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Background: Primary central nervous system lymphoma (PCNSL) is a rare and distinct entity within diffuse large B-cell
lymphoma presenting with variable response rates probably to underlying molecular heterogeneity.

Patients and methods: To identify and characterize PCNSL heterogeneity and facilitate clinical translation, we carried
out a comprehensive multi-omic analysis [whole-exome sequencing, RNA sequencing (RNA-seq), methylation
sequencing, and clinical features] in a discovery cohort of 147 fresh-frozen (FF) immunocompetent PCNSLs and a
validation cohort of formalin-fixed, paraffin-embedded (FFPE) 93 PCNSLs with RNA-seq and clinico-radiological data.
Results: Consensus clustering of multi-omic data uncovered concordant classification of four robust, non-overlapping,
prognostically significant clusters (CS). The CS1 and CS2 groups presented an immune-cold hypermethylated profile but
a distinct clinical behavior. The ‘immune-hot’ CS4 group, enriched with mutations increasing the Janus kinase (JAK)—
signal transducer and activator of transcription (STAT) and nuclear factor-kB activity, had the most favorable clinical
outcome, while the heterogeneous-immune CS3 group had the worse prognosis probably due to its association with
meningeal infiltration and enriched HISTIH1E mutations. CS1 was characterized by high Polycomb repressive
complex 2 activity and CDKN2A/B loss leading to higher proliferation activity. Integrated analysis on proposed
targets suggests potential use of immune checkpoint inhibitors/JAK1 inhibitors for CS4, cyclin D-Cdk4,6 plus
phosphoinositide 3-kinase (PI3K) inhibitors for CS1, lenalidomide/demethylating drugs for CS2, and enhancer of
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zeste 2 polycomb repressive complex 2 subunit (EZH2) inhibitors for CS3. We developed an algorithm to identify the
PCNSL subtypes using RNA-seq data from either FFPE or FF tissue.

Conclusions: The integration of genome-wide data from multi-omic data revealed four molecular patterns in PCNSL
with a distinctive prognostic impact that provides a basis for future clinical stratification and subtype-based targeted

interventions.

Key words: PCNSL, microenvironment, tumor heterogeneity, multi-omics

INTRODUCTION

Primary central nervous system lymphoma (PCNSL) is a rare
subtype of extranodal non-Hodgkin’s lymphoma within
diffuse large B-cell lymphoma (DLBCL), but has a less
favorable prognosis than its systemic counterpart and has
been proved to be molecularly a different biological entity."®
The standard treatment relies on high-dose methotrexate
(HD-MTX) regimen with or without consolidation and is
associated with treatment resistance or relapses in up to
60% of the patients.”®

Biologically, initial studies have found PCNSL to be at late
B-cell germinal center (GC) exit stages and to have consti-
tutive nuclear factor-kB (NF-KB) activity driven by mutations
in genes of the B-cell receptor (BCR) pathway, of the toll-like
receptor (TLR) pathway (MYD88), and CARD11.°°%
Recently, DLBCL has been divided into different molecular
clusters and PCNSL has been related to the so-called ‘MCD’
(based on the co-occurrence of MYD88“***F and CD79B
mutations) or cluster 5 (C5) DLBCL, both converging in the
presence of frequent MYD88-***" CD79B, PIM1, BTG2 mu-
tations, immunoglobulin heavy locus & B-cell lymphoma 6
(IgH-BCL6) translocations, copy gains of 3q12.3 and 9p24.1
[programmed death-ligand 1 (PD-L1)/PD-L2], and copy losses
of 6p21-22 [human leukocyte antigen (HLA) locus], 6921, and
9p21.3 (CDKN2A biallelic loss).”***** Although the role of
the tumor microenvironment (TME) in PCNSL has gained
terrain recently, a comprehensive description, including its
interaction with methylation/mutation data, is still lacking.”*"
30 Therefore, PCNSL heterogeneity has not been properly
addressed mainly due to the lack of multi-omic data inte-
gration and the limited number of patients.*®

Here, we carried out an integrative analysis of different
data layers that included mutations, copy number alter-
ations (CNAs), fusions, gene expression, T-cell receptor
(TCR)/BCR clonotypes, TME, methylation, tumor localiza-
tion, and diverse clinical data to identify molecular subtypes
of treatment-naive immunocompetent Epstein—Barr virus-
negative (EBV ) PCNSL with clinically distinct behaviors.
Additionally, to facilitate routine clinical implementation,
we developed an algorithm that uses only gene expression
data from either formalin-fixed, paraffin-embedded (FFPE)
or fresh-frozen (FF) tissue, to identify the PCNSL molecular
subtypes associated with multi-omic features.

PATIENTS AND METHODS

Patients

A total of 147 biopsies from treatment-naive FF (discovery
cohort) and 93 FFPE (validation cohort) tumor samples from
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immunocompetent EBV~ PCNSL were recollected from
different hospitals across France (see Supplementary
Table S1, available at https://doi.org/10.1016/j.annonc.
2022.11.002). None of the patients received corticosteroids
for 1 week before the brain biopsy. All patients had a com-
plete systemic evaluation to rule out secondary central ner-
vous system DLBCL. Diagnoses and section selection for
sequencing were established at the reference institution by
specialized (neuro)pathologists. The tumor cell content for
each sample was estimated to be at least 60% based on
histomorphological evaluation. FFPE tissue sections available
for all data (FF and FFPE cohorts) were used for immuno-
phenotypic characterization with antibodies directed against
CD20, CD10, BCL6, CD3, Ki67, and MUMZ1/IRF4. EBV-encoded
small RNAs in situ hybridization was carried out as previously
described.*' We obtained appropriate consent from relevant
institutional review boards, which coordinated the consent
process at each tissue-source site; written informed consent
was obtained from all participants. The Pitié Salpétirere
Hospital ethics committee approved the study (lle-de-France
VI, N° DC-2009-957) and CNIL (DR-2013-279). All patients
received HD-MTX regimens according to French National
‘Lymphome oculo-cérébral, LOC’ PCNSL network.” Moreover,
19/134 (14.2%; FF cohort) and 24/93 (25.8%; FFPE cohort)
received intensive chemotherapy with autologous stem cell
rescue (IC-ASCR). Magnetic resonance images (MRI) of PCNSL
at the time of first diagnosis and recurrence in sufficient
quality were available for 90 patients within the validation
cohort. We carried out, on the FF cohort, exome sequencing
(n = 115), RNA sequencing (RNA-seq, n = 123), and DNA
methylation profiling (n = 64). In the FFPE cohort, only RNA-
seq was carried out (n = 93). Study design and sample size for
each sequencing approach are displayed in Figure 1A.

Multi-omic data integration for PCNSL molecular subtyping

The multi-omic cohort comprised 85 FF samples from which
we obtained six data types including mutations, CNA
events, gene expression, immune cell proportions, TCR/BCR
clonotypes, and fusion transcripts (Figure 1A). The most
appropriate cluster number was obtained by clustering
prediction index (CPl) and Gap-statistics analyses. High
robust clustering using these data was obtained by
consensus clustering resulting from 10 different multi-omics
clustering algorithms (iClusterBayes, moCluster, CIMLR,
INtNMF, ConsensusClustering, COCA, NEMO, PINSPlus, SNF,
and LRA).>**? Clustering performance was evaluated for
each cluster number (n = 2-8) using the weighted silhou-
ette width.”® Genomic data were deposited at the European
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Figure 1. Study design and PCNSL mutational landscape. (A) The study design including the workflow and the data composition for each cohort is demonstrated. WES
was carried out using tumor tissue and matched peripheral blood samples for 98 PCNSL patients, while for 17 patients it was tumor-only. For the methyl-seq, we also
included four control peripheral blood samples. Different types of information were available for each omic data, as seen inside each bar plot. The multi-omic cohort
consisted of 85 samples that had WES, RNA-seq, and clinic data within the discovery fresh-frozen cohort (red dashed box). (B) The number of affected samples within
the top driver genes (identified by dNdScv algorithm) in the cohort of 115 PCNSL patients is shown. Bar plots are filled according to mutation type (missense,
nonsense, splice site, frameshift, multihit, or other) or CNA events (gain, deletion, or deep deletion). The frequency of affected samples within the cohort is annotated
at the top of each bar plot for each driver gene. (C) The boxplot comparison of the proportion of mutations attributed to c-AID or SBS9 mutational processes when
occurring at clonal times versus subclonal times is shown. P values were calculated by Wilcoxon matched-pairs signed rank test for paired data (per sample). (D) The
GISTIC2.0-defined recurrent copy number focal deletions (blue, left) and gains (red, right) as mirror plots in DLBCL (n = 296 from Chapuy et al., 2018") and PCNSL (n =
108 from this study) are shown. Chromosome position is on the y-axis, and significance is on the x-axis. CNAs are labeled with their associated cytoband/arm followed
in brackets by the frequency of the alteration (DLBCL | PCNSL). (E) The GISTIC2.0 results of significantly recurring (events with a g-value of <0.1) focal amplifications
(red) and deletions (blue) are shown, where the chromosomes are plotted in the x-axis and the GISTIC-scores (G-score) are plotted in the y-axis. Genes affected for
each focal event are annotated followed by the percentage of altered samples (n = 108). Genes are underlined if they are driver genes or in bold if they are
transcriptionally affected by the focal event (related to Supplementary Figure S8 and Table S4, available at https://doi.org/10.1016/j.annonc.2022.11.002).

c-AID, canonical activation-induced cytidine deaminase; CNA, copy number alteration; DLBCL, diffuse large B-cell lymphoma; EBV ™, Epstein—Barr virus-negative; FC,
fold change; KPS, Karnofsky performance status; methyl-seq, methylation sequencing; MRI, magnetic resonance imaging; OS, overall survival; PCNSL, primary central
nervous system lymphoma; PFS, progression-free survival; RNA-seq, RNA sequencing; SNP, single-nucleotide polymorphism; TME, tumor microenvironment; WES,
whole-exome sequencing.
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Genome-phenome Archive (EGAD00001008706; http://
www.ebi.ac.uk/ega/), which is hosted by the European
Bioinformatics Institute (EBI). The RBraLymP algorithm is
publicly accessible at https://github.com/iS4i4S/PCNSL-
RBraLymP. All other materials are available upon request
from the authors.

Statistical analyses

All statistical analyses were carried out using the R statis-
tical programming environment (v4.0; The R Project for
Statistical Computing, Vienna, Austria). Differences in pro-
portions and binary/categorical variables were calculated
from two-sample Z-tests or Fisher’s exact test. The Kruskal—
Wallis test was used to test for a difference in distribution
between three or more independent groups, and the
Mann—Whitney U test was used for differences in distri-
butions between two population groups unless otherwise
noted. P values were corrected for multiple comparisons
using the Benjamini—Hochberg method when applicable.
Overall survival (OS) and progression-free survival (PFS)
analysis were assessed using log-rank Kaplan—Meier curves
and multivariate Cox proportional hazards regression
modeling. See Supplementary Appendix for full details,
available at https://doi.org/10.1016/j.annonc.2022.11.002.

RESULTS

PCNSL mutational landscape

We identified 32 544 mutations in the 115 PCNSL FF samples
analyzed (85% tumor-normal pairs, median = 3.23
mutations/Mb; range = 0.02-85.49 mutations/Mb;
Supplementary Table S2 and Figure S1, available at https://
doi.org/10.1016/j.annonc.2022.11.002). We applied the
dNdScv** algorithm to identify driver mutations finding the
hallmark mutations of PCNSL like MYD88 (64%), PIM1 (59%),
PRDM1 (57%), GRHPR (50%), HLA-A/B/C (49%, 30%, and
13%), BTG2 (47%), CD79B (43%), CDKN2A (28%), ETV6 (26%),
TBLIXR1 (25%), KLHL14 (25%), CARD11 (22%), and HIST1H1E
(18%) which are involved in BCR-TLR-mediated NF-kB
signaling, antigen presentation, cell cycle, histone modifica-
tion, and B-cell differentiation regulation®?*%!&1%2145
(Figure 1B, Supplementary Table S3 and Figure S2A, avail-
able at  https://doi.org/10.1016/j.annonc.2022.11.002).
Moreover, we detected canonical activation-induced cytidine
deaminase (c-AID) off-target mutations and found that they
represent 7.9% [95% confidence interval (Cl) 6.8% to 8.5%)] of
single-nucleotide variant mutations and fall within driver
genes like PIM1 (47%), CD79B (10%), IRF4 (9%), and
HISTIHI1E (6%) (Supplementary Table S4 and Figure S2B,
available at https://doi.org/10.1016/j.annonc.2022.11.002).
Next, we used the clonal allelic status of each mutation along
with the mutational process that probably originated them
to gain information about the relative timing of these pro-
cesses. Interestingly, both c-AID and non-c-AID (COSMIC
signature SBS9) mutations are significantly more active at
clonal stages (P = 0.007 and P = 0.018, respectively), hence
reflecting the importance of AID activity in early stages
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of PCNSL tumorigenesis (Figure 1C), as
described. #2126

Regarding focal CNA, we identified significant recurrent
amplifications in 18g21.33 (42%) and 19p13.13 (34%), and
deletions in 6p21 (39%), 6921 (65%), 6427 (49%), and
9p21.3 (28%) which have a higher frequency than those
observed by Chapuy et al. in systemic DLBCL (Figure 1D)."*®
Furthermore, we found recently described amplifications in
1932.1 (33%, IL10) and 11923.3 (26%, CD3G), and deletions
in 6p25.3 (21%, IRF4), 22q11.22 (29%, GGTLC2), and
14932.33 (84%) that produce significant expression changes
in CD3G [fold change (FC) = 1.25], IRF4 (FC = —1.03), and
GGTLC2 [FC = —1.76, false discovery rate (FDR) g-value
<0.1], respec’cively21 (Figure 1E, Supplementary Table S5
and Figure S3, available at https://doi.org/10.1016/].
annonc.2022.11.002).

previously

Multi-omic data integration reveals PCNSL molecular
subtypes with clinical outcome implications

To address the PCNSL heterogeneity, we carried out a
cluster of clusters analysis using six levels of information
including messenger RNA (mRNA) expression, mutations,
CNA, fusion transcripts, TCR/BCR clonotypes, and immune
cell fractions available in the multi-omic cohort (Figure 2A,
Supplementary Figure S4, available at https://doi.org/10.
1016/j.annonc.2022.11.002). Using the optimal cluster
number resulting from CPI, Gap-statistics, and weighted
silhouette width, we identified four PCNSL subtypes (CS1-
CS4) that display different clinical outcomes in OS (global
log-rank P < 0.001, Figure 2B). Patients in CS4 had the
longest OS (median 66.8 months; 95% Cl 19.8-67.2 months)
and lived significantly longer than those in both clusters CS2
(median 18 months; 95% Cl 8.3-53.4 months; P = 0.024)
and CS3 (median 13.8 months; 95% Cl 6.1-16.7 months; P =
0.003), and slightly longer, but not significantly, to those in
CS1 (median 26.2 months; 95% Cl 13.3-63.9 months; P =
0.094). Additionally, these observations remained signifi-
cant after adjusting by age and Karnofsky performance
status (KPS) in Cox proportional hazards ratio multivariate
models (Figure 2B). Interestingly, CS4 was independently
associated with a better response when considering PFS in
univariate and multivariate models (Figure 2C). Further-
more, we did not observe significant differences in the
median number of predicted immunogenic neoantigens
(P = 0.44), the fraction of c-AID mutations (P = 0.25), or
the number of patients receiving IC-ASCR (P = 0.32,
Supplementary Table S6, available at https://doi.org/10.
1016/j.annonc.2022.11.002).

Transcriptomic data correctly assign multi-omic defined
PCNSL subtypes in FF and FFPE samples

Given the difficulty of acquiring FF tissue and of analyzing
and implementing multi-omic data into routine clinical
practice, we sought to evaluate the use of only RNA
expression, obtained from FFPE or FF tissue, to categorize
patients into the four subtypes. To do so, we first identified,
for each subtype, the top 100 unique up-regulated
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Figure 2. Multi-omic data integration reveals PCNSL molecular subtypes with clinical outcome implications. (A) The resulting consensus heatmap based on 10
integrative clustering algorithms to define the clusters (CS1-CS4) is shown, where each of the 10 algorithms uses cluster of clusters analysis to integrate six levels of
omic information (y-axis) in the order: (i) mRNA expression (2087 variables), (ii) mutations (31 variables), (iii) CNA (40 variables), (iv) fusion transcripts (43 variables),
(v) TCR/BCR clonotypes (19 variables), and (vi) immune cell fractions (22 variables). Additional genomic and clinical features are annotated at the top. (B) Kaplan—
Meier (left) or hazard ratio (right) estimates of overall survival among patients belonging to each cluster that resulted from the Consensus cluster of clusters analysis
are shown. (C) same as (B) but using progression-free survival. (D) Kaplan—Meier (left) or hazard ratio (right) estimates of overall survival among patients belonging to
each cluster using an FFPE validation cohort (n = 93) are shown. (E) Harrell’s concordance index (value annotated at top of each bar) obtained when evaluating the
contribution of each omic-level data to outcome prediction models using Cox proportional hazards regression is shown. The prediction was overfit when using ALL
omic data on the FF cohort. Observations were validated (same direction and effect) using RNA and TME data from the FFPE cohort. Error bars indicate 95%
confidence intervals.

BCR, B-cell receptor; CNA, copy number alterations; CS, cluster; DLBCL, diffuse large B-cell lymphoma; FF, fresh-frozen; FFPE, formalin-fixed, paraffin-embedded;
mRNA, messenger RNA; MSKCC, Memorial Sloan Kettering Cancer Center; PCNSL, primary central nervous system lymphoma; TCR, T-cell receptor; TMB, tumor
mutational burden; TME, tumor microenvironment. *P < 0.05; **P < 0.01; ***P < 0.001.

biomarkers by carrying out differential expression analysis
of one group versus the others and then extracting the non-
overlapping genes across subtypes (P adjusted < 0.05;
Supplementary Table S7, available at https://doi.org/10.
1016/j.annonc.2022.11.002);  afterward we  applied
different prediction methods on the mRNA data
(Supplementary Figures S5-S7, available at https://doi.org/
10.1016/j.annonc.2022.11.002). We obtained a Cohen’s K
coefficient of 0.90 (P < 0.001, Supplementary Figure S8A,
available at https://doi.org/10.1016/j.annonc.2022.11.002)
when evaluating the accuracy of correctly assigning patients
from the multi-omic cohort. Additionally, when expanding
to the FF-RNA complete set (n = 123) or when using the
FFPE cohort (n = 93), we observed the same behaviors
regarding clinical outcome (global P < 0.001) across mo-
lecular subtypes in both univariate and multivariate models
using OS and PFS (Figure 2D, Supplementary Figure S8,
available at https://doi.org/10.1016/j.annonc.2022.11.002).

Next, we evaluated the contribution of each of the six
data types to outcome prediction models by using Harrell’s

190 https://doi.org/10.1016/j.annonc.2022.11.002

concordance index (C-index).”” A C-index of 0.60 (95% Cl
0.56-0.65) in FF and 0.71 (95% C| 0.68-0.74) in FFPE was
observed using KPS and age, which are the clinical features
currently used in the Memorial Sloan Kettering Cancer
Center prognostic score for PCNSL.*® When adding different
data types to the multi-omic cohort modeling, we observed
higher predictive power using mRNA expression compared
to the others (C-index = 0.91 4 0.02). We further validated
these observations in the FFPE cohort obtaining a C-index of
0.83 (95% CI 0.80-0.85) and 0.93 (95% Cl 0.91-0.95) when
adding the mRNA level or the TME + RNA levels to the
model, respectively (Figure 2D). Altogether, these results
show that RNA-seq data alone from FFPE or FF tissue can be
used to correctly identify PCNSL subgroups.

Distinct genetic signatures within PCNSL subtypes and
DLBCLs

Next, we aimed to characterize the differences in genetic
alterations across groups by carrying out inside-outside
cluster Fisher tests (g-value <0.1). The CS4 cluster
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presents 10 enriched events that included mutations in
SOCS1, which is a negative regulator of the Janus kinase
(JAK)—signal transducer and activator of transcription 3
(STAT3) pathway, MPEG1, PIM2, and deletion of 17g25.1
involving GRB2 that indirectly regulates the NF-kB pathway.
We observed 43 events within the CS1 cluster including
mutations involved in the NF-KB pathway (R/IPK1 via 6p25.3
deletion), B-cell differentiation (/RF4 via 6p25.3 deletion,
TOX, and BCL6), proliferation via interruption of cell cycle
arrest (CDKN2A/2B fusions and FOXC1), and B-cell lym-
phomagenesis (e.g. ETV6, OSBPL10). Patients within the CS3
cluster exhibit 12 events from which HISTIHIE arises as the
top enriched, and has been proved to enhance self-renewal
properties and disrupt chromatin architecture in B-cell
lymphomas.>>*%%>%? The €S2 cluster did not present any
genomic enriched events with respect to the other sub-
types. Furthermore, most of these distinctive events arrived
as early events (clonal) in tumorigenesis like IRF4 and BCL6
in CS1 (Figure 3A, Supplementary Table S8, available at
https://doi.org/10.1016/j.annonc.2022.11.002). Of note,
most of these mutations were not observed in the clusters
previously defined by Chapuy et al. or were more CS-
specific (e.g. 9p11.2 del; Figure 3B)." We also used the
LymphGen algorithm to identify the correspondence of our
samples to the genetic subtypes described by Wright et al.*
We observed a similar proportion of samples that were
classified as either MCD (40%, 34/85) or other (39%, 33/85),
while the remaining felt within either A53 (13%, 11/85) or
BN2 (8%, 7/85). The MCD was mainly composed of CS1
PCNSL subtypes (21/34 versus 13/34, P = 0.015) while the
LymphGen’s ‘Other’ had more CS2 samples (P < 0.001,
Figure 3C). Furthermore, as expected, most samples (91%,
77/85) were activated B cells as per the cell-of-origin
classification.

B-cell differentiation stages, pathways, and TME
distinctions between PCNSL molecular subtypes

To determine whether or not these mutations could affect
oncogenic pathways and B-cell differentiation programs
transcriptionally, we recovered and analyzed the expression
of different curated gene signatures initially proposed and
used by Wright et al. and Kotlov et al.***° CS1 was charac-
terized by the up-regulation of PI3K, glycolytic activity, and
cell proliferation signatures, which is consistent with the
observed mutations in the cell cycle arrest; additionally, it
presented hyperactivation of the Polycomb repressive com-
plex 2 (PRC2) which has been proven to inhibit major histo-
compatibility complex (MHC)-I expression, through histone
methylation (Figure 4A, P < 0.05).°* Moreover, p53 activity
was enriched in the CS2 subtype.””*® Interestingly, even
though all subtypes presented mutations within the NF-kB
pathway, it was transcriptionally active only in clusters CS3
and CS4. Additionally, mitogen-activated protein kinase
(MAPK) and JAK—STAT pathways were up-regulated in those
clusters, respectively (Figure 4A).

Regarding B-cell differentiation programs, CS1 expresses
a mixture of GC cells, which is consistent with both the

Volume 34 m Issue 2 m 2023

observed MYC induction activity, 6p25.3-19q13.12 de-
letions, and BCL6 mutations (Figure 2C). On the other hand,
the cluster CS4 presents an enrichment in terminally
differentiated plasma cells that goes in line with BCL6
negative regulation, the absence of MYC induction, and
BCL6 mutations. The most heterogeneous cluster was CS3,
presenting features of both GC and mature B cells.
Intriguingly, CS2 did not present any B-cell stage enrichment
but instead a lymphatic endothelial cell (LEC) gene signature
(Figure 4A, Supplementary Figure S9, available at https://
doi.org/10.1016/j.annonc.2022.11.002). These different B-
cell states, including plasmablasts/plasma cells, have been
previously described in DLBCL and PCNSL using bulk/single-
cell RNA-seq approaches.”*° Additionally, Milpied et al.
reported the co-existence of different B-cell states within a
patient with follicular lymphoma.®” To further corroborate
these observations, we analyzed BCR clonotypes and the
immunoglobulin (Ig) heavy-chain variable (V) and constant
region expression across clusters. We observed across
clusters the presence of BCR clones’ diversity and 1gVys.34
expression, which further supports the presence of self-
antigen-dependent chronic active BCR signaling across
clusters (Supplementary Figure S10, available at https://doi.
org/10.1016/j.annonc.2022.11.002).*>>8

Then, we aimed to describe the TME differences between
subtypes by using CIBERSORTx-derived immune deconvo-
lution and Kotlov’s B-cell lymphoma-specific TME gene
signatures.”® The CS1 cluster is immunologically ‘neutral’;
meanwhile the CS2 cluster, which is immunologically
depleted, exhibits expression of vascular endothelial cells,
memory resting CD4™ T cells, monocytes, and activation of
Y-aminobutyric acid synthesis, which has been recently
linked to B cells that inhibit CD8™ T cells’ killer function and
promote monocyte differentiation into anti-inflammatory
macrophages.”® The CS4 cluster has a hot-inflammatory
TME due to the presence of active CD8" T cells and natu-
ral killer cells (with high cytolytic activity score), and a high
expression of MHC-I/Il, and immune checkpoint mole-
cules.’® Conversely, heterogeneity was again observed
for the CS3 subtype, with only inactivated macrophages
MO being more significantly enriched (Figure 4A,
Supplementary Figure S11, available at https://doi.org/10.
1016/j.annonc.2022.11.002). When analyzing TCR se-
quences, we found significantly higher T-cell clonotype di-
versity in CS4 versus others (P < 0.05, Supplementary
Figure S12, available at https://doi.org/10.1016/j.annonc.
2022.11.002). Similar results were observed in the FFPE
cohort (Supplementary Figure S13, available at https://doi.
org/10.1016/j.annonc.2022.11.002).

Moreover, immune staining revealed higher presence of
both CD3™ and CD163™ cells in CS4, in line with the tran-
scriptionally observed hot TME (Figure 4B). To evaluate the
LEC signature, we stained PROX1, a homeobox gene master
regulator (MR) in LEC differentiation that forms part of our
transcriptionally defined LEC gene signature and that was
used by Louveau et al. when describing LECs in the central
nervous system,®®? finding a higher number of PROX1"
cells in the CS2 subtype compared to the others. Finally, we
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Figure 3. Distinct genetic signatures within PCNSL subtypes and systemic DLBCL. (A) The landmark genetic alterations are shown for each PCNSL subtype (boxed for
each cluster) identified by a one-sided Fisher test (event within cluster versus outside cluster) and ranked by significance (FDR corrected g-value <0.1 selected, red
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observed loss of repressive H3 lysine 23 trimethylation
(H3K27me3™ cells) in the CS3 subtype, a phenomenon that
has been previously associated with B-cell lymphomas car-
rying HIST1H1B-E mutations.*

Subtype-specific MRs

To elucidate subtype-specific MRs, we determined the
transcription factors (TFs) of each molecular PCNSL subtype
using the genes that are differentially expressed within each
cluster and a curated collection of TF targets.”* We found
increased TF activity of TEAD1 (in CS1 and CS2); PRDM14
(CS1) which has roles as histone methyltransferase and
leukemia initiator®; IRF4, SPIB (both targets of lenalido-
mide), MYC, and PROX1 (CS2); E2F1 and IRF3 (CS3); and
STAT3/1 and NFKB1 (CS4) (Figure 5A, Supplementary
Tables S9 and S10 and Figure S14, available at https://doi.
org/10.1016/j.annonc.2022.11.002).

Epigenetic attributes across PCNSL subtypes

Firstly, we evaluated the DNA methylation—transcriptome
correlation by considering all PCNSL samples (n = 64; i.e.
not grouping by subtypes) and a total of 27 111 genes with
available data, and found that only 12.4% were correlated
with their promoter methylation (P adjusted < 0.05 and
p < 0). Interesting genes included TERT, CD79A, and MGMT
(p = —0.50, —0.59, and —0.62, respectively; P adjusted <
0.001, Supplementary Table S11A, available at https://doi.
org/10.1016/j.annonc.2022.11.002), which goes in line
with the literature.®> When grouping by molecular sub-
types, we found CCL22, which is a chemoattractant for
primary activated T lymphocytes,®® less expressed in the
CS2 cluster and associated with gene hypermethylation
(Supplementary Table S11, available at https://doi.org/10.
1016/j.annonc.2022.11.002).

We proceeded to investigate epigenetic differences
among subtypes. CS2 displayed higher hypermethylation
globally, within promoters, and at chromosome ends (P =
0.006, P < 0.001, and P < 0.001; Figure 5B); however, the
CS1 subtype presented higher methylation within CpG
islands (P = 0.001, Supplementary Figures S15 and S16,
available at https://doi.org/10.1016/j.annonc.2022.11.002).
Interestingly, a hypermethylator phenotype has been pre-
viously associated with a depleted TME in systemic DLBCL.>®

Gene Ontology analyses on differentially methylated
promoters revealed B-cell differentiation programs to be
hypomethylated in CS1 but hypermethylated in CS2
(Figure 5C, Supplementary Table S12, available at https://
doi.org/10.1016/j.annonc.2022.11.002). We observed cell
adhesion hypermethylation only in CS2, which was

previously reported when comparing PCNSL versus DLBCL.®’
Genomic region enrichment analysis on hypermethylated
promoters identified strong enrichment of binding sites for
the histone/chromatin proteins H3K27me3, and EZH2 in
CS1, as expected from the high PRC2 observed transcrip-
tionally. On the other hand, the CS2 subtype exhibited
enrichment for BCL11A, NF-kB, IRF4, and BCL6 (Figure 5D,
Supplementary Table S13, available at https://doi.org/10.
1016/j.annonc.2022.11.002). These findings together with
the observed increased LEC gene signature and PROX1
immune staining support the idea of a phenotypic shift to
more LEC-like in this PCNSL subtype.

CS3 subtype is associated with meningeal infiltration to
cerebrospinal fluid

Here, we investigated if brain MRI analysis (n = 90, FFPE
cohort) could provide more insights about the molecular
subtypes. CS4 tumors arose more in the isthmus of the
corpus callosum (7/34 versus 0/56, P < 0.001). Conversely,
CS2/CS3 were more frequent in the brainstem (3/19 and 4/
16 versus 1/55; P = 0.049 and P = 0.008, respectively),
when compared to the other clusters. Strikingly, we found
no association with tumor size or multiple lesions. However,
meningeal infiltration of the cerebrospinal fluid (CSF) was
only found within CS3 tumors (6/16 versus 0/74, P < 0.001;
Figure 6A, Supplementary Tables S14 and S15, available at
https://doi.org/10.1016/j.annonc.2022.11.002).

Therapeutic associations of the PCNSL molecular subtypes

We next wondered if the PCNSL molecular subtypes may
exhibit greater benefit from specific targeted therapies. Even
though the hallmark PCNSL alterations targeting My-T-BCR
protein supercomplex, CD79A/B BCR subunits, and the
CBM (CARD11-BCL10-MALT1) complex were relatively con-
stant across subgroups, the NF-KB hyperactive group (CS4)
presented more GRB2/LYN deletions and absence of PLCG2
mutations, which either represses the BCR complex or affects
the CBM complex activation. Furthermore, NF-KB activity
could not be explained by self-antigen-dependent chronic
active BCR signaling up-regulation since 1gVy4.34 €xpression
was similar across groups.*>**°® These observations suggest
that CS4 and CS3 may be more sensitive to Bruton’s tyrosine
kinase (BTK) inhibitors. The CS4 cluster also presented high
JAK—STAT activity and mutated SOCS1 (JAK1 repressor),
making it potentially responsive to JAK1 inhibitors.®®’°
Moreover, the absence of PRC2 activity and presence of
MHC-I, only monoallelic deletions in HLA-A/B2M/CD58
(Supplementary Figure S17, available at https://doi.org/10.
1016/j.annonc.2022.11.002), and checkpoint molecules’

line, bar plot to the right). The left bar plot shows the relative contribution of temporal acquisition for each alteration event (only within the enriched cluster) to
indicate how early or late during tumorigenesis the event might have happened. Additional genomic and clinical features are annotated at the top. (B) A mirror bar
plot with the frequencies of recurrent genetic alterations in PCNSL’s clusters (n = 85) compared to those in DLBCL’s clusters (n = 304, Chapuy et al., 2018) is shown.
Asterisks denote the known driver events in DLBCL and colors the alteration type (mutation = black; gain = red; loss = blue; structural variant = green). (C) The
DLBCL cell-based COO transcriptomic signature subgroups and the Wright et al.** DLBCL subtypes (MCD, N1, A53, BN2, ST2, EZB, and others) within our CS PCNSL

molecular subtypes are shown.

ABC, activated B cell; AMP, amplification; COO, cell of origin; CS, cluster; DEL, deletion; DLBCL, diffuse large B-cell lymphoma; F, female; FDR, false discovery rate;
Fusion, fusion transcript; GCB, germinal center B cell; M, male; Mut, mutation; PCNSL, primary central nervous system lymphoma; TMB, tumor mutational burden.
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hematoxylin—eosin; IHC, immunohistochemistry; JAK—STAT, Janus kinase—signal transducer and activator of transcription; LEC, lymphatic endothelial cell; MHC,
major histocompatibility complex; NK, natural killer; PCNSL, primary central nervous system lymphoma; PRC2, Polycomb repressive complex 2.

expression indicate a potential use of immune checkpoint
inhibitors (ICls) for CS4. On the other hand, EZH2 inhibitors in
combination with IClI could potentially increase MHC-I
expression and immune detection in CS3.”*

Additionally, we observed a higher frequency of cases
with genetic alterations involved in the cell cycle for CS1
(97%, P < 0.001, Supplementary Figures S18 and S19,
available at https://doi.org/10.1016/j.annonc.2022.11.002);
hence, cyclin D-Cdk4,6 plus PI3K inhibitors could be bene-
ficial for CS1 patients.

Despite not presenting enriched genetic signatures, the
CS2 cluster may be potentially susceptible to inhibition of
the TFs IRF4 (e.g. lenalidomide), SPIB, and MEIS1 (e.g.
MEISi-1), demethylating drugs, and/or inhibition of
GAD67.%>°

To further evaluate the proposed therapeutic targets,
we downloaded the RNA-seq expression, the genome-wide
CRISPR loss-of-function screens’ scores, and the drug
screening response data from 20 DLBCL cell lines.”*”*
We applied the partition around medoids method’® us-
ing our PCNSL RNA-seq data as training expression and
found DLBCL cell lines KARPAS-422, A3-KAW, and SU-DHL-4
to be transcriptionally similar to PCNSL subtypes CS1, CS2,
and CS3, respectively. Next, we investigated the cumula-
tive gene dependency on different pathways measured by
CRISPR screen Chronos score since it has been demon-
strated to exhibit the lowest copy number and screen
quality bias.”®> We found the CS3-related cell line (SU-DHL-
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4) to have higher dependency on proteins involved in BCR
subunits and BCR-dependent NF-KB activation (Figure 6B),
while the CS1-related one benefited from CDKN2A/B
knockouts. The PRC2 elements were equally essential for
both CS1 and CS3. Interestingly, the IRF4/SPIB knockouts
were selectively essential for the CS2-related cell line
which corresponds to the MR analysis’ results. When
looking at the half maximal inhibitory concentration (ICsp)
of ibrutinib in these cell lines, we found the lowest value in
the CS3-related cell line (ICsg = 1.71; Figure 6C), thus
supporting our hypothesis about CS3 subtype sensitivity to
BTK inhibitors. Moreover, the CS1-related cell line showed
the lowest 1C5o toward AMG-319 (ICso = 10.19), a PI3K-
mammalian target of rapamycin (mTOR) inhibitor.

DISCUSSION

Identifying groups of patients with shared biologic and
prognostic markers is extremely challenging mainly due to
high genetic, phenotypic, and TME heterogeneity. Thanks to
a collaborative nationwide effort, here, we carried out a
multi-omic analysis of a large cohort of immunocompetent
EBV™ PCNSL. We identified four PCNSL molecular subtypes
with specific oncogenic pathways, gene expression pheno-
types, methylation profiles, TME, tumor location, outcome,
and potential therapeutic targets. Moreover, our study gives
plausible explanations to the PCNSL response heterogeneity
based on finding that many previously PCNSL characteristic
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CS, cluster; FDR, false discovery rate; GO, Gene Ontology; PCNSL, primary central

features, based on MCD or C5 DLBCL subtypes,”** are

cluster-specific (CS1-CS4) and not shared across all PCNSL
tumors. For example, PCNSLs (MCD/C5 DLBCLs) are mainly
characterized by mutations leading to constitutive NF-KB
activation but this was only observed, transcriptionally, for
CS4 and CS3; however, the outcome for these clusters is
very different mainly due to meningeal infiltration to the
CSF probability, TME, HISTIH1E mutations, and B-cell dif-
ferentiation program differences. Hence, we propose
different tailored treatments according to the pathway
activation of each CS, suggesting, for example, that CS4
might be more likely to respond to ICI treatment, and BTK/
JAK1 inhibitors. Our initial multi-omic analysis along with
our DepMap/Genomics of Drug Sensitivity in Cancer (GDSC)
analysis on DLBCL cell lines suggest the CS3 subtype to be
particularly more susceptible to BTK inhibitors, while the
CS2 subtype to lenalidomide, and the CS1 subtype to PI3K
inhibitors (Figure 7). When analyzing the TME and epige-
netic features across subtypes, we found similar results to

Volume 34 m Issue 2 m 2023

nervous system lymphoma; TF, transcription factors.

those previously described by Kotlov et al. in DLBCLs where
the hypermethylated subtypes (CS1/CS2) had a depleted
TME.”°

On top of this and given the importance of routine
clinical implementation, we propose RBraLymP (RNA-based
Brain Lymphoma Profiler), which uses gene expression data
from either FFPE or FF tissue, to identify the PCNSL mo-
lecular subtypes associated with multi-omic features. The
RBraLymP algorithm is publicly accessible at https://github.
com/iS4i4S/PCNSL-RBraLymP such that existing and new
therapy efforts can be directed to the most appropriate
patients.

Our study presents various limitations. Identification of
subtypes was achieved using relevant features obtained
from different static bulk-omics data, and hence does not
respond to tumor intra-heterogeneity or single-cell’s cross-
talk as other approaches like single-cell RNA-seq or spatial
transcriptomics would potentially do. Another limitation
would be the absence of a validation PCNSL cohort having
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Figure 6. Tumor location distinctions and functional genomics of the PCNSL subtypes. (A) The tumor location of 90 PCNSLs (FFPE cohort) in the human central nervous
system grouped by molecular subtype is shown, where the number of cases is indicated within the circles. Tumors occurring in midline locations are depicted in the sagittal
view (left panel); meanwhile, tumors occurring in the cerebral and cerebellar hemispheres are depicted in the exterior view (right panel). P value refers to a one-sided
Fisher test (event within cluster versus outside cluster). (B) The cumulative gene effect scores (Chronos CRISPR loss-of-function screens) on different lymphomagenic
pathways are shown. (C) Radar plots of drug sensitivity across different CS PCNSL-related cell lines are shown. Shown values are the inverse of the ICsq.

BCR, B-cell receptor; CS, cluster; CSF, cerebrospinal fluid; FFPE, formalin-fixed, paraffin-embedded; ICsq, concentration that causes 50% inhibition of growth; NF-kB,
nuclear factor-kB; PCNSL, primary central nervous system lymphoma; PRC2, Polycomb repressive complex 2.

the same data types as the discovery cohort; however, this
is at the moment difficult given the rarity of the disease.
Finally, our analysis on DLBCL cell lines would benefit from
further validations using PCNSL-derived cell lines, organo-
ids, or patient-derived xenograft models with drug sensi-
tivity and RNA-seq data.

In summary, our multi-omics analysis builds on the
current classification of DLBCL by the addition of the
molecular heterogeneity within PCNSL that may inform on
its pathogenesis. Our study discovered a link between
genetic and neoplastic signaling pathways, pointing to
potential treatment targets. Selecting treatment for PCNSL
based on individual genetic changes is not desirable from
the standpoint of precision medicine, as it is likely that
combinations of genetic aberrations influence therapeutic
response. The genetic subgroups we define could serve as a
conceptual foundation for developing targeted therapeutic
approaches for these poorly understood and with high
mortality malignancies.
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