤ ‖u0‖2

L2 +
E0(u0)

1−
(
‖u0‖2
‖R‖2

)4 .

From this, we conclude that the solution uZ is global in H1(R). The estimate (16) also leads
us to

−Z|uZ(t, 0)|2 ≤ E0(u0)

and passing to the limit Z → −∞, we finally have

lim
Z→−∞

|uZ(t, 0)| = 0.

Hence, we can extract a subsequence that converge weakly-star in L∞(0, T ;H1(R)) towards
u∞. We denote by uZ this subsequence. We have u∞(t, 0) = 0 if it makes sense.
We know that uZ is bounded in L∞(0, T ;H1(R)). Now, we show that uZt is bounded in an
appropriate space. We have

uZt = i(uZxx + |uZ |4uZ + ZuZδ0).

It is easy to see that the map uZ 7−→ uZxx + uZδ0 is continuous from H1(R) into H−1(R).
Therefore uZt remains in a bounded set of L∞(0, T ;H−1(R)). We now use the following theorem
(see [13])
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Theorem 2.9. Consider V ⊂ H a compact embedding between two Hilbert space. Consider
H ∼ H ′ and then H ′ ⊂ V ′. Consider T > 0 and a sequence vn that is bounded in L2(0, T ;V )
and such that vnt is bounded in L2(0, T ;V ′). Then there exists a subsequence vn

′
that converge

strongly in L2(0, T ;H)

Here uZ is bounded in L2(0, T ;H1(I)) for any compact interval I = [−L,L] of R and its
time derivative is bounded in L2(0, T ;H−1(I)). Then for any In = [−n, n] we may extract a
subsequence uZn that converges strongly in L2(0, T ;L2(In)). Using the Cantor diagonal process
we may extract a subsequence still denoted by uZ such that uZ converges strongly towards u
in L2(0, T ;L2(I)), for any I. We set L2(0, T ;L2(Rloc)) for this convergence. Interpolating, we
also have that this convergence holds in L2(0, T ; C(I)) for any I.
We may now pass to the limit. Consider a test function ϕ ∈ C∞0 (I) for a given I. We have that

(17) < uZt − i(uZxx + ZuZδ0), ϕ >H−1,H1=< i|uZ |4uZ , ϕ >H−1,H1 ,

where < ., . >H−1,H1 denotes the dual product. On the one hand, due to the weak convergence
results stated above the left hand side of (17) pass to the limit. On the other hand, interpolating
between L∞(0, T ;H1(I)) and L2(0, T ;L2(I)) we now that uZ converges strongly towards u in
L6(0, T ;L6(I)), and then we may pass to the limit in the right hand side of (17). Since the
limit equation is valid for any I and any test function supported in I, then u is solution to
the limit problem set in R. We observe that since u belongs to L2(0, T ;H1(R)) and since its
time derivative belongs to its dual space, then u is a continuous function in time with value
in L2(R) (and by interpolation in C(R)). Then the wall condition u(t, 0) = 0 is valid and the
initial condition u(0, x) = u0(x) holds true. This completes the proof of the theorem. �

In the following Sections, we investigate the ability for the defect to stop or slow down the
blow-up mechanism.

3. The numerical method

3.1. Numerical method without defect. We start with the numerical method in the case
Z = 0. Our discretization is based on a finite differences semi-implicit Crank-Nicolson scheme
in time and space, that is well-known to be unconditionnally stable in L2 and second-order
both in time and space. In order to perform simulations in a bounded domain, one has to
implement well-adapted boundary condition in order to avoid reflections due to the boundary.
Among all possible choices known in the literature, we have chosen to use Perfectly Matched
Layer approach (PML) [15]. This consists in solving a Schrödinger-like problem on a domain
including absorbing layers that surround the numerical domain, where outgoing waves will be
forced to vanish without propagation accross the domain under study. Let Ω = (xL, xR) be the
computational domain and L be the width of PML band.

xLP xL xRPxR
Figure 1. Domain with PML.

The PML equation, defined in an enlarged interval (xLP , xRP ) = (xL − L, xR + L), is written

iut +
1

(1 +Rσ)2
uxx −

Rσ′

(1 +Rσ)3
ux + |u|4u = 0, x ∈ (xLP , xRP ), t > 0
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where R ∈ C and σ is the so-called absorption function

σ =


σ0(x− xL)2, xLP < x < xL
0, xL < x < xR

σ0(x− xR)2, xR < x < xRP ,

with σ0 > 0. A specific choice of parameters R, σ0 and L (namely R = eiπ/4, σ0 = 1 and L = 2)
minimizes reflected waves at the boundary: indeed, the outgoing waves are anihilated when
travelling inside the absorbing layer. At the two boundary points {xLP , xRP} a zero Dirichlet
boundary conditions is imposed. The strong formulation of the problem in the absence of defect
is then given by

(18)


iut +

1

(1 +Rσ)2
uxx −

Rσ′

(1 +Rσ)3
ux + |u|4u = 0, x ∈ (xLP , xRP ), t > 0,

u(0, x) = u0(x), x ∈ (xLP , xRP ),

u(t, xLP ) = u(t, xLR) = 0, t > 0.

Following a finite difference strategy, we intend to compute the approximate value, say unj , of
the solution of (18) at time tn = n∆t and at spatial point xj = xLP + j∆x. Using Taylor
expansions that enable us to compute approximations of the partial derivative operators, we
get for each (j, n)

(19)
i
un+1
j − unj

∆t
+

1

(1 +Rσj)2

u
n+1/2
j+1 − 2u

n+1/2
j + u

n+1/2
j−1

∆x2
−

Rσ′j
(1 +Rσj)3

u
n+1/2
j+1 − un+1/2

j−1

2∆x

+
1

2
(|un+1

j |4un+1
j + |unj |4unj ) = 0,

where u
n+1/2
j = (unj + un+1

j )/2. This nonlinear system is solved using a fixed point method at
each time step. It means that successive linear equations are solved until the nonlinear error
that quantifies the size of two consecutive iterations becomes small enough.

3.2. The delta-function approximation. We now focus on the discretization of the defect
term at x = 0. As in the work of Le Coz and al. [11], J. Holmer et C. Liu [7] and also in [5], we
do not consider the initial form of the problem but choose to take into account the transmission
condition in zero. We thus consider the problem

(20)


iut +

1

(1 +Rσ)2
uxx −

Rσ′

(1 +Rσ)3
ux + |u|4u = 0, x 6= 0, t > 0,

ux(t, 0
+)− ux(t, 0−) = −Zu(t, 0), t > 0.

Discretization of the transmission condition is performed with a O(∆x2) accuracy for the sake
of consistency with the second order accuracy in space of the scheme. Starting from the
approximation

ux(t, 0
+) =

1

∆x

(
− u(t, 2∆x) + 4u(t,∆x)− 3u(t, 0)

)
+O(∆x2)

and the similar expression for ux(t, 0
−), we get a second-order approximation of the transmission

condition as

−unD+2 + 4unD+1 + 2(Z∆x− 3)unD + 4unD−1 − unD−2 = 0
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where integer D stands for the defect index (such that xRL +D∆x = 0). This extra relation is
added to the discretization (19) expressed for j 6= D.

3.3. Numerical evidence of blow-up. It is reported that for Z = 0 there are three ways of
checking blow-up occurrence. Indeed, finite time blow-up can manifest itself as the divergence
of the norms ‖u‖L∞ and ‖ux‖L2 . Using Gagliardo-Nirenberg inequality (5), it leads us to the
divergence of ‖u‖L6 . When dealing with numerical computations, one naturally wonders how
blow-up can be numerically detected. In this condition, one can compute the three discrete
norms and check the corresponding orders of magnitude.
Computing the L∞ norm may seem the most intuitive way for the blow-up detection, because
it is the most natural way of investigating how ”big” the solution is. However, for conservative
schemes for which the discrete l2 norm ‖un‖l2 is conserved, the maximal amplitude is attained
at some index j0 and it can be written that

‖un‖2
l∞ = |unj0|

2 ≤ ‖un‖2
l2 =

∑
j

|unj |2 =
∑
j

|u0
j |2 ≈

1

∆x
‖u0‖2

L2 .

It means that the computed solution cannot go higher in amplitude than C√
∆x

. Consequently,

for a prescribed spatial mesh, the maximal amplitude is uniformly bounded and numerical
detection of blow-up in terms of maximal amplitude requires to deal with well-adapted grid:
approximate solutions of maximal magnitude M can only be computed for spatial mesh with
size ≈ 1/

√
M which may be inappropriate if M is large.

Figure 2. Discrete versions of ‖ux‖2
L2 , ‖u‖6

L6 and ‖u‖L∞ versus time (left) and
spatial singularity formation at t = 0.9557 (right).

Other way is to investigate the time evolution of the discrete versions of ‖u‖6
L6 and ‖ux‖2

L2 .
Indeed, these two norms are involved in the energy; checking these quantities gives us infor-
mation about the energetic divergence whereas the maximum amplitude depicts the punctual
one.
In order to illustrate this, we plot in Figure 2 the temporal plot of these three discrete norms
as well as the singular profile when computing a blowing-up solution that is initialized with
initial data calculated from the self-similar solution that will be given in Section 4. It can be
logically noticed that the orders of magnitude of ‖u‖6

L6 and ‖ux‖2
L2 are much larger than the
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one found for ‖u‖L∞ . This suggests us to detect the blow-up occurrence in terms of ”energetic”
norms instead of the maximal amplitude of the solution.
In all that follows, we will compute the discrete approximation of the quantity ‖ux‖L2 to state
the occurrence of blow-up.

4. Numerical results

In this Section, we investigate the influence of the defect on the dynamics of solutions of the
ideal case Z = 0. Several kinds of Cauchy data will be considered. We begin by travelling
states.

4.1. Travelling solutions. We first perform simulations when considering travelling solutions
built from the ground state [12], that explicitly express as

(21) u(t, x) = R(x− vt− x0) exp
(
i
v

2
x
)

exp
(
i
(

1− v2

4

)
t
)
,

with R(x) = 31/4/(cosh(2x))
1
2 . This wave is located at x0 that will be chosen far away for

the defection location in order to be initially consistent with the transmission condition. As
preliminary test, we numerically check the conservation of mass and energy with a defect of
amplitude Z = 10. We have chosen discretization parameters ∆x = 5×10−3 and ∆t = 2.5×10−5

for a simulation performed until final time T = 0.7, starting for the initial standing wave
centered at x0 = −5 considered with v = 30. Let Mn and En respectively stand for the discrete
mass and energy at t = tn. In Figures 3, we represent the order of magnitude of the relative
errors made for Mn and En versus time.

Figure 3. Plot of log Mn+1−Mn

Mn (left) and log En+1−En

En (right) versus time.

It is observed that the numerical scheme mimics the right preservation of the invariants of the
NLS equation at a discrete level, claiming that the relative error for these quantities is found
smaller than 10−6.

We now investigate the influence of the defect on the propagation of the travelling wave solution
for Z = 10, starting from an initial state that is located at the left-side of the defect (see Figure
4), inside the numerical domain Ω = (−20, 20). Following a phase of interaction with the defect
that is observed in Figure 4, we see that the solution splits into two parts: a transmitted wave
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ut and a reflected one ur. We note tZ the interaction time such that for t > tZ , we have
u = ut + ur where ut turns to be the restriction of u on (0, xR), while ur is the restriction of u
on (xL, 0). In Figure 5, we point out that ut travels to the right whereas the reflected wave ur
propagates to the left side of the domain.

Figure 4. Initial profile and solution profile when interacting with the defect
for Z = 10 at t = 0.174.

In the following test, we calculate the transmitted mass for the same previous initial data and
for different values of Z: Z = 2 and Z = 10. The plots viewed in Figure 5 show that large
defect amplitude enhances the reflection of the incoming wave.

Figure 5. Left: Solution profile after defect interaction for two values of Z
(continuous line: Z = 2, dot-dashed line : Z = 10) at t = 0.3846. Right: plot of

the transmitted mass ratio
M∞Z
‖u0‖2

L2
as a function of Z.

To evaluate the transmitted mass, we compute M t
Z as the portion of the mass located between

the defect interface and the right boundary. We then set

M t
Z =

∫ xL

0.5

|uZ(t, x)|2 dx
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for different Z. Our simulations have shown that as t is large enough, M t
Z converges to a

limit value M∞
Z that depends on Z. We have found in particular M∞

2 = 2.7091, M∞
5 = 2.649

and M∞
100 = 0.2261. It is noticed that the bigger Z is, the smaller the transmitted part is.

We also decide to plot the transmitted mass ratio M∞
Z /‖u0‖2

L2 as a function of Z. The plot
displayed in Figure 5 shows us that this ratio logically turns out to be a decreasing function
of Z and tends to zero when Z tends to infinity. For large Z, no more mass is transmitted at
the defect location and the point x = 0 behaves as a boundary point for which Dirichlet would
have been prescribed. Thus, for large enough Z, the solution is totally reflected and the defect
plays the role of a barrier. In Figure 6, we present the result obtained for Z = −10000 from a
travelling data centered at x0 = −15, that is far enough from the defect in order to avoid initial
interactions. It can be clearly seen that the transmitted solution is nothing but the initial one
that has been reflected by the defect.

Figure 6. Solution profile for Z = −10000 at different times.

In Figure 7, it is numerically checked that |uZ(t, 0)| tends to zero when Z tends to −∞, which is
in good agreement with the theoretical results. Our simulations have shown that −Z|uZ(t, 0)|2
is always bounded by EZ(u0) = 612.567 for all time, as shown in Section 2.

Figure 7. Evolution of |u(t, 0)| versus time for Z < 0 (left) and Z > 0 (right).

The question that now arises is what happens in the symmetric case Z > 0. In Figure 7, the
convergence of |uZ(t, 0)| to zero is observed when Z tends to +∞. When Z → +∞, the defect
behaves as a Dirichlet boundary condition (DBC) at x = 0. In Figure 8, we plot at the same
final time t = 0.777 the solutions computed with Z = −10000 and Z = 10000 compared with
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the solution v calculated with DBC at x = 0. The superposition of the three curves is clearly
observed. We then conclude that the defect always plays the role of a barrier when |Z| → ∞.
Note that the case Z → +∞ is not covered by Theorem 2.8 given in Section 2.

Figure 8. Comparison between solution profile of NLS equation with DBC and
the solutions obtained for Z = −10000 and Z = 10000 at t = 0.777.

4.2. Blowing-up travelling solutions. We now study the influence of Z on the behavior of
explosive solutions. We address here the question of blow-up prevention by the defect. It is
well-know that a negative initial energy is a sufficient condition for blow-up occurrence. In
this critical case, it is possible to compute explicit blowing-up solution with use of the pseudo-
conformal invariance. We here consider the self-similar solution

ũ(t, x) =
1√
T − t

exp

(
−ix2

4(T − t)

)
u

(
1

T − t
,

x

T − t

)
,

where u is given by (21). What is remarkable with this solution is that it blows-up at prescribed
time T . The simulation performed in the case Z = 0 (see Figure 2 in Section 3) has shown the
formation of the singularity at x ' 4.3, that is at the right side of the defect. This provides us
to reference solution in order to investigate the defect influence on the explosive dynamics.

We first perform a simulation in the case Z = 5. We have considered the following parameters:
T = 1, v = 5, x0 = −15, ∆x = 2.5 × 10−3 and ∆t/∆x2 = 1. Due to the shift term v/(T − t)
involved in the self-similar solution, the initial data is centered at x∗ = −10. In this simulation,
parameters have be chosen in such a way that the exact solution of the problem without defect
blows-up at x∗ = 5. As for the travelling stationary state, we now compute the mass of the
transmitted wave as well as the norm ‖ux‖2

L2 versus time after the defect interaction.

In Figure 9 (left) is shown the temporal profile of the solution after it has crossed the defect.
Once again, it consists in two parts and it can be observed that both the transmitted and
reflected part have a mass that become strictly smaller than the initial one ‖u0‖L2 = ‖R‖L2 .
Note that the L2 norm of ux plotted in Figure 9 (right) is bounded, even if early stage mimics a
divergent profile before the defect is reached by the solution. Consequently, this suggests that
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Figure 9. Numerical solution after the defect interaction, Z = 5 (left) and
evolution of ‖ux‖2

L2 versus time for Z = 5 (right).

each of them gives a global solution: the splitting effect of the defect thus prevents blow-up.
Of course, this is not rigorous since equation (1) is nonlinear. Nevertheless, if the support of
the two waves are well-separated (meaning that utur ' 0 on the whole spatial domain), then
|ut +ur|4(ut +ur) ' |ut|4ut + |ur|4ur and the total solution u can be approximated by the sum
u ' ut + ur, each of them solving (1). In our test case, we numerically have

‖ur‖2
L2 < ‖ut‖2

L2 ' 2.441 < ‖R‖2
L2 = 2.7207.

We have also performed simulations when considering the initial Gaussian data

(22) u0(x) = q exp(ikx) exp(−(x− x0)2).

Here, the global existence or finite time blow-up of the corresponding solution strongly depends
on the choice of parameters q and k. First, the solution is global if ‖u0‖2 < ‖R‖2, which implies

q < (3π
2

)
1
4 := q∗1, this upper bound being independent of k. On the other hand, recalling that a

sufficient condition of blow-up of the solution is E(u0) < 0, we explicitly have

E(u) = E(u0) =
q2

2

√
π

2

(
(1 + k2)− 1

3
3
2

q4

)
.

Hence, E(u0) < 0, if q > 3
3
8 (1 + k2)

1
4 := q∗2(k). Consequently, for a prescribed k, the solution

blows up for q > q∗2(k). Note that in this case, blow-up occurrence is very strong, which
let the numerical investigation of the defect influence quite delicate since the solution cannot
propagate on a long distance before blowing-up. Furthermore, one has to notice that the blow-
up time is not explicitly know as opposed to the self-similar solution. Simulations made with
q ∈ (q∗1, q

∗
2(k)) leading to blowing up solutions in the unperturbed case have shown that blow-up

is prevented in presence of the defect. As an example, the values k = 10, q = 1.55 and x0 = −5
for the Gaussian data (22) have given a global solution for the defect amplitude Z = 20. We
conjecture that there exists a critical Z∗ = Z∗(q) for which the solution becomes global for
|Z| ≥ Z∗(q).

4.3. The case of two defects. We finally study the influence of two defects with respective
amplitudes Z1 and Z2 located at x1 and x2 on the explosive behavior of solutions. We have
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considered the discretization parameters ∆x = 2.5× 10−3 and ∆t/∆x2 = 1, starting from the
initial data

u0(x) = 2.18 exp(60ix) exp(−(x+ 3)2).

leading us to an explosive travelling solution. We first chose Z1 = 80 and Z2 = 0 (which means
that only the first defect is present). In Figure 10 is shown the first splitting of the Gaussian
data leading to blow-up. After crossing the first defect located at x1 = 0, the solution divides
itself into a reflected part and a transmitted one. After the interaction time tZ1 , we thus have

u = uZ1
t + uZ1

r ,

where uZ1
t is the transmitted wave which is in our case the restriction of u on (0, 20), while uZ1

r

stands for the reflected wave that can be seen as the restriction of u on (−20, 0).

Figure 10. Numerical solution after the first defect interaction (Z1 = 80 and
Z2 = 0), t = 0.0442 (left) and plot of the norm ‖(uZ1

t )x‖2
L2 (right).

We observe that uZ1
r is a global solution, which can be numerically confirmed since ‖uZ1

r ‖2
L2 =

1.822 < ‖R‖2
2. However, the transmitted part uZ1

t is an explosive solution: it can be explained
by the fact that the defect did not extract a sufficient amount of mass to prevent blow-up.
It implies that ‖uZ1

t ‖2
L2 > ‖R‖2

2 and a singularity will develop for this transmitted part. The

evolution of ‖(uZ1
t )x‖2

L2 plotted with respect to time in Figure 10 confirms this tendency.

We now introduce a second defect of amplitude Z2 = 120 at x = 5, in order to investigate if the
blow-up occurring after the first defect interaction can be prevented. The solution uZ1

t splits
into two parts due to the second defect. Consequently, we write

uZ1
t = uZ2

t + uZ2
r ,

where each part is now global since the computations show that ‖uZ2
t ‖2

L2 = 2.1003 < ‖R‖2
L2

and ‖uZ2
r ‖2

L2 = 2.0768 < ‖R‖2
L2 .

We also note that the reflected solution encounters the first default and wave splitting phe-
nomenon is repeated over time. Thus, the presence of two defects stopped the explosion. Of
course, taking a larger amplitude for the initial data may change the qualitative property of
the solution. Indeed, the blow-up may still occur for a larger total mass.
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Figure 11. Numerical solution after the second defect interaction, t = 0.0873
(left) and t = 0.1371 (right).

From these computations, it can be conjectured that a travelling blowing-up solution may
become global in presence of a defect lattice formed with a family (Zk, xk)k≥0 that could suc-
cessively extract mass and generate interaction waves at each defect location.

5. Conclusion

In this work, we have theoretically and numerically investigated the influence of a defect on the
dynamics of solutions of the quintic NLS equation in the one-dimensional case.

First, we showed that it is possible to obtain sufficient conditions for global well-posedness.
Surprisingly, this condition is the same as in the absence of defect, involving the ground state
of the NLS equation. Similarly, finite time blow-up is proved by means of virial identity for
negative energy initial data. The asymptotics Z → −∞ has been studied, showing when |Z| is
large, the solution mimics on the negative half-line the one of the boundary NLS problem with
homogeneous Dirichlet conditions set at x = 0. It means that large defect amplitude drives the
point x = 0 to behave as a barrier. This can be interpreted as a consequence of the fact that
Z acts as a penalty parameter in the transmission condition, meaning that if the jump of the
spatial derivative of the solution at the origin is seeked bounded through time, then ZuZ(t, 0)
is bounded and the solution tends to zero when |Z| is large.
We then performed numerical simulations in order to observe the defect influence on two well-
known classes of solutions: travelling standing waves and blowing-up self-similar solutions that
can be explicitly computed in this one-dimensional critical case. The discretization of the
transmission condition is performed and added to the classical Crank-Nicolson scheme. It is
generally detected in our computations that the defect splits the incident wave in two parts:
one reflected part and one transmitted one. The mass of each part depends on the value of Z
and the mass transfer becomes more relevant as the defect amplitude is large.
What is remarkable is that even if a initial data localized far away from x = 0 may lead to
blowing-up solution for Z = 0, the defect can prevent blow-up if each separate part has a
remaining mass smaller than the one of the ground state. It means that at large distances, the
time dynamics of each part is driven by the classical NLS without defect, as if both of them
solved a separate NLS equation on each half-line. Of course, for a given initial mass, |Z| has
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to be large enough in order to extract for the initial wave emitted and reflected parts that are
”well-balanced” in such away that each mass is smaller than the critical one.

From all these computations, it turns out that the defect can be considered as a perturbation
of the ideal NLS equation, meaning that for small Z, the classical travelling and blowing-
up behaviors are recovered, with little influence of the singular contribution. However, large
defect amplitude leads us to a breaking effect that drastically affects the well-known dynamics:
in particular, blowing-up solutions in the case Z = 0 may become global after crossing the
original. This could be somehow referred as a stabilization effect.
The same considerations could logically be addressed in higher spatial dimension, where the
defect is located on a line or a curve. This should deserve a forthcoming paper.
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[5] F. Genoud, B. A. Malomed, R. M. Weishäupl, Stable NLS Solitons in a cubic-quintic medium with a delta

function potential, Nonlin. Anal. 133 (2016), pp. 28-50.
[6] R. T. Glassey, On the blowing up of solutions to the Cauchy problem for nonlinear Schrodinger equations,

J. Math. Phy, 18 (1977), pp. 1794-1797.
[7] J. Holmer, C. Liu, Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearty I: Basic

theory, Preprint.
[8] J. Holmer, J. Marzuola, J. Zworski, Fast soliton scattering by delta impurities, Comm. Math. Phys., 274 1

(2007), pp. 187-216.
[9] J. Holmer, J. Marzuola, J. Zworski, Soliton splitting by external delta potentials, J. Nonlinear Sci., 17 4

(2007), pp. 349-367. Preprint.
[10] I. Ianni, S. Le Coz, J. Royer, On the Cauchy problem and the black solitons of a singularly perturbed

Gross-Pitaevskii equation, arXiv:1506.03761, to appear in SIAM Journal on Math. Analysis.
[11] S. Le Coz, R. Fukuizumi, G. Fibich, B. Ksherim, Y. Sivan, Instability of bound states of a nonlinear

Schrödinger equation with a Dirac potential, Physica D 237 (2008), pp. 1103-1128.
[12] C. Sulem and P.L Sulem, The nonlinear Schrdinger equation. Self-focusing and wave collapse, Applied

Mathematical Sciences, 139. Springer-Verlag, New York, 1999.
[13] R. Temam, Infinite Dimentional Dynamical Systems in Mecanics and Physics, 2nd Edition, Springer-Verlag

(1997).
[14] M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys.

87 (1983), pp. 567-576.
[15] C. Zheng, A perfectly matched layer approach to the nonlinear Schrödinger equations, J. Comp. Phys. 227

1 (2007), pp. 537-556.


