hal-03886000
https://u-picardie.hal.science/hal-03886000
doi:10.1515/cmb-2020-0124
[CNRS] CNRS - Centre national de la recherche scientifique
[UNIV-PICARDIE] Université de Picardie Jules Verne
[INSMI] CNRS-INSMI - INstitut des Sciences Mathématiques et de leurs Interactions
[U-PICARDIE] Université de Picardie Jules Verne
[LAMFA] Laboratoire Amiénois de Mathématique Fondamentale et Appliquée - UMR CNRS 7352
Optimal Control of a Dengue-Dengvaxia Model: Comparison Between Vaccination and Vector Control
Mentuda, Cheryl
[MATH] Mathematics [math]
ART
Abstract Dengue is the most common mosquito-borne viral infection transmitted disease. It is due to the four types of viruses (DENV-1, DENV-2, DENV-3, DENV-4), which transmit through the bite of infected Aedes aegypti and Aedes albopictus female mosquitoes during the daytime. The first globally commercialized vaccine is Dengvaxia, also known as the CYD-TDV vaccine, manufactured by Sanofi Pasteur. This paper presents a Ross-type epidemic model to describe the vaccine interaction between humans and mosquitoes using an entomological mosquito growth population and constant human population. After establishing the basic reproduction number ℛ 0 , we present three control strategies: vaccination, vector control, and the combination of vaccination and vector control. We use Pontryagin’s minimum principle to characterize optimal control and apply numerical simulations to determine which strategies best suit each compartment. Results show that vector control requires shorter time applications in minimizing mosquito populations. Whereas vaccinating the primary susceptible human population requires a shorter time compared to the secondary susceptible human.
2021-01-01
en
Computational and Mathematical Biophysics
de Gruyter