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Lithium-ion battery (LIB) manufacturing requires a pilot stage
that optimizes its characteristics. However, this process is costly
and time-consuming. One way to overcome this is to use a set
of computational models that act as a digital twin of the pilot
line, exchanging information in real-time that can be compared
with measurements to correct parameters. Here we discuss the
parameters involved in each step of LIB manufacturing, show
available computational modeling approaches, and discuss
details about practical implementation in terms of software.
Then, we analyze these parameters regarding their criticality for

modeling set-up and validation, measurement accuracy, and
rapidity. Presenting this in an understandable format allows
identifying missing aspects, remaining challenges, and oppor-
tunities for the emergence of pilot lines integrating digital
twins. Finally, we present the challenges of managing the data
produced by these models. As a snapshot of the state-of-the-
art, this work is an initial step towards digitalizing battery
manufacturing pilot lines, paving the way toward autonomous
optimization.

1. Introduction

Energy storage is one of the most important challenges
humanity needs to face in the XXI century.[1] This challenge is
triggered by the depletion of fossil energy sources, climate
change, and the consequent massive use of intermittent
renewable energies and electrification of the transportation
sector. Within this context, lithium-ion batteries (LIBs) are being
called to play a central role. The needed massive deployment
of LIBs, in particular, to satisfy the demand from the electric
vehicle (EV) sector, pushes battery manufacturers to multiply
the number of Gigafactories to reduce the cost of
production.[2,3] Many of these Gigafactories will be built in
Europe, which is expected to become the second-largest
producer of LIBs after China by 2025.[4] These cost-driven large-

scale production efforts are accompanied by efforts to further
optimize LIBs in terms of performance, durability, safety,
recyclability, sustainability, and manufacturing CO2 fingerprint.
The latter efforts are carried out at the prototyping level, which
is a critical and intermediate step between the level where
materials are being developed and industrial production. The
prototype level is where an early approximation of the final LIB
cell product is manufactured, tested, and reworked. This is
done until LIB cells with desired characteristics (e.g., perform-
ance) are manufacturable. Prototyping is needed as all the
details and requirements to make materials work in full cells
are not known well in advance. This is then a trial-and-error
process that works in an iterative way. As the manufacturing
process of LIBs involves multiple steps which are sequentially
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coupled and include numerous parameters, the optimization of
LIB cell prototypes is a time-consuming and costly process.

Approaches based on the design of experiments are
currently used to ease such an optimization, but they are
recognized not to be enough to deal in an efficient way with
the underlying complexity of the traditional LIB manufacturing
processes.[5,6] Scrap rates, especially from battery companies,
are difficult to assess, but we estimate that they can be as high
as 30% for battery prototyping, a number not far away from
previous estimations.[7] Computational physical modeling sup-
ported by mathematical descriptions of these processes as well
as the blooming artificial intelligence (AI) and machine learning
(ML) techniques give the promise to ease the emergence of
more efficient approaches able to accelerate LIB prototyping
optimization.[8] One of these approaches is the digital twin, a
digital «copy» of the real manufacturing process based on
physical and AI/ML models.[9]

In state-of-the-art, there is a lack of publications providing a
global overview of the links between experimental data and
the computational modeling approaches depending on their
types.[10] Having a clear and global view of these links is crucial
for the emergence of the digital twins of battery manufactur-
ing. Such digital twins, supposed to run in real-time and
exchange information with the real prototyping lines as
schematized in Figure 1, are constituted at their core by
mechanistic or ML models or a combination of both. As this
„digital-real» data exchange is supposed to happen in as real-
time as possible, it is also important to discuss the available
acquisition techniques of experimental data in terms of their
accuracy and rapidity in performing the data acquisitions.

The present article is written within the context of the
LiPLANET network, a large-scale European initiative aiming to
build a more competitive LIB cell manufacturing ecosystem.[11]

This network was founded under the European Union’s Horizon
2020 Research and Innovation Programme (Grant Agreement
No. 875479). The LiPLANET network brings together the most
relevant European lithium battery cell pilot lines and key
stakeholders to build a more competitive battery cell manu-
facturing ecosystem and increase production to an industrial
scale. Within this ecosystem, research pilot lines for LIB cell
production bring together expertise in battery cell and
production technology and constitute a crucial infrastructure
resource for testing and development of Lithium-based
Batteries as well as for the training and education of staff in
battery cell manufacturing. Cooperation, as well as the mutual
exchange of data, expertise, and access rights between these

pilot lines, is crucial to achieving the goal of LiPLANET: by 2030,
the network’s vision is to be the one-stop-shop service provider
for education, knowledge transfer, testing, certification, and
pilot-scale production of lithium and post-lithium battery cell
technologies for research, industry, and authorities.

The scope of this article is to cover LIB prototyping aspects,
from the materials to the formation step. This article is
organized as follows. First, we discuss the parameters involved
in battery manufacturing and their interlinks. Second, we
discuss different available computational modeling approaches
by providing some examples from ongoing projects at the EU
level. The goal here is not to be exhaustive but instead to
provide a comprehensive overview of the modeling working
principles. Then we discuss their practical implementation
(software, programming languages). Then, we perform a
comprehensive analysis of the different parameters implicated
in each manufacturing step regarding their criticality for
modeling set-up and validation, measurability, measurement
accuracy, and rapidity. This analysis takes the form of tables
with color codes that can be seen as metadata schemes for
battery manufacturing. In such a way, we identify the missing
aspects, remaining challenges, and opportunities for the
emergence of pilot lines integrating digital twins. We envisage
this set of tables as guidelines for the future development of
models and characterization techniques that can be applied
online. As they are based on the state-of-the-art, they are
bound to become obsolete in their current state. For this
reason, we propose to present them online in a readable
format. This allows us to update them as models evolve and

Alejandro A. Franco is Full Professor at the Université de Picardie Jules Verne (Amiens, France) and Honorary Member
of the Institut Universitaire de France. He is the leader of the Theory Open Platform at the ALISTORE European
Research Institute. His research interests encompass multiscale modeling and artificial intelligence applied to batteries
for their accelerated design and optimization. He is grantee of an ERC consolidator grant for his project ARTISTIC on
the development of a digital twin of battery manufacturing processes. He is the Chairman of the Expert Group
“Digitalization, Measurement Methods and Quality” in the European LiPLANET Battery Manufacturing Network.

Figure 1. Schematic representation of the feedback between the pilot line
and its digital twin. Adapted from Ref. [9]. Copyright (2022) The Authors.
Advanced Energy Materials published by Wiley-VCH GmbH.
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new characterization techniques become available. For online
access to these interactive tables, the reader can go to: https://
www.erc-artistic.eu/fileadmin/user_upload/LiPLANET/index.
html. A list of acronyms and their corresponding meanings is
presented in Table 1 to facilitate the reading of our article.

2. State-of-the-Art Manufacturing Process

Pilot-scale LIB cell production is critical for further optimizing
manufacturing parameters and cell designs to ensure the
smooth transition from lab to industrial scale. Figure 2

introduces the current state-of-the-art LIB cell manufacturing
process, which includes three major parts: electrode prepara-
tion, cell assembly, and conditioning step (formation and
testing).

First, the mixing step is carried out where the active
material (AM), conductive additive, and binder are mixed to
form a uniform slurry with the solvent.[12] Currently, electrodes
can be prepared using either water or N-methyl-2-pyrrolidone
(NMP) as a solvent. Although NMP is more commonly used, in
recent years, there has been great progress in the development
of water-based electrodes, which are suitable for sustainable
production.[13,14] The current pilot lines employ planetary mixers
to prepare large-volume slurries for production and transition
to continuous and thus more efficient extrusion processes.[15,16]

The electrochemical performance of the electrodes is also
highly related to the mixing condition and operation, as the
mixing uniformity can affect the electrode microstructure and
materials distribution.[17]

Current coating lines in the pilot-scale consist of three main
parts: slurry application on the substrate (current collector),
several drying units, and slitting/rewinding of the processed
laminates. The thickness of the coated electrodes determines,
among other factors such as specifications and composition,
the electrodes’ areal capacity and, further, current capability,
the viscosity of the electrode slurry plays a crucial role and is
therefore monitored and controlled before obtaining a high-
quality, homogeneous coating. Especially for thicker electrodes,
binder migration to the upper side of the coating is a major
challenge in this particular step. It impacts not only to
mechanical adherence of the coating to the current collector
(adhesive strength) but also between AM particles (cohesive
strength), compromising electrochemical performance due to
the blocking of the electrodes near the separator.[18–20]

Among other important parameters of the electrodes’
properties, the porosity, pore size distribution, and tortuosity
factor are crucial for final cell performance. The porosity, for
instance, is chosen accordingly, ensuring good contact

Table 1. List of acronyms used throughout this work.

Acronym Meaning Acronym Meaning

AI Artificial Intelligence LIB Lithium-ion Battery
AM Active Material MD Molecular Dynamics
BVCO Battery Value Chain

Ontology
ML Machine Learning

CBD Carbon-Binder Domain MP Machine Parameter
CFD Computational Fluid

Dynamics
NDT Non-Destructive Test

CGMD Coarse-Grained Molecular
Dynamics

NMP N-methyl-2-
pyrrolidone

CMC Carboxymethyl Cellulose PP Process Parameter
CT Computed Tomography PSD Particle Size

Distribution
CV Computer Vision PSO Particle Swarm

Optimization
DEM Discrete Element Method RVE Representative

Volume Element
EV Electric Vehicle SD Stochastic Dynamics
FEA Finite Element Analysis SEI Solid Electrolyte

Interface
FEM Finite Element Method SIB Sodium Ion Batteries
FF Force Fields SoC State of Charge
FMEA Failure Mode and Effects

Analysis
SoH State of Health

GPO General Process Ontology SP Structure Parameter
LBM Lattice Boltzmann Method TBS Technical Building

Services

Figure 2. Schematic of the LIB manufacturing process, detailing its main steps (purple), their corresponding necessary elements (yellow), and the control
measurements (green).
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between the particles, electrolyte wetting, and defined energy
and power density. Currently, the electrodes are compacted by
a two-roll smoothing calender under high pressure and
evaluated temperatures increasing contact between the coat-
ing and the current collector and reducing the electrode
porosity, resulting in an increase in the fast-charging capability
with an improvement of the cell’s lifespan.

The final contours of anode and cathode sheets are
mechanically punched in the conventional manufacturing
plants. Laser cutting is a suitable approach to replace current
technology as mechanical punching is associated with tool
wear and inflexibility in the cell and electrode design.[21]

Particles produced by laser cutting are extracted to avoid
interaction with the incident laser beam and significantly
reduce the number of particles on the final electrode surfaces
and the kerf. These contaminations and laser-induced material
modifications could be starting points for chemical degradation
or lithium plating, affecting the battery cells’ overall perform-
ance.

Both electrodes are (z)-stacked (for pouch cells, wound for
other types) in parallel, divided by the separator, and placed
into the foil pouch. The cell stacking is conventionally
performed in a dry room under elevated conditions and a dew
point of about � 60 °C, depending on the chemistry and
handled materials. Important factors in the cell stacking process
include positioning accuracy and processing speed. Other
approaches include the lamination of the separator with the
electrodes, leading to lower cell scrap rates related to short-
circuit and increasing stacking/winding rates.

Accelerated and homogenized electrolyte wetting has a
significant impact on cycle lifetime. The objective of the
electrolyte filling step is to optimize the protocol to avoid
spontaneous cell failure and to increase cycle lifetime by a
factor of two or more.

The cell conditioning step (formation and testing) is
another element in the LIB manufacturing picture. This step
takes several days, if not weeks, and a considerable portion of
the production plant space. This final step ensures that the
inner components (electrodes and separator sheets) are
properly wetted with the electrolyte. A stable Solid-Electrolyte
Interface (SEI) layer is formed on the anode’s side. In addition, it
is useful for final failure detection and discard of such cells.
Several approaches are currently under investigation to
improve the formation and testing procedure. Most of the
concepts aim to improve SEI layer growth via either (1)
changing the cycling protocol itself,[22,23] (2) precoating the
particles, or (3) the addition of different electrolyte additives.

3. Computational Modeling

3.1. Overall battery modeling landscape

Computational methodologies innovation is following the LIBs
development. Over the past years, there has been significant
improvement in the ability to develop computational physics-
based models that describe the complexity of LIBs.[24] The

multiphysics characteristics of these devices make the task
challenging, first to cover all the physics and second, to couple
them. Particular challenges arise in developing models that
deal in a deterministic way with the various scales of LIB
components, from the atomistic to the macroscale level.[25]

While some academic groups remain specialized in models
accounting for one or few physics and scales, others develop
the capability to build coupled multiphysics models. Many
works have been reported on modeling materials, electro-
chemistry, transport processes, thermal management, and
mechanics in LIBs. Software vendors have been building
software solutions based on the computational physics-based
methodologies reported by academic groups, which still lead
to innovation in the field. Indeed, there is still some work to do
for commercial software because validation of the models
requires exposure to field data, which is sometimes difficult to
find with the right amount and the right quality in the
literature, or industrial cell manufacturers due to IP protection.
Furthermore, AI/ML is increasingly used in the LIB field for
multiple purposes, such as materials discovery, cell aging
prediction, or surrogate modeling.[8,26,27]

Overall, the scope of computational modeling goes beyond
materials or cell engineering, with increased attention to the
LIB manufacturing process, as discussed in the following.

3.2. Approaches for battery manufacturing simulations

Following the trend of LIB modeling discussed above, computa-
tional tools for simulating LIB manufacturing/production proc-
esses are either physics-based (hereafter called mechanistic) or
data-based methods. The two model paradigms differ funda-
mentally in their approaches. While mechanistic modeling
describes the causal physical-chemical cause-effect relation-
ships in the processes and the product, data-based modeling
maps the correlation of various parameters within the recorded
data. The mechanic models are usually valid over a wide range
of observations since the underlying system behavior is
described, but they require enormous computation times. On
the other hand, the data-based models may not be extrapo-
lated over the data space under consideration but can be
solved very quickly.

In order to describe not only single processes but the entire
process chain, different process models must be combined via
defined intersections. The intersections are the structural
parameters of the intermediate product in the respective
process steps. These structural parameters are either inherent
to the material (density of the AM) or can be altered (coating
thickness during calendering), or created (porosity during
drying) along the process chain.

The process characteristics predetermine the modeling
paradigm utilized for each process. Overall, many different
modeling approaches have been successfully applied to
describe the process-product interaction, e.g., Coarse-Grained
Molecular Dynamics (CGMD), Discrete Element Method (DEM),
Computational Fluid Dynamics (CFD), or analytic models.
Combining different process models, which are typically solved
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in specialized software environments, can cause significant
challenges regarding the compatibility of the modeling para-
digm or the accumulation of computation times.

In the following, we provide some concrete examples of
mechanistic and data-driven models’ achievements (described
broadly in Table 2). We do not intend to be exhaustive here, as
the computational modeling of LIB manufacturing has already
been reviewed recently.[8,9,24] Instead, we want to provide
practical details of how some of the recently reported
approaches are implemented and which types of experimental
parameters they require. For this purpose, we pick mostly
examples of ongoing projects in Europe: ARTISTIC (funded by
the European Research Council), DEFACTO (funded by the
Horizon 2020 program), and Sim4Pro (funded by the German
Federal Ministry of Education and Research).

ARTISTIC is a project started in 2018 aiming to develop a
digital twin of the entire manufacturing process of LIBs: mixing,
slurry coating, drying, calendering, electrolyte filling, formation,
and resulting electrochemical performance. The approach
encompasses mechanistic and data-driven models sequentially
coupled, e.g., the outputs of the drying model go as inputs of
the calendering model, etc. The former describes the physics
with 3D spatial resolution as a function of time. It predicts the
impact of manufacturing parameters (e.g., slurry formulation,
drying rate, calendering pressure) on the 3D-electrode archi-
tecture at the mesoscale and associated electrochemical
performance. The data-driven models are used to accelerate
the mechanic model’s parameterization, treat pilot line exper-
imental data, and derive surrogate versions of the mechanic
models. The latter allows deriving optimization loops to inverse
designing LIB manufacturing, i. e., predicting the manufacturing
parameters to adopt to maximize/minimize multiple properties
of LIB electrodes. The ARTISTIC project has recently delivered
an online calculator that can be used from any Internet
Browser. Thanks to a user-friendly graphical interface, users can
launch slurry, drying, and calendering simulations, with more

functionalities to be added soon.[28] The users can also explore
the databases produced in the project and download the 3D-
resolved electrode mesostructures and corresponding proper-
ties (e.g., electrode slurry density value, electrode porosity
value) for their own research. The ARTISTIC project has also
demonstrated the chemistry neutrality of the adopted compu-
tational approach, which can deal with electrode manufactur-
ing based on both commercial and in-house-elaborated AMs for
LIBs and Sodium-Ion Batteries (SIBs), respectively.[29]

Similarly to ARTISTIC, the Sim4Pro project, started in 2019,
aims to establish a digitization platform that addresses the high
complexity of battery cell production by considering the
influence of individual production steps on the structure of
intermediate and final products to predetermine the perform-
ance of a battery cell. The used modeling framework links the
models of the process chain with battery cell simulations. The
process models describe the relationship between the process
and the resulting structure for each process step (e.g., mixing,
coating, calendering). They include both analytical models
based on mass or energy balances and numerical models
(using CFD or DEM). The process models are connected via
structural (output) parameters like mass loading, coating
density, and electrode composition, employed as input param-
eters to characterize structure-performance relationships by
battery simulations. Based on the results of the individual
process models, empirical meta-models are developed. This
enables the generation of simulation results in real time.
Eventually, the connection enables an in silico analysis of
process-product interactions. The modeling framework consid-
ers nominal values and parameter uncertainties caused by the
machine and material imprecisions propagating along the
process chain, resulting in uncertain battery cell properties. The
results are utilized for robust optimization, uncertainty sensi-
tivity analysis, and identification of production tolerances, form
the basis for process cost and process resource efficiency
functions, and allow for a comprehensive ecological and
economic evaluation.

The H2020 project “DEFACTO” aims at contributing to the
increase in the competitiveness of the European battery cell
manufacturing industry by developing multiphysics models for
the LIBs manufacturing main steps, such as the ones that mimic
the behavior of the electrode drying and calendering steps, as
well as the electrolyte filling step. In addition, a multi-scale
multiphysics workflow is conducted to gain in-depth insight
into the mechanical aspects of the cell’s components, their
corresponding degradation mechanisms, and the crosslink with
the manufacturing parameters. The resulting simulation tools
will predict optimized cell design and cell manufacturing
parameters validated by prototyping and manufacturing data
of advanced generation 3b cells, from current industrial cells to
next-generation 3b prototype cells. In addition, multi-scale
characterization tests will also be conducted to provide data for
model development and validation and to understand manu-
facturing process parameters and cell aging mechanisms.
Finally, the project aims to also contribute to the current
battery standardization landscape.

Table 2. Main characteristics of data-driven and mechanistic modeling.

Data-driven models Mechanistic models

Based on experimental data of
the system

Based on assumptions about the
mechanisms of the system

Input parameters frequently do
not have a physical meaning

Parameters generally have a
mechanical or physiological
meaning

The number of parameters is not
predetermined by the system

The number of parameters in the
model is fixed

Fitting of input-output behavior
from measured data, e.g.,
polynomials, Artificial Neural
Networks, support vector
regression

Described by balance equations of
conserved quantities which change
in time and space (algebraic
equations, Ordinary Differential
Equations, Partial Differential
Equations)

Show correlation possibly without
causation

Show causation based on
mechanistic relations

Model results are limited to the
space of their calibration;
extrapolation is not suitable

Aim to represent system knowledge
and thus show higher extrapolation
power

Require large amounts of data Require very small amounts of data
Running requires low
computational cost

Running requires a high
computational cost
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3.2.1. Slurry and coating modeling

In the ARTISTIC project, the electrode slurry is simulated in 3D
using the CGMD approach by using the software LIGGGHTS.[30]

Classical Newton equations are numerically solved using the
LAMMPS software in this approach. These equations describe
the relationship between the interaction forces (or force fields –
FFs–) between the particles in the slurry and their acceleration.
The numerical integration of these equations allows calculating
the speed and the position evolution of the particles. The
interaction forces have been modeled using Lennard-Jones and
Granular-Hertzian FFs. These FFs allow capturing the impact of
the distance between the particles and their effective radius on
the interaction forces magnitude. Two types of particles are
considered: the AM and carbon-binder domain (CBD) particles,
which are coarse grain carbon additives, binder, and solvent.
The inputs of this approach are the AM particle size distribu-
tion, the formulation (weight percentages of AM and carbon-
binder), and the solid content. The size of the CBD particles is
determined as a function of the carbon-binder ratio and the
experimental density of the slurry. The simulation procedure
starts by randomly placing the AM and CBD particles in a box
in periodic boundary conditions (Figure 3a). Then the MD is run
until the system converges to an equilibrium state (Figure 3b).
This state corresponds to the partial overlap between the CBD
particles and the CBD and the AM particles. The corresponding
3D mesostructure depends on the FFs parameter values and
the assumed size for the CBD particles. Therefore, this approach
requires fitting these parameter values. This is performed by
fitting the calculated slurry density and the calculated viscosity
vs. share-rate curve to the experimental ones. The latter is
calculated using Non-Equilibrium MD simulations, where the
mesostructured slurry box is deformed at different shear rates
(Figure 3c). The model can very well reproduce the shear-
thinning behavior for different formulations and solid contents.
The fitting procedure of the FF parameter values can be carried
out manually or automatically. Obviously, the second option is

prioritized in the project. We have demonstrated that automat-
ized methods decrease computational cost by a factor of 20.
Automatized methods developed in the project include Particle
Swarm Optimization (PSO), ML, and a combination of both. In
short, PSO is a stochastic global optimization algorithm based
on swarm behavior, which tries to iteratively improve a
candidate solution regarding a given measure of quality
defined as the difference between the calculated slurry
viscosities and densities of the experimental ones. Furthermore,
ML is also used to predict the viscosity calculation result from
the first numerical steps of a non-equilibrium MD simulation:
This allows for performing the fitting process in a faster way as
each CGMD model has a different set of FFs parameters values,
and it is used in optimization algorithms that do not need to
run until the end.[31] The ARTISTIC project demonstrated this
slurry modeling approach for multiple AM chemistries, such as
NMC111, LFP, graphite, and organic AM for SIBs.[30–32]

ML has also been applied in the ARTISTIC project for the
prediction of the impact of slurry formulation, solid content,
and viscosity (determined by the coater comma-gap and
coating speed) on the loading and porosity of the fabricated
electrodes (the drying rate kept constant).[33] For this purpose,
an experimental data set (ca. 80 experimental conditions, each
of them repeated five times) was collected in order to
predefine several classes (low, medium, high) based on
experimental knowledge from loading and porosity values. The
resulting dataset was divided into a training and testing
dataset, whose main goal was to train a supervised classifica-
tion model (Support Vector Machine) to fit those classes as a
function of input variables (formulation, solid content, viscos-
ity). The resulting trained model allowed to assess interdepen-
dencies between the levels of electrode properties and the
manufacturing parameters through a straightforward graphical
representation, with a trustable accuracy (above 80%) from an
experimental point of view. The ML approach was compared
with different supervised algorithms, such as Decision Tree and
Deep Neural Network. The latter analogy enabled to analyze

Figure 3. Slurry model steps within the ARTISTIC model. a) Randomly generated initial positions. b) Slurry structure after equilibration. c) box deformation
performed at a constant shear rate for the calculation and fitting of viscosity curves. Adapted from Ref. [30]. Copyright (2020) The Authors. Published by
Wiley-VCH Verlag GmbH & Co. KGaA.
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the evolution of predictive capabilities regarding the type of
algorithm applied for the training/testing, allowing to see
which approach was the most meaningful for assessing the
trends between electrode properties and its manufacturing
parameters. Complementary experimental characterizations of
the viscoelastic slurry behavior supported the results, connect-
ing the conclusions with chemistry-based interpretations.

Coating modeling is closely related to slurry modeling. Ding
et al. have reviewed several theoretical models for coating.[34]

The coating bead is stable within certain parameter ranges, and
the coated layer remains defect-free. Here the parameter
ranges are set by capillary pressure in the coating bead, and a
capillary model can be used.[35] If surface tension effects can be
ignored, the parameter ranges are set by viscous pressure, and
defects such as air bubbles, periodic thickness variations, and
dripping can occur; a viscous model applies here.[36] Numerical
studies based on CFD can give more detail on the flow field
within the coating bead. Carvalho and coworkers have
developed a series of 2D models to study slot coating. The first
one allowed them to predict the parameter ranges needed to
obtain a defect-free coated layer,[37] a second one explored the
lower limits for layer thickness,[37] and a third one extended this
model to mildly viscoelastic fluids,[38] all relevant to the
electrode slurries.

In general, a post-treatment on electrode properties
enables to go beyond common analysis with manual tunings
by automatically assessing the labeling of experimental data-
sets for better manufacturing knowledge. The ARTISTIC project
demonstrated the approach by defining heterogeneous elec-
trodes from a batch of experimental measurements from NMC-
622 coated electrodes after varying the most critical fabrication
parameters from the slurry and coating steps. This involves an
evaluation of new electrode characteristics without any prior
manual labeling, whose main goal is to identify the most
relevant properties for heterogeneous electrode definition. This
step was done according to a dimensionality reduction of the
dataset and a segmentation approach to identify groups of
electrodes with similarities in terms of prior and newly defined
electrode characteristics. The combination with statistical
inference concluded the effect of the associated manufacturing
parameters on such heterogeneity, thus giving new perspec-
tives for designing better batteries. In our study case, we took
advantage of thickness and mass loading measurements to
evaluate different types of heterogeneous electrodes.[39] Similar
to this approach, Drakopoulos et al.[40] presented a limited
dataset including 27 different formulations, manufacturing
protocols, and performance properties. They are used to
predict and design the formulation and manufacturing process
to produce thick, high-coat-weight, graphite-based electrodes.

An important part of the slurry mixing process is the
dispersion of carbon-based conductive additives like carbon
black to structure the particles and tailor the size distribution to
the required function within the electrode network. The CB
particle size correlates with the microstructural properties and
thus directly affects the cell performance, so optimized
processes allow for obtaining adjusted particle size distribu-
tions. While the adjustment of machine parameters is often

empirical, the comprehension of the process conditions itself
by measurements may not be possible but accessible via
simulations. The investigation of the dispersion process
requires using a multi-scale approach to account for various
influences on different length scales.

The fragmentation of carbon black, so the size reduction of
agglomerates down to aggregates, is being investigated via the
coupling of CFD (coded in the software OpenFoam) with DEM
(coded in the software LIGGGHTS) within the project DEFACTO.
Each agglomerate consists of several aggregates which are
generated randomly, but with defined strength, a number of
primary particles, and fractal dimension and are joined together
via inter-particular forces, namely van der Waals forces. These
forces are stronger within the aggregates than for the bindings
to each other.

Then, the effect of size and fractal dimension of single
agglomerates within a Representative Volume Element (RVE)
with periodic boundaries on the orientation within the shear
flow and the resulting shear forces can be described. The shear
behavior and the strength of the inter-particular forces
determine the breakage of agglomerates so that the number
and size of fragments over time and the forces acting on the
particulate structures are determined. However, as these
studies are costly and mostly limited to very few single
agglomerates, they are mainly used to investigate the relation
between local shear stress and breakage behavior. Thus, the
distributions of shear rate, shear stress, or other dispersion-
relevant parameters in the mixing device are determined using
CFD simulations. The CFD models (coded in the software
OpenFoam) without coupling do not explicitly solve the
breakage of CB agglomerates. Still, they consider the shear field
in the mixer (e.g., dissolver, planetary mixer, or twin-screw
extruder) of the fluid to extract the relevant parameters of
stress. Characteristic values are the intensity and number of
stresses calculated from the distributions of shear stress and
shear rate by using Rumpf’s model,[41] and compared to the
particular strength agglomerates to estimate their breakage.
Finally, the resulting particle size and the specific energy
demand are obtained. However, deagglomeration and aggre-
gate breakage are connected to the viscosity and the residence
time distribution. Thus, measurements of the residence time
distribution and viscosity are required, or an extension of a
viscosity model shall be added. This approach is utilized to
optimize the machine parameters to obtain the desired size or
scale and transfer processes to larger or more complex equip-
ment, e.g., from a batch-operated planetary mixer to a
continuous extruder. Extruders allow various screw configura-
tions (consisting of different elements, e.g., conveying ele-
ments, kneading blocks, or elements for distributive mixing),
which can be seen as a cascade of subsequent mixers, applying
different stressing conditions along the screw. As the CFD
treats every element separately, using the output data of the
preceded screw element as input for the next, the model can
account for individual screw combinations and gives a much
more detailed insight than merely data-driven models. The
physical modeling provides the boundary conditions for data-
driven models and thus reduces the amount of data required.
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Additionally, population balance models developed for
highly filled nanoparticle suspensions can describe the carbon
black particle size distribution correlated with the dispersion
process resulting from fragmentation. It can be adapted to the
required mixing device, e.g., planetary mixers for battery
slurries. Due to the high shear rate of the agitator, this type of
model assumes that every particle passes the stress zone with
sufficient dispersion time. A laminar flow profile for the
planetary mixer is approximated, and the stressing intensity
dissipated to the carbon black particles is described by the
equation of Rumpf. The model considers the conditions within
the mixer by a shear rate distribution and accounts for the
dependence of the viscosity on particle size distribution and
temperature. Additionally, the breakage behavior of the
particles under stress is considered by a particle strength
function and a breakage function that describes the daughter
particle size distribution received by successful dispersion. The
population balance model delivers the particle size distribution
over the dispersion time as output.

3.2.2. Drying modeling

Slurry 3D simulations need to be performed as the drying
model aims to predict the impact of drying conditions on the

3D-electrode mesostructured. The ARTISTIC project simulates
the slurry drying process using the CGMD approach.[42–45] The
corresponding drying model takes as an input the slurry
mesostructured predicted by CGMD as a function of formula-
tion and solid content. As such, many of the simulation
parameters are obtained from this output as well. This includes
CBD particle sizes and some of the FF parameters.

Two sub-approaches have been undertaken in this regard.
The first one assumes homogeneous drying. This consists of
shrinking the CBD volume by some factor to mimic the solvent
evaporation, starting from the slurry mesostructured (Fig-
ure 4a). This is performed suddenly, and then an MD simulation
is run to equilibrate the system again. The resulting meso-
structure corresponds to the dried electrode. The CBD shrinking
factor has been tuned to reach dried electrode porosities in
agreement with the experimental ones. The accounted FFs for
the drying simulation are Lennard-Jones and Granular-Hertzian,
similarly to the slurry calculations.

The second sub-approach assumes heterogeneous drying
(Figure 4b). This sub-approach allows accounting explicitly for
the carbon-binder migration. It is built in a way that allows
modulating the transition from the slurry to the electrode state
as a function of the depth in the slurry. It assumes a faster
transition at the top with respect to the bottom of the slurry.
This is achieved by dividing the depth of the slurry into several

Figure 4. The two approaches for modeling the drying step according to the ARTISTIC project. a) Homogeneous drying takes place in two stages: first, a rapid
decrease in the size of the CBD particles occurs to account for solvent evaporation, followed by an equilibration step. b) CBD shrinks continuously as the
electrode dries and settles in the heterogeneous approach. Different shrinking rates are assigned to different layers to account for fast drying effects.
Reproduced with permission from Ref. [45]. Copyright (2021) Elsevier.
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zones, and for each of them, the CBD particles shrink at
different rates (faster on the top, slower at the bottom). These
rates are implicitly related to experimental parameters such as
temperature and air flow, though no explicit connection is
accounted for. The ratio between the CBD shrinkage rates at
the different zones is correlated to the drying rate. This
approach allows us to find that: the higher the drying rate, the
higher will be the fraction of CBD on the top region in the
dried electrode versus the CBD fractions in the middle and the
bottom regions; the CBD migration does not occur from the
very beginning of the drying process, but after some time; the
time at which CBD migration starts and ends depends on the
drying rate.

The first two aspects agree with experimental knowledge,
while the third one is a modeling prediction that calls for
experimental characterizations. This CGMD-based drying model
can also qualitatively capture the influence of three-stage
drying protocols on the electrode mesostructured. These
protocols have benefits in terms of reduced manufacturing
costs. In particular, it was found that applying a high drying
rate at the beginning and the end of the drying and a low
drying rate in the middle of the process outputs more
homogeneous electrodes.

In Sim4Pro the cathode drying process is considered as the
formation of the electrode structure consisting of AM and
carbon-binder aggregates in DEM (LIGGGHTS). The particles are
randomly generated in an RVE with periodic boundary
conditions in the X and Y directions. The CB aggregates are
supposed to have a high inner porosity but are depicted as
non-porous particles within the simulation. Thus, the porosity is
taken into account by a corresponding increase in the volume
fraction. Forces for Stokes’ gravity, gravity, buoyancy, compres-
sive and capillary forces from the fluid surface, and inter-
particular forces are applied, assuming a constant drying rate.
This results in the motion of particles to the current collector
until they form a self-supporting structure, which is validated
via layer thickness. However, to avoid excessive simulation
times, the forces are scaled to maintain a constant ratio of
settling velocity of particles and liquid surface. The model
requires the drying rate, the discretized Particle Size Distribu-
tion (PSD) of the AM, the fluid viscosity of solvent and binder
within the slurry, and the particle friction as input parameters.
These parameters can be independently extracted from
experimental measurements.

In DEFACTO the DEM is coupled to a CFD simulation
(OpenFOAM) to consider fluid-particle interactions directly
based on fluid simulations. Furthermore, it also allows model-
ing of the dissolved binder’s migration in CFD. Here, the larger
AM particles can be considered, on the one hand employing
unresolved CFD-DEM coupling, but due to the size difference,
the smaller CB particles have to be assumed as a coating on
the cathode active material (CAM)particles. This approach also
considers the high inner CBD porosity and leads to enlarged
CAM particles. On the other hand, the resolved CFD-DEM
approach is being explored to capture the fluid forces around
the AM particles and the motion of CBD (considered via
unresolved approach) much more precisely. The particles are

randomly generated in an RVE with at least 10 CFD cells in
each direction for the unresolved approach and periodic
boundary conditions in the X and Y directions, of which half is
filled with liquid. The liquid evaporation is depicted by a
constant phase change in the CFD, surface particle interaction
by a capillary force, and the dried coating is stabilized by
adding a cohesion force. The binder is assumed to be dissolved
so that the viscosity of the solvent-binder mixture is considered
for the fluid. Additional input parameters are the mass loading,
the temperature, and the drying rate. The drying rate is scaled
to obtain sufficient simulation times while keeping the
important force ratios constant. The simulation provides the
porosity, pore size distribution, coating thickness, and the
distribution of the constituents in the simulated electrode
compared to experimental electrode properties for validation.

3.2.3. Calendering modeling

The simulation of the electrode calendering step is important
to support the optimization between the degree of compres-
sion (aiming to improve the electronic contact between the
particles) and the porosity (needed to leave space for the
electrolyte to wet the electrode properly). In the case of the
ARTISTIC project, DEM is used to simulate the impact of
calendering pressure and speed on the electrode mesostruc-
tured by accounting explicitly for both AM particles and CBD.[46]

Such a model receives as an input electrode mesostructures
originated from the drying simulation (see section above). The
model solves Newton Equations describing the attractive and
repulsive forces between particles, namely Granular Hertzian FF
describing the mechanical properties of the electrodes, and the
simplified Johnson-Kendall-Roberts FF capturing adhesive
forces mainly due to the binder “bridges.” The FF parameters
are determined by simultaneously fitting experimental micro-
indentation and compaction curves, the former reporting the
resistive force (hardness) offered by an electrode when an
indentator is applied. Figure 5(a) shows the mechanical model
validation of these studies by comparing the experimental
(black line) and simulated (red line/dots) microindentation
curve. The experimental curve corresponds to an average of 30
independent measurements, and the grey area represents the
standard deviation. The experimental and simulated electrode
maximal contact surface and displacement are equal to
~31000 μm2/~18 μm and ~11600 μm2/~16 μm, respectively.
Figure 5b shows the comparison of experimental (black) and
simulated (red) evolution of the electrode porosity as a function
of the applied calendering pressure. The error bars represent
the experimental standard deviation. Such a model is able to
capture the spatial re-organization of AM particles, CBD, and
pores upon calendering (Figure 5c). Such spatial re-organiza-
tion leads to a re-organization of the interfaces between the
materials and pores, impacting the electrochemical perform-
ance, as can be observed by injecting the predicted electrode
mesostructures in 4D-resolved electrochemical models.

Besides implementing physics-based models for the calen-
dering steps, the application of ML approaches is essential to
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provide deep knowledge of how fabrication parameters affect
electrode properties. The latter ML fittings replace the tradi-
tional physics-based models since the calculations of corre-
sponding properties can be eased, avoiding still more trial-error

approaches and aiming to cover more combinations of
parameters. However, those data can be combined with
experimental measurements, paving the way to more real-
world behaviors of the electrode properties to characterize
better electrodes. In that sense, the calculations of electrode
mesostructured properties can be assessed as a function of
inputs properties, directly coming from experimental measure-
ments. This enables to merging of synthetic and experimental
datasets that are reliable enough to train a surrogate model
based on well-known ML approaches. Instead of obtaining
statistical conclusions which are still meaningful for qualitative
purposes, the setting up of ML models reflects mathematical
functions that can be tested for figuring out many other
manufacturing parameter combinations. One of the ARTISTIC
projects reported a study case where ML was used to predict
tortuosity factors for solid and liquid phases and the percent-
age of contacts between different components of the electro-
des. The electrode mesostructures used to train the ML pipeline
were calculated stochastically according to experimental
parameters such as the electrode porosity before calendering,
the electrode formulation, and calendering pressure.[47]

The projects Sim4Pro and DEFACTO investigate the calen-
dering process by numerical DEM simulations[48,49] for different
material systems. As an initial structure, the CAM particles are
randomly generated in a RVE with periodic boundary con-
ditions in the X and Y directions or taken as structure from a
precedent drying simulation performed by DEM (Sim4Pro) or
coupled CFDEM (Defacto), which is matching the initial layer
thickness, porosity, and PSD. Cylindrical bonds between the
particles and the current collector allows accounting implicitly
forthe CBD, which is electrically and thermally conductive. The
model enables to characterize the effect of machine parameters
(gap width, roll temperature, and line speed) on the heating
behavior during calendering and the conductive electrode
properties during and after calendering.

3.2.4. Electrolyte infiltration modeling

The following step in manufacturing, electrolyte infiltration, is
considered in the ARTISTIC project by using the Lattice
Boltzmann Method (LBM).

This method is a relatively recent alternative to more
traditional CFD simulations.[50] It considers the microscopic
dynamics of fluid interactions in terms of collisions between
particles and walls while obeying the constraints of the Navier-
Stokes equations macroscopically. Briefly, the method divides
the simulation domain into a regular lattice. A given density of
the fluid is considered at each point, which evolves as virtual
particles move to and from neighbors according to two
movement steps. The first step considers the relaxation due to
collisions between particles, while in the second step, the
displacement takes place according to the velocity distribution
of the particles. The LBM is highly parallelizable and provides
accurate and reproducible results, particularly for irregular
porous structures.[51] This allows for the in-depth study of the
electrolyte infiltration process.

Figure 5. Calendering data corresponding to an NMC electrode with 96%wt
AM, 2%wt carbon black, and 2%wt polymer binder. a) Experimental
microindentation curve (grey) and fitted simulation results (red). b) Porosity
vs. pressure experimental (gray) and fitted curve (red). c) CGMD structure
evolution during the calendering process. Reproduced with permission from
Ref. [46]. Copyright (2021) Elsevier.
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The lattice used by this method can be generated directly
from the CGMD results from the previous step in the workflow
but also stochastically generated structures or even experimen-
tally obtained tomography images.

The main conclusions of this study[52] show how air can get
trapped in isolated, very small, or poorly connected pores
(Figure 6a and b). This decreases the active surface area, with
negative consequences for SEI formation and, ultimately, the
electrochemical performance of the assembled cell. Several
variables become important to control to avoid this and other
undesired effects. These include porosity, pore size distribution,
and the pore connectivity network, among others, directly
related to the input parameters of the previous manufacturing
stages, particularly the calendering step. Additionally, the
direction of the flow is identified as a critical parameter for the
saturation rate and the order in which the different layers are
assembled in full cells.

While the main purpose of this work was to assess the
effect of different structural parameters on the rate of electro-

lyte saturation, the final step resulting from LBM simulations is
directly exportable to different meshing programs to be later
used in simulations for the assessment of their electrochemical
performances. This allowed concluding that poor wettability
leads to inhomogeneities in lithium intercalation and a loss of
ionic conductivity.

An important limitation of this method is its high computa-
tional cost, requiring several days of calculation in a computing
cluster for a typical electrode structure. This severely limits its
capability to screen a large number of architectures for
optimization purposes. Several options exist to address this
issue. One alternative is to simply assume a total filling of the
pores with electrolyte. A second one is to assume the total
filling of every pore except those not connected to any other
pore. Lastly, it is possible to take advantage of the large dataset
that each of these simulations generates to feed data-driven
models to predict saturation curves and the density of the fluid
in each pore.

This latter approach has been shown to be feasible in the
framework of the ARTISTIC project.[53] For this, LBM simulations
can be carried out for different infiltration conditions on
experimental structures. These are obtained from microtomog-
raphy data corresponding to an NMC 94% – CBD 6% electrode,
which yields precise information on the shape and location of
the AM particles. The CBD location can be resolved using an in-
house stochastic algorithm.[47] The resulting data, composed of
the density for the electrolyte and the air phases at each lattice
point as a function of time, can be processed to obtain a
complete saturation curve for each pore. In turn, these data can
be further reduced by selecting the saturation values corre-
sponding to representative times throughout the simulation.
The resulting reduced dataset is appropriate for training a
machine-learning model based on the multi-layers perceptron
approach. This yields a data-driven model capable of predicting
the overall saturation curves for each pore, from which a global
saturation curve can be generated. This model was validated
by comparison with LBM simulations, obtaining an excellent
agreement between the two for different infiltration parame-
ters (Figure 6c).

This feasibility study allows us to draw several relevant
conclusions:
* The sensitivity analysis performed for validation highlights
the importance of the pore network connectivity. This calls
attention to the potential usefulness of alternative manufac-
turing techniques such as SPS sintering or 3D printing.[54,55]

* The possibility of obtaining pore-resolved saturation values
allows this method to be used as part of a workflow, yielding
a final state apt to be used for subsequent electrochemical
simulations for characterization.

* Once the training data is generated, this approach presents
an ultralow computational cost and its low storage require-
ments with very high accuracy.

* While the original data corresponds to microtomography, it
can be indistinctively applied to structures obtained from
CGMD simulations.

Figure 6. a) Visualization of the wetting process on an NMC structure
obtained from tomography of an NMC 94% – CBD 6% electrode according
to LBM simulations. Red represents the electrolyte, and blue the solid
particles. b) Gas-phase evolution as the electrolyte displaces it. Adapted with
permission from Ref. [52]. Copyright (2021) Elsevier. c) Comparison between
the physics-based LBM approach and the ML-based approach. Adapted with
permission from Ref. [53]. Copyright (2021) Elsevier.
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Another model approach is applying CFD by using the
commercially available software ANSYS. The approach detailed
by Hagemeister et al.[56] shows two separate models for the
dosing and wetting of the cell due to the different time and
size scales. The mass flow is observed for the dosing simulation
as the electrolyte surrounds the cell stack. The effect of
pressure and temperature is studied to optimize each dosing
step. The dosing will continue to gain importance as cell
formats increase while the void volume in the cell decreases.
Additionally, the simulations have been verified using exper-
imental visualization from neutron radiography and show good
agreement. In the wetting model, the flow through a small
porous section of an NMC cathode is simulated, which can be
coupled with the dosing to complete a cohesive model in
further steps.

In DEFACTO, multi-scale models that integrate mesoscale
and continuum approaches that optimize the electrolyte filling
process are being developed. At the mesoscale, a computa-
tional approach based on LBM is used[57] to study the filling
process and corresponding pore-scale phenomena in 3D
lithium-ion battery (LIB) cathodes. The electrolyte flow through
the nanoporous binder is simulated using a homogenization
approach. Besides the processing time, the influence of
structural and physicochemical properties is further investi-
gated, guiding battery performance optimization by adapting
process parameters and the electrode and electrolyte design.

3.2.5. Formation modeling

The ARTISTIC project has proposed a 4D resolved model able
to simulate lithiation/de-lithiation dynamics in the composite
electrode mesostructures resulting from the manufacturing
simulations. Such a model describes explicitly through mathe-
matical equations the different physical processes occurring in
the operating electrodes: electrochemical reaction and double-
layer formation at the interface between AM and electrolyte,
lithium diffusion in the AM, electronic transport in both AM
and CBD, electronic transfer between the AM and CBD and
lithium-ion migration (concentrated solution theory) in the
electrolyte filling (totally or partially) the pores. It is worth
mentioning that because of its explicit 3D nature, the model
does not need input textural parameters such as particle size,
active surface area, electrode porosity, or tortuosity factor, in
stark contrast to classical Newman-type pseudo-2D electro-
chemical models. The model has been used in multiple
contexts, such as the assessment of NMC111 electrodes’
behavior as a function of their manufacturing parameters,[46]

the mechano-electrochemical behavior of Silicon-Graphite
electrodes,[32] and the simulation of impedance spectroscopy in
symmetric cell conditions (beneficial for determining the
electrode tortuosity factors).[58,59] The model allows assessing
the impact of material distribution heterogeneities on the
overall electrochemical response of the electrodes. For instance,
electronic and ionic impedances are spatially resolved as they
are strongly dependent on the spatial location of the different
(e.g., AM/CBD) interfaces.

This 4D-resolved model has also been used to simulate the
SEI formation in graphite electrodes (Figure 7a).[60] By its
heterogeneous nature, the model can predict heterogeneous
SEI formation in the electrode mesostructured as a function of
the graphite particle morphology and other textural properties
(e.g., porosity, tortuosity factors) related to the manufacturing
process. The description of the SEI formation is performed
through a simple mathematical equation relating the thickness
of the SEI to the Li+ concentration. The latter is calculated by
solving the coupled mathematical equations describing the
electrode operation, particularly the one describing Li+ migra-
tion in the electrolyte. The thickness of the SEI is related to a
spatially-resolved resistance which affects the local charge

Figure 7. Results of the SEI formation FEM simulations for high tortuosity
graphite electrodes composed of ellipsoidal AM particles. a) Snapshots of
the half-cell at several stages during discharge at C/20, during which
formation occurs. The color map represents the state of discharge of the AM.
b) Spatial evolution of the SEI thickness in a highly tortuous electrode as a
function of the cartesian coordinates, showing a heterogeneous distribution
of the SEI along the direction perpendicular to the current collector.
Reproduced from Ref. [60]. Copyright (2021) The Authors. Batteries &
Supercaps published by Wiley-VCH GmbH.
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transfer (Li+ intercalation). The model was also revealed to help
investigate the impact of the formed heterogeneous SEI on the
performance of the graphite electrode. It was found that the
thickness of the SEI becomes more homogeneous in the
spherical particle electrode, where the ionic transport limitation
is the mildest (Figure 7b), which leads to better electrochemical
performance.

3.2.6. Material and energy flow modeling of the process chain

In addition to modeling the process-product interactions along
the battery process chain (process-oriented), modeling the
material and energy flows (production-oriented) in the factory is
also highly relevant for battery cell production. While process-
oriented modeling focuses on the quality of the intermediate
and final products of the process chain, production-oriented
modeling concentrates on the throughput, material, and
energy demand and the degree of capacity utilization, which
are key performance indicators of battery cell factories. The
production-oriented simulations enable a transparent view of
the material and energy flows, which allows, for example, to
identify production bottlenecks,[61] energy hotspots, and the
effect of energy efficiency measures[62] based on different
scenarios. In particular, energy demand is highly relevant to the
operating cost and the environmental impact of a battery cell
factory, so that various simulation approaches can be found in
the literature. The energy consumption of the production
processes and the energy-intensive technical building services
can be modeled by mechanistic[63] or data-based[64] approaches.

In production-oriented simulations, different modeling
paradigms, such as agent-based, discrete event, and dynamic
systems, are coupled to describe the material and energy flows
along the process chain.[65] Agent-based modeling describes
active objects such as production machines or product units.
Discrete event modeling characterizes the internal behavior of
the agents by different states which are connected via specified
conditions. Dynamic systems modeling is used to characterize
the temporal behavior of, for example, the electric power
demand or the material flow. Integrating the different simu-
lation modeling paradigms in software such as Analogic or
Plant Simulation allows a dynamic description of the material
and energy flow in battery cell factories.

Similarly, Schönemann et al. proposed a multi-scale simu-
lation approach that combines multiple factory levels in a
modular platform.[66] The core element is the process chain
module, which defines other factory elements, such as the
production machines, processes, product flow, workers, or
technical building services. Individual model approaches can
characterize each factory element. The heterogeneous models
are synchronized efficiently via middleware and thus enable an
elaborate description of the energy demand of a battery cell
factory.

In addition to the process equipment, the technical
building services (TBS) contribute significantly to the energy
demand in battery cell production. The recovery of the organic
solvent (NMP) during drying is essential due to the toxicity and

the inherent value of the solvent. Ahmed et al. introduced a
spreadsheet model based on mass and energy balances for the
drying process with a subsequent solvent recovery, where the
power demand, temperatures, and NMP contents are described
for the individual elements of the drying and recovery equip-
ment, i. e., electrode dryer, condenser, chiller, zeolite wheel.[67]

The authors showed that solvent recovery imposes 45 times
higher heat demand than needed to vaporize the NMP.

Furthermore, the energy demand contributed by the dry
room immensely affects the overall energy demand required
for battery cell production (up to 48% of overall electricity
demand).[68] It thus has been the focus of recent modeling
works. Physical simulation models provide a dynamic assess-
ment of the energy demand as a function, e.g., the weather
condition or workers inside the dry room. Modeling languages
such as Modelica are used to describe the humidity, airflow,
and temperature within the different components of the
technical building services, such as the process fan, regener-
ation fan/heater, pre-cooler, or supply air heater.[69] The model
results provide essential knowledge for the planning and
operation of dry rooms for battery cell production.

3.2.7. Assembly modeling

In addition to image-based defect detection techniques, tradi-
tional Failure Mode and Effects Analysis (FMEA) and simulation
techniques are also used to design and optimize assembly and
manufacturing processes. The finite element method (FEM) is
widely used in the design phase of the cell assembly process.
Schilling et al. simulated the stresses generated during the
winding process. The mechanic characterization approach
adopted can determine the minimum bending radius for
manufacturing electrode-separator-composites.[70] The HoLib
project team[71] from the Prozell cluster also reported using
dynamic finite element analysis (FEA) to simulate the cutting
process of electrode sheets. In one of the articles of this team[72]

the FMEA method is applied to the electrode stacking process.
Based on a failure mode ranking, the positioning error of the
electrode foils is considered in detail, and an algorithm to
simulate the stacking error is presented in Matlab.

3.3. Models implementation in practice

In terms of physics-based models, the manufacturing process
of LIBs has been mainly considered using CGMD and DEM
simulation techniques. Later steps include electrolyte infiltra-
tion, which requires fluid dynamics simulations and electro-
chemical simulations that FEM can implement. Table 3 presents
some examples of software that can be used for these
purposes.

LAMMPS is an open-source classical MD code developed by
researchers from the US Department of Energy in collaboration
with other private centers and universities. The code, written in
C+ + , is also parallelized with MPI, allowing for very efficient
and fast simulations. LAMMPS’s objective materials are solid-
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state systems such as metals or semiconductors and soft matter
systems like biomolecules and polymers, as long as the
modeled interactions are short-ranged and particle densities
are moderately bounded. LAMMPS has available the so-called
ML potentials, which replace the physics equations fit a set of
experimental or calculated data with generic equations that
describe the geometry of a neighborhood of atoms and are
refined with an increasingly large dataset.[77]

LIGGGHTS is another open-source software developed by
CFDEM® project based on LAMMPS, but with a special focus on
DEM for industrial applications. For this purpose, it expands on
the latter basic capabilities to include the possibility of
importing complex geometries, moving meshes, improvements
on the code dealing with granular interactions, description of
heat conduction, and the possibility of coupling with CFD
simulations, among others.[78]

Palabos is a C+ + library for CFD simulations based on the
LBM. It can be accessed through Python or Java interfaces,
facilitating its use and easily setting up simulations without the
need for a deep understanding of the LBM algorithms. Addi-
tionally, it works on various platforms due to its general lack of
dependencies. Palabos takes advantage of the highly paralleliz-
able nature of LBM to allow for the use of MPI libraries that
work efficiently, leading to a significant improvement in
calculation times.[79]

COMSOL Multiphysics and Abaqus allow running FEM and
DEM simulations for mechanical, electrical, and electrochemical
applications. Simcenter STAR-CCM+ is a multiphysics CFD
software that focuses on optimization. Simcenter Battery
Design Studio allows the simulation of LIB cell performance
with a wide array of battery components and materials.

Due to the improved interconnectivity of devices, the
overall increase in computational power and a higher degree of
data availability enable applications of data-driven methods.
These methods are capable of extracting (or mining for) desired
information from vast amounts of data. Many of these
methods, such as ML or AI, are commonly applied in everyday
situations (e.g., self-driving cars and recommendation systems
in online shopping). Although these algorithms and methods
are highly sophisticated and complex, their application hurdle
has been greatly reduced over recent years. This has been
achieved by developing various data analytics tools (e.g.,
RapidMiner, KNIME, ELKI). The former requirement of being
capable of creating your code or algorithms is no longer given
using these tools. Many data analytics tools offer built-in
functions that only have to be parameterized before analyzing

the data. However, programming and scripting languages (e.g.,
Python, R, Matlab) are still widespread in the scientific world.
They have many highly specialized libraries to support the
customizability and application of state-of-the-art algorithms. In
the following, the most common data analytics tools and
programming/scripting languages are presented and explained
in detail in Table 4, with corresponding studies applying those
in battery production.

4. Data Specifications

4.1. Manufacturing parameters

In order to encode computational models in digital twins
capable of performing on the fly optimization of the manufac-
turing process, it is important to have a clear overview of the
type of data is involved in the process of flowing information
from the real prototyping line to the digital twin and from the
latter to the former (cf. Figure 1). In the following, we present a
classification of LIB manufacturing data types regarding their
future use in digital twins of prototyping lines. This classifica-
tion intends to provide a template that quickly identifies the
missing gaps and defines practical recipes for digital twins
development and implementation.

The manufacturing parameters strongly impact the elec-
trode meso/microstructure and the cell properties. The output
properties of each manufacturing step affect the output
properties of the subsequent steps with a degree of impact,
which depends on the specific parameters under consideration
(e.g., materials chemistries or AM PSD).

The following subsections correspond to each step of the
manufacturing process. A description is given for the parame-
ters relevant to each step, how they are measured, and the
accuracy that state-of-the-art sensor technology can provide.
Next, the importance of these parameters as inputs in models
is briefly presented. To this end, models have been classified
into four categories: empirical models are simple relations that
can be found by simply fitting experimental data to mathemat-
ical functions; continuum models are physics-based models
that generally rely on a set of Partial or Ordinary Differential
Equations that describe the underlying behavior of well-known
physical phenomena; discrete models usually consider the
system as composed of individual particles following simple
rules that determine the complex emerging behavior of the
whole system; finally ML models are not based on any physical
insight but rather try to predict a system’s behavior from the
aggregation of similar previously available data.

All the input parameters below are considered important in
determining the output parameters for each manufacturing
step. This criticality refers to the importance of knowing a
parameter for setting and validating each type of modeling
approach aiming to predict the influence of manufacturing
parameters on the output of each step. Models (particularly
true for ML ones) can be designed in principle to deal with all
the parameters, but here we refer to what the models reported
in state-of-the-art can currently account. Each section ends

Table 3. Software typically used for the mechanical modeling of the
manufacturing process.

Software Type Reported applications

LAMMPS Open source Slurry,[30] drying,[45] calendering[46]

LIGGGHTS Open source Calendering[46]

Palabos Open source Electrolyte infiltration[52,53,73]

Abaqus FEA Commercial Coating and calendering,[74]

winding,[75] welding[76]

COMSOL
Multiphysics

Commercial Formation[32]
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with a table that will allow the readers to quickly and
graphically visualize the criticality of these parameters through
a color scale with three levels: red for high, yellow for
intermediate, and blue for low. These tables also present
columns related to measurability that show how easy it is to
acquire these data in the pilot plant and the available accuracy.
For the measurability columns, blue indicates great difficulty,
yellow indicates intermediate difficulty, and red is easily
measurable. For accuracy, blue means poorly accurate, yellow
means moderately accurate, and red means highly accurate.
The color-coding has been assigned based on the technique’s
straightforwardness to measure and accuracy for characterizing
the referred parameters. We discuss essentially the parameters
in each manufacturing step section that are poorly accurate
and greatly difficult to measure. Of course, the color-coding
could be influenced by the pilot line development and
experience; we consider it a helpful aid as initial and easy-to-
read. It is important to note that these rankings arise from an
interative discussion along monthly meetings for an entire year
between the different pilot line groups involved in the Expert
Group “Digitalization, Measurement Methods and Quality” of
the EU Li Planet Network. The last column indicates whether
the measurement can be made in real-time during production
(online) or needs to be made separately (offline). The tables
also divide the parameters into three categories: machine
parameters (MP), which are externally controlled inputs (e.g.,
formulation, solid content, mixing speed), process parameters
(PP), which cannot be controlled externally but are the result of
the chosen MP, and they have an effect on the result of each
step (e.g., slurry viscosity, density forces generated by the
mixing) and structure parameters (SP), which are resulting or
output properties (e.g., porosity, tortuosity factor, effective

electronic conductivity). Some of these MP and PP parameters
influence the SP more than others, and the interdependencies
are expected to be highly nonlinear.[94] Reporting such non-
linear dependences is a challenging process, and while this is
out of the scope of this article, we intend to address this in a
future publication.

4.1.1. Slurry

The materials selected for electrode preparation are based on
the required cell characteristics. Multiple techniques need to be
used for complete characterization, which is relatively easy to
measure and highly accurate. For instance, the chemical
composition and the impurities or the surface components
generated by the materials can be measured by a combined
analysis with microscopy, XRD, XPS, or Raman spectroscopy.
For impurity and elemental analysis, inductively coupled
plasma (ICP) can also be used for detecting pollution in the
parts per million range. However, when using this technique,
sample and calibration standard preparation are a major
concern because of the risk of contamination from sample
containers and chemical reagents.[95] The morphology of the
active materials and the conductive additives is characterized
by microscopy. Different techniques can measure the particle
size distribution (PSD) depending on the measuring principle
(i. e., laser diffraction, dynamic light scattering, imaging) since
particle size distribution is a significant parameter for electrode
slurry preparation. A difficulty when measuring PSD and
morphology arise when the particles agglomerate or their
shape is not homogeneous, impacting the measurability and
accuracy of the result.

Table 4. Data-driven modeling software tools and programming languages.

Tool Description Studies Program
languages

Description Studies

RapidMiner
(former
YALE)

Java-based science and ML platform
Node-based workflow
data loading, transformation, and
preprocessing, visualization, analytics
and modeling, evaluation, and
deployment

Schnell
et al.[80]

Python Interpreted high programming language
Eased readability and a low entry barrier
Many specialized libraries for mathematics,
science, ML, etc.

Severson et al.[81]

Thiede et al.[64]

Liu et al.[82]

Turetskyy et al.[83]

Vogt et al.[84]

Niri et al.[85]

KNIME
(Konstanz
Information
Miner)

Java-based free and open-source data
analytics and reporting platform
Node-based workflow
data loading, transformation, and
preprocessing, visualization, analytics
and modeling, evaluation, and
deployment

Bockwinkel
et al.[86]

R Interpreted programming language
Many specialized libraries for statistics,
mathematics, science, etc.
Can implement code from C & C+ +

Kornas et al.[87]

Cunha et al.[33]

Kirchhof et al.[88]

Meyer et al.[89]

Others ELKI (Environment for developing
KDD-Applications Supported by
Index-Structures)
Weka (Waikato Environment for
Knowledge Analysis)
SPSS
H2O.ai

Kornas,
et al.[90]

Matlab Proprietary programming language
Allows faster and computationally more
efficient matrix operations compared to
other programming languages
Many specialized libraries for statistics,
broad engineering fields, computer vision,
ML, etc.

Westermeier et al.[91]

Severson et al.[81]

Duquesnoy et al.[47]

Liu et al.[92]

Rynne et al.[6]

Chen et al.[93]

Azure
Machine
Learning
(Microsoft)

Cloud-based environment for developing
ML projects at big scales
Data management, predictive modeling,
deployment

C (C#/C+ +) Compiled high programming language
Higher entry level
Very fast execution due to efficient
mapping to machine instructions
Widely used for embedded applications

Lombardo et al.[30]
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Once the raw materials are characterized, the slurry recipe
is defined, including the active materials, the conductive
additive, and the binder content. Also, the solid content that
determines the solvent amount needs to be decided. Those
input parameters are usually measured using a weighing
balance.

Generally, the slurry is a system of suspended particles that
is not in equilibrium. It is mainly composed of solvents, active
material particles of micro- or sub-micrometer size, conductive
agents, and binders of sub-micrometer size or even smaller
than 100 nm. The particles tend to sediment and aggregate
depending on their size, density, and shape, during and after
slurry manufacturing. The electrode manufacturing process is a
long and continuous process in which coating is not always
possible immediately after slurry preparation, so the slurry
must remain stable during the storage period before coating.
For this reason, the dispersion of the components is a crucial
factor affecting the rheological behavior of the slurry. Poor
slurry stability and homogeneity can lead to settling of the
components and weakening the overall performance and
production efficiency of the coated electrode, which is
detrimental to the quality of the battery.

The stability, homogeneity, and processability of a slurry are
characterized by rheology. Liu et al.[14] have introduced basic
rheology concepts in the context of LIB electrodes. The most
influential rheological feature of a slurry is its viscosity, which is
impacted by several properties such as particle size, shape,
roughness, charge, thermodynamic and hydrodynamic forces,
and solid fraction.[13,16]

Different mixers such as ball milling, planetary mixers,[96,97]

high-speed mixers, homogenizers, universal type mixers, and
static mixers have been developed to be generally used for
slurry mixing step. Ball mixer is industrially accepted as a
reference tool despite its high energy consumption and limited
practicality for large-scale production.[16] At the same time, the
shear mixer (i. e., the planetary mixer) is the preferred choice for
industrial applications.[13] The most important parameters to
consider during slurry processing are rotational speed and
time. These parameters vary depending on whether a slurry is
prepared for the cathode or the anode. They can directly
influence the resulting viscosity, depending on their ability to
disperse the particles and prevent the formation of agglomer-
ates caused by the interaction of the materials. These values
are found between 1000–4000 rpm and 10–120 min for both
cases. Another parameter that affects slurry properties is
temperature, especially for slurries containing NMP. Generally,
slurries are mixtures with non-Newtonian behavior easily
affected by temperature changes.[98] Hawley and Li[99] evaluated
the behavior of cathode slurry mixing in a temperature range
between 25 and 75 °C. They demonstrated that at 60 °C better
slurries are obtained with properties more suitable for faster
and longer coatings. Despite the significant influence that
temperature can have on the properties of the resulting slurry,
relatively not much literature is available on this subject.

As mentioned above, the most influential characteristic of
rheological properties is viscosity, which is characterized offline
by rheology measurements at a shear rate relevant to the

coating process. Standard rheometers cover very little of the
range of shear rates encountered in coating (typically 10� 1–
103 s� 1). Frequently, a shear rate is picked depending on the
lower limit of the coater. If the viscosity is low enough at this
point of interest, it will flow in the coater since these instru-
ments have some constraints. For instance, a thick slurry is
difficult to be applied homogenously through the current
collector, while a thin slurry could produce thickness variations
and spillage.[13] If a sweep of shear rate is performed,
extrapolations of the viscosity to higher shear rates can be
performed, e.g., assuming that the material follows power-law
behavior.[100]

Other techniques that have recently attracted attention to
measure the aggregates and the slurry homogeneity are the
Zeta Potential and inverted microscopy due to the facility to
measure the particle size of samples suspended in liquids in
the size distribution range of 0.1 nm to 12 μm at different
concentrations. The information obtained is directly related to
aggregates and the slurry homogeneity.[101–103] Nevertheless, for
these techniques, it is necessary to dilute the slurry. As it is well
known, solid content variations may directly impact the particle
aggregation and slurry homogeneity, resulting in challenging
and indirect to measure (assigned blue in Table 5).

Continuum models used to describe the mixing process can
use the solid content and mixing parameters as inputs to
predict the rheological properties of the slurry.[104]

Published discrete models for slurry preparation are mostly
based on CGMD. These models explicitly consider formulation,
solid content, and particle size distribution; they implicitly
consider other process parameters such as carbon additive size,
purity, and materials chemistries through the FF parameters,
which need to be fitted to experimental data. The mixer type,
rotational speed, mixing time, and ambient conditions are
usually disregarded, assuming thorough mixing. A full simu-
lation of this process would require considering full-scale
systems (out of reach of current computational capabilities) or
the use of simplified model systems that allow only for the
qualitative study of general trends. In terms of structure
parameters, density, viscosity, homogeneity, aggregate size,
and other rheological parameters are useful quantifiers to fit
the model. They are the main outputs of the discrete models.
In particular, density and viscosity are used to fit the model to
experimental results.

ML models are already well known for treating the explicit
material, formulation, and solid content as input variables to
analyze their effect on the coated electrode and even on the
final electrode properties. Moreover, it appears possible to
consider electrode properties from the slurry as inputs (e.g.,
viscosity) instead of fabrication parameters.[30] This is especially
true when optimizing the slurry manufacturing modeling,
dealing with FF parameters of the corresponding physics-based
models. The fitting of electrode properties, like the viscosity or
mass loading, enables bypassing the experimental measure-
ments to predict these properties as a function of various
manufacturing conditions. This considerably reduces the trial-
and-error approaches done in experiments.[33] In the end, the
various batch of electrode properties coming from the
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experimental measurements and the outputs of physics-based
models serve as meaningful variables for the ML models while
optimizing the slurry step, which is the most critical step of the
full fabrication process.

Table 5 summarizes the above information in an easy-to-
read, color-coded way.

4.1.2. Coating

In the coating step, the suspension is applied to a current
collector with an application tool, either continuously or
intermittently. The coating is applied while the current collector
is supported by a roller or tensioned by a set of rolls.[100]

The coating set-up significantly impacts the properties of
the manufactured electrodes with a typical coating speed (0.3–
30 m/min). Slot-die coating is currently the most common
industrial practice due to its closed system being less prompt
to environmental conditions. In contrast, doctor Blade is the
most used procedure on the laboratory scale. A pump supplies
the slurry during slot-die coating, and the flow rate and slot
width determine the volume of the slurry. In comparison, the
doctor blade or comma bar coating is self-calibrated, and the
gap set determines the slurry volume allowed. Advantages of
this slot die method compared to the lab-scale coatings are,
e.g., the precise dosing, easily scalable process parameters, and

closed feed system.[105,106] There are also novel coating
techniques under development, spray coating,[107] electropho-
retic deposition,[108] and 3D printing,[109] among others; how-
ever, in the context of this paper, we are focusing on the most
applied technique, such as the slot die.

The most influencing machine parameters in the slot die
coaters are the coating speed, web tension, and coating gap,
whose accuracy depends on the machine gauge precision
(accuracy assigned as yellow in Table 6). The challenge remains
to identify the base operating windows that favor and are
directly related to homogeneous electrode structure output
parameters. Generally, the structure coating output parameters
such as surface homogeneity, wet-fil thickness, adhesion, and
defects are mostly intermediate to measure with resulting
average accuracy (assigned yellow in Table 6) and will be
discussed hereafter. Coating defects can occur outside the
proper coating ranges, such as ribbing, dripping, rivulets, and
air entrainment.[34] Coating speed directly impacts the forma-
tion of edges on the electrode film, particularly during
intermittent coating. Therefore, it is necessary to control the
coating speed and fluid supply since the wet-film thicknesses
differ depending on it, especially at the edges.

Another critical parameter is the coating gap, which is
directly related to the final mass loading of the electrode and
hence the theoretical cell energy density, one of the most
important outcomes for a defined manufactured cell. Depend-

Table 5. Summary of the parameters relevant to the slurry preparation step.

Slurry preparation Importance[d]

(criticality)
Measurability[e] Accuracy[f] Online/

Offline[g]

Empirical Continuum Discrete ML

MP[a] Material storage
conditions

N/A XPS, Raman Spectroscopy Few nm – few μm Offline

Materials chemistries XPS, Raman Spectroscopy Few nm – few μm Offline
Formulation (ratio) Balance Percentage Offline
Solid content Balance Percentage Offline

PP[b] Active material PSD Microscopy Å to μm Offline
XRD

Active material particle
morphology

Microscopy Few nm – μm Offline

Carbon additive size Microscopy Few nm Offline
Purity Magnetic separator, Microscopy,

ICP
Offline

MP Mixer type Set-up design –
Mixer rotational speed Control parameter (MP) rpm Online
Mixing temperature and
ambient conditions

Control parameter,
thermostat

�1 °C, Humidity <1.0% Online

Mixing time and
sequence

Control parameter min Online

SP[c] Aggregates size X-ray CT method, Inverted Micro-
scopy, Zeta Potential Determina-
tion by Electrophoretic Light Scat-
tering, Laser diffraction
spectrometer

0.1 nm to 12 μm Offline
Homogeneity Online

Days/0.1 nm to 12 μm
Microstructure Offline

Density Densimeter g cm� 3 Offline
Viscosity vs. shear-rate Rheometer Pa s vs. s� 1 Offline
Other rheological
parameters

Rheometer Pa vs. Hz Offline

[a] Machine parameters (MP), which are externally controlled inputs. [b] Process parameters (PP), which cannot be controlled externally but are the result of
the chosen MP, and they affect each step‘s result. [c] Structure parameters (SP) are resulting or output properties. [d] Criticality for setting and validating the
modeling parameters evaluated as: red for high, yellow for intermediate, and blue for low. [e] For the measurability columns, blue: great difficulty, yellow:
intermediate difficulty, and red: easily measurable. [f] For accuracy, blue is poorly accurate, yellow is moderately accurate, and red is highly accurate. [g] The
measurement can be made in real-time during production (online) or needs to be made separately (offline).
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ing on the application, the desired electrode could be thick or
thin based on the coating gap. For thicker electrodes, the
energy density increases, but it also complicates the transport
limitation provoking certain electrode polarization. Therefore, a
compromise between the optimum thickness and electrode
properties is necessary, like the porosity, tortuosity factor, and
homogeneous material distribution. From a technical stand-
point, a thick electrode (>500 μm) can be challenging to
manufacture because of its slurry weight, density and rheo-
logical properties.[110] The last two related to ambient temper-
ature and will affect the uniformity of the coating. This
parameter is directly linked to the fluid rheological properties.
For instance, viscous slurries cause problems in the coating
process, resulting in low film uniformity.

On the other hand, a low viscous slurry will trickle when
using a thick comma gap. Consequently, the slurry viscosity
must be adapted when using a too large coating gap.[110] Thin
electrodes are particularly interesting for high-power applica-
tions. When producing a thin electrode, the coating gap needs
to be reduced. The minimum achievable gap depends on the
agglomeration or particle size that is normally characterized
when preparing the slurry (measurability and accuracy dis-
cussed in Section 4.1.1). Likewise, agglomeration and slurry
particle size may provoke surface electrode inhomogeneity
because big particles (bigger than the coating gap) tend to
leave traces on the coated electrode. When using slurry

quantities (<50 L), it could be advantageous to filter the slurry,
however important material losses are expected.

Another important parameter to consider during coating is
coat-weight uniformity. Lower mass loading electrodes will
have more impact if there is a higher variability than high-
energy electrodes. The coat-weight uniformity highly depends
on the slurry rheology, like the coating thickness factor.
Variations in the current collector thickness, coating speed, and
slot-die design will highly impact the coating homogeneity,
hindering its accuracy and measurability.[110]

The micrometer and balance are the most commonly used
tools for measuring coating thickness and mass at the lab scale
after drying. These methods are offline and cannot represent
the variations through the entire electrode roll. Laser triangu-
lation and calipers are usually employed for online measure-
ments because they are accessible, nondestructive, and capable
of estimating and identifying the coating process and
defects.[100] Coating defects such as film instability and edge
effects can generally occur. They must be controlled within the
online operation to avoid huge scraps or manufacturing cells
that can lead to premature degradation. The wet-film thick-
nesses can be measured by using a 2D triangulation system. It
has been observed that the volume flow decreases for the
different coating speeds, provoking a decrease in the wet film
thickness, thus the formation of edges.[111]

Certain empirical approximations can be found in literature
where the correlation between the coating parameters and

Table 6. Summary of the parameters relevant to the coating step.

Coating Importance (criticality)[d] Measurability[e] Accuracy[f] Online/
Offline[g]Empirical Continuum Discrete

MP[a] Coating
set-up

N/A Set up design – Online

Speed Control machine �0.05 m/min Online
Gap Control machine �1 μm Online
Web tension Control machine �0.05 N Online
Ambient
Temperature

Thermocouple �0.5 °C Online

PP[b] Slurry
rheological
properties

Rheometer Pa s vs. s� 1

Pa vs. Hz
Offline

Slurry particle
size

Inverted microscopy, X-ray CT,
Zeta Potential Determination

20 nm to 12 μm Offline

Surface
homogeneity

Camera, light sensor – Online

SP[c] Wet film
thickness

Laser triangulation �0.5 μm Online

Defects Camera �0.5 μm

–

Online
Online

Edge
geometry

Camera – Online

Adhesion Trigger test,
Peel Test 90°
Uniaxial-material testing machine

�0.05 N/m Offline

Loading Beta gauge, Ultrasound �0.01 mg/cm2 Offline

[a] Machine parameters (MP), which are externally controlled inputs. [b] Process parameters (PP), which cannot be controlled externally, but are the result of
the chosen MP, and they have an effect on the result of each step. [c] Structure parameters (SP), which are resulting or output properties. [d] Criticality for
setting and validating the modeling parameters evaluated as: red for high, yellow for intermediate, and blue for low. [e] For the measurability columns, blue:
great difficulty, yellow: intermediate difficulty, and red: easily measurable. [f] For accuracy, blue: poorly accurate, yellow: moderately accurate, and red: highly
accurate. [g] The measurement can be made in real-time during production (online) or needs to be made separately (offline).
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their impact on the film uniformity is analyzed. Ding et al.[34]

reviewed different coating limits such as various vacuum
pressures, low-flow, dynamic wetting failures, wet thickness for
zero-vacuum-pressure cases, and coating speed for a specific
flow rate.

Continuum scale studies on CFD models have gained more
attention in the last few years. These models can reveal and
provide an understanding of the characteristics of the flow field
near the dynamic contact line, which is key to understanding
the mechanisms of coating defects. In this regard, 2D Navier-
Stokes equations have been used to describe the behavior of
the flow field in the coating bead.[37,38,112,113] However, there are
still no complete physical equations describing the impact of
the coating parameters.

ML can be used to assess the impact of parameters such as
the gap of the coating step, together with slurry formulation
and solid-to-liquid ratio, on the electrodes’ heterogeneity.[39]

Other approaches include different formulations, manufactur-
ing protocols, and performance properties. For instance, input
parameters from formulation and manufacturing were varied
like slurry composition, mixing protocol, electrode coating gap
size, drying temperature, coating speed, and calendering.[40]

Table 6 summarizes each parameter’s criticality in the
corresponding modeling approach and the most important
parameters involved in the coating.

4.1.3. Drying

Directly after the coating step and before the drying process
starts, the wet film supported onto the film has almost
homogeneous particle and additive distribution within the
solvent. In this step, the coating is fixed on the current collector
surface, consolidating the uniform electrode structure and
morphology formation to achieve the desired cell performance.
This is completed by evaporating the solvent from the slurry
with a typical drying rate of 25–50 mmin� 1.[114]

Hot-air convection and infrared radiation drying are among
the most common drying techniques,[115] although we focus on
the hot-air drying type in this work. Under hot air, in the first
stage of the drying process (film shrinkage), the solvent
evaporates from the film‘s top surface, causing it to shrink until
the rigid AM particles make contact with each other, stopping
any further decrease in film thickness. Then, the second stage
of drying (pore emptying) is initiated, in which the solvent in
the pores between the AM particles evaporates.[99] At this stage,
the solvent molecules diffuse through the thickness of the
electrode shifting the AM particles, the binder, and conductive
additive (binder/conductive additive migration), leading to
reduced contact between the current collector and the
electrode.[18,116,117] It is thus necessary to find the best compro-
mise between minimizing the binder migration and the drying
rate protocol to avoid weak electrode/current collector adhe-
sion that may produce capacity fading and mechanical failure
(e.g., electrode delamination from the current collector.

In general, there are five main parameters to be considered
when operating the dryer: the drying type, speed of the rolls,

the drying temperature or drying rate, the hot air flow (i. e., air
velocity), and energy consumption.[118] Similarly, as we dis-
cussed in the previous section, machine parameters impact
morphological and structural output electrode characteristics.
For instance, the roll speed parameter directly impacts the
electrode’s homogeneity and quality, provoking defects such as
pins, holes, cracks, and delamination. Another critical parameter
is the drying rate. In this case, it has been observed that higher
drying rates and temperatures lead to higher binder migration
and poor adhesion strength. An unsuited drying protocol
provokes defects in the electrode, such as mud-cracking and
curling. There is the stress generated when using drying faster
protocol rates, where the top surface of the electrode dries
faster than the rest of the coating. The solvent molecules
trapped at the bottom of the electrode become active, causing
the top layer to fracture. Thus, line speed is related too with
protocol rates when producing electrodes depending on the
thickness. Therefore, these parameters should be optimized
and are influenced by the electrode coating composition,
thickness, and mass loading. Consequently, understanding the
individual or combined effects of these parameters on the
dried electrodes is essential for optimizing and improving the
resulting electrode structure.

This resulting electrode micro/mesostructure, including the
binder distribution of the electrode after drying, is character-
ized by ex-situ AFM, SEM, TEM, and EDX, among others. These
techniques have demonstrated the ability to distinguish
between the binder distribution, conductive additive, and AM.
However, poor accuracy and measurability can arise from
differentiating materials with similar chemical or morphological
environments.[119,120] The peel test measured the electrode
adhesion strength offline, separating the coating from the
current collector using tapes.[121] This test provides comparative
information between electrodes produced in-house. Because it
employs different variables such as tape type, placement, tape
application, and measurement machine, which can change
from other pilot planes, hindering the measurability and
accuracy from comparing with outsider reported adhesion
properties.[122] Different online methods are currently available
to monitor the electrode drying step. The laser scanning
confocal microscope technique is already known to evaluate
the roughness of the electrode in place.

Moreover, laser triangulation or even the online laser
caliper is also used to monitor the thickness of the dried
electrodes. In addition, through IR cameras, the temperature
profile of dried electrodes can be monitored. These mentioned
techniques can expose any potential electrode coating defects.

Design of Experiment (DoE) is a widespread methodology
in the industry as part of FMEA to identify and classify
influencing parameters. In reference,[123] DoE methodology is
employed for the pilot-scale manufacturing of NMC622 cath-
odes to determine the main influencing process variables of
the coating-drying step. In this work, empirical models
representing the relationship between the operating variables
(i. e., temperature, speed), electrode and cell physical character-
istics, and the cell electrochemical performance were obtained
by linear regression.
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Continuum scale modeling can help validate hypotheses
and better understand the key parameters influencing elec-
trode structure formation in the drying step. In this regard, the
1D model is the most common approach.[18,124,125] However, in
most cases, this is valid only for a specific part of the whole
drying process, either the initial film shrinkage stage or the
subsequent pore emptying stage). Neither of these existing
models can be relied upon to predict the whole optimal LIB
electrode drying step.[114]

CGMD models consider the solvent only implicitly, and
thus, its evaporation deals by using a change of FF parameters.
The machine parameters are weighted using a few parameters
related to the conversion rate from the “wet” state to the “dry”
form and the difference in conversion rate between horizontal
layers of the domain. This approach describes some critical
phenomena during drying and identifies trends, but it is
challenging to translate to experimental parameters quantita-
tively. As structure parameters, porosity, microstructure, and
binder distribution are all well described by this approach. In
contrast, some larger-scale features like surface roughness,
defects, homogeneity, and cracks can be accounted for but
require the set up of very large simulation domains, which
could be beyond the reach of currently available computing
resources. CFD-DEM coupling method is also used to under-
stand particle-particle and particle-fluid interactions within the
drying step. Through this approach, electrode shrinkage along
this step can be properly understood.

ML models usually consider the coating speed, temper-
ature, gap, and the speed and temperatures from the drying
step as critical fabrication parameters to evaluate better
fabrication conditions.[126] Indeed, they are the most significant

electrode properties (e.g., thickness, mass loading), represent-
ing the common ML outputs. More precisely, the assessment of
many measurements per condition can be analyzed with these
ML models by directly predicting the average value and
standard deviation corresponding to one fabrication process.
The same electrode properties define new electrode perform-
ance criteria (e. g., heterogeneity) to optimize manufacturing
and the best fabrication processes. Table 7 summarizes the
above information in an easy-to-read, color-coded way and the
criticality of the corresponding modeling approach and the
experimental parameters.

4.1.4. Calendering

Calendering is the last electrode fabrication process step. Here,
the electrodes are compressed between two rollers. During
calendering, the final electrode thickness and porosity are
defined. Moreover, the particle-to-particle cohesion and cast
electrode-to-current collector adhesion, mechanical properties
of the electrodes, and electronic conductivity are improved
when compacting the electrodes.

The most relevant machine input parameters are the gap
between the two calendering rollers, the pressure applied to
the electrodes, the calendering speed, and temperature.
Depending on the desired electrode/cell characteristics (high
energy/high power cells), the values for these parameters are
selected. Electrode characteristics also influence the calendered
electrode properties. Usually, cathode electrode AMs are harder
than graphite; therefore, the former is more difficult to
compact. On the other hand, the density of active cathode

Table 7. Summary of the parameters relevant to the drying step.

Drying Importance (criticality)c Measurabilityd Accuracye Online/
OfflinefEmpirical Continuum Discrete ML

MPa Drying type Set up design N/A
Line speed Control (MP) �0.05 m/min m /min Online
Airflow Control (MP) �0.5 m3/h m3/h Online
Temperature/
drying rate

Control (MP) �0.5 °C Online

Energy consumption N/A W h Online
IR-Radiation Control (MP) Online

SPb Surface roughness Laser scanning confocal microscope μm Online
Defects IR thermography °C Online
Homogeneity in
thickness

IR thermography μm Online

Fractures and
mechanical properties

Camera,
Microscopy, AFM

nm – μm Online/offline

Coating thickness Laser triangulation, laser, caliper �0.5 μm Online
Weight Infrared camera, Beta sensor, X-ray

sensor/Photo sensor
�0.01 mg/cm2 Online

Adhesion Peel test �0.05 N/m Offline
Porosity Pycnometer, Hg porosimeter, calculation �10% Offline
Microstructure/
mesostructure

SEM images Offline

Binder distribution SEM-EDX Offline

a) Machine parameters (MP), which are externally controlled inputs b) Structure parameters (SP), which are resulting or output properties. c) Criticality for
setting and validating the modeling parameters evaluated as: red for high, yellow for intermediate, and blue for low. d) For the measurability columns, blue:
great difficulty, yellow: intermediate difficulty, and red: easily measurable. e) For accuracy, blue: poorly accurate, yellow: moderately accurate, and red: highly
accurate. f) The measurement can be made in real-time during production (online) or needs to be made separately (offline).
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materials is higher than graphite (ca. 4 g/cm3 vs. 2 g/cm3), and
the compaction windows have very different scales. Finally, the
formulation components quantities, besides the AM (i. e., binder
and conductive additive), and the morphology of the particles
play an important role in the calendering properties of the
electrodes.[127]

The thickness and porosity measured by geometrical
means, i. e., measuring the thickness and areal loading of the
calendered electrodes, is a parameter that can be accurately
measured online by laser triangulation, laser calipers, X-ray β-
radiation, and ultrasound.[100] The rest of the calendered
electrode properties are usually measured offline, taking
samples of the calendered electrodes. Electrode microstructure-
related properties such as porosity and pore size distribution
can be measured by Hg porosimetry.[127] In addition, an
overview of the calendered electrode microstructure can be
determined by computed tomography (CT)[128] or microscopy.
Other parameters related to the electrode porosity, such as
tortuosity, can be measured by EIS and 3D imaging
techniques.[129] Measuring the electrode tortuosity can be
challenging since it is an output related to electrode micro-
structure interacting with a transport process that sometimes
requires simulation or transport characterization techniques
such as EIS.[130] Additional characteristics for calendered electro-
des, such as the hardness, the Young modulus, and the fracture
toughness, can be measured by micro-indentation. In addition,
the roughness and the adhesion can be measured by
profilometry and 90° peeling tests, respectively. The accuracy
and the time needed to obtain a representative character-
ization of the calendered electrodes based on all these offline
characterization techniques are highly dependent on the
homogeneity of the electrodes since it will determine the
number of measurements to be performed. Moreover, mercury
porosimetry and 90° peeling tests also depend on the sample
preparation procedure, as was discussed in the previous
section.

Empirical models on the calendering process can describe
the achieved coating porosity as a function of process
parameters and electrode properties. The Heckel-based model
by Meyer et al.[131] introduces the compaction factor as a ratio
of minimal achievable coating porosity to the initial one and
the compaction resistance, which characterizes the compaction
effort. Both decline linearly with rising roll temperatures due to
a thermally induced increase in elastic deformability for electro-
des containing the thermoplastic binder PVDF. The compaction
resistance has a positive linear correlation with mass loading as
more contact points increase the overall friction force between
the particles. Eventually, the achieved coating density can be
described as a function of the line load, the compaction factor,
and the compaction resistance.[127,131,132] Usually, the compaction
process is controlled by the gap width of the calendaring roles.
However, the real gap deviates from the specified value due to
roll displacement, depending on the individual calendar and
the processed electrodes. It was shown that the detected roll
displacement correlates directly and linear to the applied line
load and is, therefore, predictable. Additionally, roll displace-
ment enables the determination of the electrode spring-back,

which describes the recovery of the electrode thickness directly
after the compaction process. The spring-back increases linearly
with the applied line load and decreases with higher mass
loadings and higher binder weight contents, which induce
higher plasticity.[133]

Discrete models can explicitly consider MPs such as gap,
pressure, speed, and temperature. In contrast, the accuracy and
capability of the models to represent structure parameters can
vary. Final thickness, pore network parameters, tortuosity, and
mechanical properties are fairly well described, while fracture
toughness and roughness could also, in principle, be modeled,
albeit with a great computational cost, due to the need for a
large domain size. Cohesion between the electrode and current
collector is considered but requires some parametrization.

ML models appear efficient for analyzing calendered
electrode properties (porosity, thickness, tortuosity, conductiv-
ity), directly interlinked with the final electrode performances.[47]

Once an ML model takes the standard calendering gap, speed,
and temperature as input values, the same model enables the
prediction of the associated electrode properties, avoiding the
experimental measurements of this manufacturing step. More
precisely, the combination of manufacturing parameters from
previous steps and the ones detailed above reveals the
interdependencies along the fabrication process relevant for
the calendered electrode optimization. Table 8 summarizes the
experimental and model parameters involved in the calendar-
ing step.

4.1.5. Slitting and post-drying of electrodes

Slitting is a stage of the roll-to-roll operation to prescribe the
electrode width after calendering. It is a low-cost, high-
throughput process (80–150 m/min). The conventional slitting
machine usually uses a blade or chisel, depending on the
electrode type and shape.[12] One of the key points at this stage
is the slitting quality of the electrode edges and the cleanliness
of the film strip. The slit width of the resultant coils can vary
depending on the cell design and the application, which is
between 60 and 300 mm.[134] Laser-based cutting techniques
are being developed as alternatives to the mechanical cutting
process. This technology offers greater flexibility. However,
active material damage or contamination through dust in-
creases when laser cutting is used.

Post-drying aims to ensure an electrochemically harmless
residual moisture in the low ppm range in the material so that
no unwanted gases develop from the chemical reactions that
occur after the addition of the electrolyte. Cell manufacturing is
produced with dryers connected in a continuous process.
Current drying technology typically places electrodes in a low-
pressure environment and heating temperatures of 60–150 °C
for more than 12 hours with an inert gas supply. However,
lower humidity does not always lead to better electrochemistry
and mechanical properties. Long-term high-temperature drying
could impair the adhesion strength of the PVDF and CMC/SBR
binder, damaging the electrode structure.[135] Therefore, the
argon purge method can replace vacuum drying, improving
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performance and decreasing energy consumption. It has also
been found that a relatively low moisture level (326 ppm with
argon purge) could already achieve good electrochemical
performance. The small amount of water can improve the
formation and stability of the SEI layer in the anode.[136] A
widely used technique for measuring moisture is indirect
coulometric Karl-Fischer Titration. The accuracy and measur-
ability of this technique can be hindered because the different
variables and methodologies used are not precisely detailed
and standard, questioning the comparison among results.[137]

Therefore, controlling temperature, pressure, and time is
essential to have an optimal electrode before assembly.

Empirical models for post-drying focus on the sorption
equilibrium of water in electrodes, i. e., residual humidity.
Temperature and dew point, combined with activity or relative
humidity, are the predominant process and machine parame-
ters, affecting the residual moisture in the electrodes. In
addition, the binder system strongly influences the water
uptake of the electrode, specially carboxymethyl cellulose
(CMC), which is used in water-based solvents. This binder
absorbs high amounts of water compared to the remaining
electrode materials and thus must be characterized sufficiently.
Besides, multiple structural parameters of the electrodes affect
post-drying. The porosity is highly critical as it determines the
available diffusion volume of the gas phase, which either
accelerates or decelerates mass transport. In addition, the
electrode pore size is approximated by discrete values instead
of using continuous values and standard deviation to reduce
the complexity of the models. These discrete values are
parametrized based on empirical data. Finally, the tortuosity is
modeled by different surrogates, usually as a function of the
porosity (e.g., Bruggeman relation).[138,139] Table 9 summarizes
the experimental and model parameters involved in the slitting
and second drying steps.

4.1.6. Cell assembly

The separation process is the first step of assembling the pouch
cell. During the separation process, electrode cutting is initially
carried out with a punching tool or shear cutting, and the
electrodes are separated from material rolls. Besides mechanical
cutting, laser cutting is becoming more and more popular for
cell assembly due to its inherent advantage (i. e., lack of
contact), which brings a stress-free separation and thus
contributes to the improvement of cell quality.[140]

In a subsequent step, the separated electrode sheets are
stacked in a certain order of anode, separator, cathode,
separator, and so forth to form a stack. The electrode sheets
are usually transported and positioned by vacuum grippers.
The positioning of the sheets has been widely recognized as a
core quality criterion. However, it is difficult to prevent certain
types of defects or faults, e.g., inaccurate positioning, rough
cutting edges, and metal dust left on the surface of the
electrode sheet, which affects the battery performance and
lifespan. Additional machine input parameters are separator
tension and stacking speed, directly influencing the achievable
stacking accuracy.

The quality of the weld between battery current collector
foils and tabs is directly affected by the machine parameters of
the welding apparatus. It may vary depending on the deployed
technique. Here X-ray techniques detect voids within the weld
and thereby ensure good conductivity of the bond.

During the cell assembly, the water content in the air is
especially critical to avoiding re-introducing water into the
battery materials after drying. Cell assembly operates in dry
and clean rooms, where oxygen is present, and the foreign
particle content in the air is tracked. The water content in the
air is quantified by dew point or ppm measurement. Different
sensors can measure dew point with accuracy down to about
2 C[141] and 1 ppm�5%[142] for the respective techniques. In

Table 8. Summary of the parameters relevant to the calendering step.

Calendering Importance (criticality)[c] Measurability[d] Accuracy[e] Online/
Offline[f]Empirical Continuum Discrete ML

MP[a] Gap N/A Control μm Online
Pressure Pressure sensors Online
Speed Control Online
Temperature N/A N/A Control Online
Electrode composition N/A Offline
Thickness N/A N/A Vernier caliper μm Online

SP[b] Porosity Calculation, porosimetry, CT Online/
Offline

Pore size distribution Porosimetry, CT Offline
Meso/microstructure Microscopy, CT Offline
Tortuosity factor vs. thickness EIS Offline
Cross plane tortuosity factors 3D imaging techniques, EIS Offline
Hardness Micro-indentation Offline
Young modulus Micro-indentation Offline
Fracture toughness Micro-indentation, microscopy Offline
Roughness Microscopy, profilometry Offline
Adhesion Peel test Peel Test at 90° N/m Offline

[a] Machine parameters (MP), which are externally controlled inputs [b] Structure parameters (SP), which are resulting or output properties. [c] Criticality for
setting and validating the modeling parameters evaluated as: red for high, yellow for intermediate, and blue for low. [d] For the measurability columns, blue:
great difficulty, yellow: intermediate difficulty, and red: easily measurable. [e] For accuracy, blue: poorly accurate, yellow: moderately accurate, and red:
highly accurate. [f] The measurement can be made in real-time during production (online) or needs to be made separately (offline).
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some instances, the lab-scale cell assembly is performed under
an inert gas atmosphere, where the oxygen content is strictly
controlled (1 ppm�2%).[143] Overall, the atmospheric condi-
tions are well measurable, with high accuracy, and online
during the manufacturing plant operation.

Due to the numerous processing parameters involved in
the assembly process, it is rather challenging to build a
deterministic model for the assembly process to predict quality
parameters such as stacking accuracy. A more appropriate
approach is to monitor the assembly process directly. In the
case of defect detection, for example, the electrode surface
defects can be identified by using a camera. Based on
monitoring data, a model-driven approach can be built to
replace the labor and automate tasks such as defect identi-
fication. In a broad sense, we consider this model-driven
monitoring approach as a member of ML models.

The stacking error is an important quality criterion to
estimate the packaging failure. Within empirical models, it is
correlated with cell performance. It is possible to assess a
maximum tolerance for the stacking process that does not
negatively influence battery cell quality. Cell stacking (z-folding)
results in a multitude of anode-separator-cathode-separator
compartments. By considering the worst-case scenario, i. e., the
maximum placement error for each handling process, Schmitt
and Raatz built a simulation approach to predict the rotational/
translational positioning error and the overlap for every single
stacking.[72] This model uses the size of electrodes and the
number of electrodes to be stacked as input data, coupled with
a normal distribution for the deviation of the stacking
determined by the assembly process. The idea is to use random

numbers generated from the normal distribution to represent
the error of the stacking process.

Conventional Computer Vision (CV) methods have been
widely used in industrial defect detection with low computa-
tional cost. The input data can be ordinary 2D pictures,
radiographic images, or 3D CT reconstructions. Classical
algorithms such as the Canny edge detector[144] and Hough
transformation[145] have already enabled high-precision online
monitoring in edge recognition and blur detection.[146] How-
ever, feature extraction and task objectives are built separately
within the traditional CV framework. The main challenge for
the CV is to extract the features of the image. The accuracy and
reliability of the CV models depend directly on the handcrafted
features and the methods used for feature extraction. Choosing
a set of features based on experience alone is almost
impossible if the image clarity diminishes or the image
becomes increasingly complex.

With the development and maturity of AI and CV technol-
ogy, photos from different stages of the stacking process, e.g.,
pickup and placement of electrodes or overfolding of the
separator, can be analyzed in-depth. With the help of deep
learning and transfer learning,[147] it is now possible to
automatically detect defects in the micro and macrostructure
from images of the sectioned cells. Several papers have
reported over 97%[147,148] defect detection accuracy, which is
well beyond the best results of the manual inspection with
human eyes. Agglomerates can be detected close to a diameter
of 0.5 mm. CV allows the detection of foreign particles, e.g.,
metal particles, down to a diameter of 40 μm. Cracks can be
identified down to a similar size. The accuracy for both is
around 20 μm. The machine vision software Halcon developed

Table 9. Summary of the parameters relevant to the slitting and second drying steps.

Slitting Importance (criticality)[d] Measurability[e] Accuracy[f] Online/
Offline[g]Empirical Continuum Discrete

MP[a] Slitting speed N/A Control Parameter �150 μm to �250 μm Online
Pressure Control Parameter mbar Online
Temperature Control parameter. °C or K Online
Porosity, turtousity,
PSD

Pycnometer, Hg porosimeter,
calculation

nm or percentage Offline

Time Control Parameter min Online
SP[b] Residual humidity N/A coulometrischen Karl-

Fischer-Titration
ppm Online

weight Balance g Online
Post
drying

Importance (criticality) Measurability Accuracy Online/
OfflineEmpirical Continuum Discrete

PP[c] Binder system N/A
Dew point Thermo-hygrometer 1% RH
Temperature Control parameter °C or K Online
Time Control Parameter min Online
Porosity Pycnometer, Hg porosimeter,

calculation
% Online

Pore size nm
SP Tortuosity N/A Picnometer, Hg porosimeter,

calculation
nm or percentage Offline

Residual moisture Online and
Offline

[a] Machine parameters (MP), which are externally controlled inputs. [b] Structure parameters (SP), which are resulting or output properties. [c] Process
parameters (PP), which cannot be controlled externally but are the result of the chosen MP, and they have an effect on the result of each step. [d] Criticality
for setting and validating the modeling parameters evaluated as: red for high, yellow for intermediate, and blue for low. [e] For the measurability columns,
blue: great difficulty, yellow: intermediate difficulty, and red: easily measurable. [f] For accuracy, blue: poorly accurate, yellow: moderately accurate, and red:
highly accurate. [g] The measurement can be made in real-time during production (online) or needs to be made separately (offline).
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by MVTec meets most defect detection requirements in battery
production.

X-ray is typically used for the non-destructive test (NDT) of
online battery cell defects after the process steps of stacking,
welding, and enclosing in the automotive and aviation industry.
The methods employed in production up-to-date rely on the
purely two-dimensional radiographic images of the battery
stack. In contrast, the methods available at the laboratory scale
can rely on three-dimensional CT since the acquisition, and
image analysis are not as time-critical. A test process may last
two to four seconds in a pilot line environment. One second
test time will be the target value for the next NDT generation
systems. Several X-ray tubes and detector assemblies are
operating in parallel to perform rapid testing, each for a specific
section of the battery cell, e.g., the corners, edges, and the
center, involving up to six assemblies to screen a single battery
cell. Thereby, the detection of different stacking defects is
ensured. The sheets in a battery cell are tested regarding
anode-cathode-overlap, offset, tilt and rotation. Given the latest
design with thinner and more layers, conventional 2D
inspections are coming to their limits in detecting these faults
safely.

Additionally, manufacturers wish to check the stack for
metallic particle contamination by X-ray besides optical means.
The target is to find copper, nickel, or aluminum particles, with
sizes typically between 30 and 50 μm, down to 20 μm in the
future. Today, only high-end 2D/3D offline systems can detect
those metals, seeking online detection in the future. X-ray is
further used to estimate the quality of the weld between

current collector tabs and electrode tabs. Here, the porosity of
the weld is especially of interest. Challenging requirements for
a lower false reject rate are Increasingly driving the demand for
developed resolution systems that should achieve shorter test
times and lead to a market introduction of (quasi) 3D X-ray
imaging. As for all online X-ray applications, defects need to be
found and classified by automatic defect recognition software,
which is well established in the 2D domain but will need
further algorithm development in 3D image analysis. AI-based
analyzing tools will be valuable add-ons to conventional
imaging analytics tools. New image chain developments are
required to further increase the speed of 3D inspection
technologies. Another challenge will be to create an efficient
way to handle the massive amount of X-ray imaging data
produced from current/future digital twins and pilot lines to
detect defects and electrode organization. X-ray data can be
seen and developed as an ultimate cell data sensor, leading to
immediate process control feedback loops for digital twins and
pilot lines. Table 10 summarizes the experimental and model
parameters involved in the cell assembly step.

4.1.7. Electrolyte filling

The process step of electrolyte filling is the final step of cell
assembly, in which the cell stack materials are combined with
the electrolyte to form an electrochemically active unit. It
includes the transition to the cell finish and can be divided into
filling and wetting. The filling is when the electrolyte is filled

Table 10. Summary of the parameters relevant to the cell assembly step.

Cell assembly Importance (criticality)[c] Measurability[d] Accuracy[e] Online/
Offline[f]Empirical Continuum Discrete

PP[a] Separator tension N/A Online
Stacking speed Online
Atmosphere parameters
(H2O, O2, foreign particle
content)

Thermo-hygrometer 1% RH Online

SP[b] Contact welding parameters,
depending on the method

N/A N/A N/A Online

Stacking/winding overlap Camera, X-ray �100 μm Online/
Offline

SA: offset Camera, X-ray �100 μm Online/
Offline

SA: tilt/rotation Camera, X-ray �100 μm Online/
Offline

Metallic particle contamination Camera, X-ray 30–50 μm particle size,
20 μm perspective

Online/
Offline

Stack weight Balance Online
SP Area with opposing

counterpart
N/A The capacitance of the dry cell Offline

Defects on electrodes Camera (limited resolution,
no microscopic defects)

cm–mm Offline

Defects on separator Camera (limited resolution,
no microscopic defects)

cm–mm Offline

Contact weld quality X-ray (porosity), electrical
resistance

[a] Process parameters (PP), which cannot be controlled externally but are the result of the chosen MP, and they have an effect on the result of each step. [b]

Structure parameters (SP), which are resulting or output properties. [c] Criticality for setting and validating the modeling parameters evaluated as: red for
high, yellow for intermediate, and blue for low. [d] For the measurability columns, blue: great difficulty, yellow: intermediate difficulty, and red: easily
measurable. [e] For accuracy, blue: poorly accurate, yellow: moderately accurate, and red: highly accurate. [f] The measurement can be made in real-time
during production (online) or needs to be made separately (offline).

Batteries & Supercaps
Review
doi.org/10.1002/batt.202200224

Batteries & Supercaps 2022, 5, e202200224 (25 of 35) © 2022 The Authors. Batteries & Supercaps published by Wiley-VCH GmbH

Wiley VCH Montag, 05.09.2022

2209 / 260729 [S. 30/40] 1

 25666223, 2022, 9, D
ow

nloaded from
 https://chem

istry-europe.onlinelibrary.w
iley.com

/doi/10.1002/batt.202200224 by C
ea G

renoble, W
iley O

nline L
ibrary on [07/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



into the cell before being sealed from its environment. After
the pores of the cell stack material are filled with the injected
electrolyte, this process is called wetting, where the main driver
is the capillary forces acting against the remaining gas in the
pores.

The electrolyte filling step differs depending on the cell
housing type. While pouch cells have a larger dead volume due
to their soft case enclosure, prismatic or round cells often
require several filling steps with waiting times due to their rigid
hard case housing to fill the required amount of electrolyte
into the cell. Thus, it becomes apparent that the filling and
wetting times cannot be distinguished with any degree of
separation since a certain amount of wetting is required for
complete filling.

The process step aims to achieve sufficient wetting of all
porous cell stack materials so that a uniform ion flow occurs in
the subsequent formation without impairing the electrochem-
ical performance. From a production engineering point of view,
the wetting time should be as short as possible in terms of
waiting time and the highest possible throughput.

The process step of electrolyte filling is characterized by
many product and process parameters that influence each
other. The quantity of electrolyte and the chamber pressure or
pressure profile is decisive for filling. The minimum electrolyte
volume is defined by the volume of pores present in the cell
stack materials. For NMC111 electrodes, a factor of 1.4 times
the pore volume has been shown to be optimal for electro-
chemical performance. In his work, Günter shows that the initial
capacitance achieved after forming and the cycling stability
after 500 cycles is best for volume factor 1.4, and the
researchers support this statement with further electrochemical
investigations such as electrochemical impedance spectra.[149]

During filling and before closing the cell, the chamber pressure
should be kept as low as possible to reduce the amount of gas
in the pores and thus keep the difference between capillary
pressure and gas pressure as large as possible.[150] A lower limit
for the minimum chamber pressure is the saturation vapor
pressure of the electrolyte, where, if it falls below, evaporation
will occur. Thus, the amount of electrolyte will be reduced.[151]

The last parameter listed is the dosing speed and cycles. This is
controlled by pressurization of the electrolyte, although some
electrolytes tend to foam due to excessive dosing pressures.[152]

Variation and optimization of the filling parameters improve
the electrochemical performance or reduce the wetting time.

During wetting, the temperature, in particular, is a major
influencing factor. Thus, the wetting rate increases as a result of
improved wetting properties of the electrolyte (viscosity, sur-
face tension, and density) when the storage temperature is
increased.[153,154] Besides, a limiting factor at the storage temper-
ature is the decomposition/degradation of the electrolyte,
resulting in a deterioration of the electrochemical performance.
A linear load in the form of cylindrical rolls can be used to
homogenize and improve the macroscopic distribution of the
electrolyte in the cell. In addition to the influencing factors on
the process side, the wetting properties of the cell stack
materials used on the product side are highly relevant. The
upstream production processes determine these in electrode

and cell manufacturing. Calendering of the electrodes increases
volumetric energy density by compressing the pore system.
This shift in pore size distribution to smaller pores leads to a
degradation of wetting properties and an increase in the
required wetting time.[155] Similarly, the choice of separator
material and its coating has a major impact on the wetting
properties of the entire cell stack.[156] While the conventionally
used poly elipse separators made of PE and PP wetted poorly
with the hydrocarbon solvents, creating a bottleneck in the
joint wetting,[157] coatings with ceramic particles or with PVDF
improve the surface energy so that the material-specific
wetting properties of the separators are comparable to those of
the electrodes.[158,159] Furthermore, additional process steps
during cell production, such as lamination of electrodes and
separators[160] or laser structuring of the electrodes[150] improve
the wetting properties of the cell materials and thus lead to
faster wetting of the entire cell.

In order to quantify the wetting time, the degree of
wetting, i. e., the proportion of wetted cell material pores, is
measured. Different offline approaches are available for this
purpose that need further experimental preparation, challeng-
ing the measurability and accuracy. Since the cell materials are
in non-transparent cell housings made of aluminum at the time
of filling, optical inspection of the degree of wetting is only
possible using radiographic methods. While neutron radiogra-
phy can show the hydrogen components of the electrolyte
with time and spatial resolution.[161] X-ray radiation provides an
image of the movement and distribution of the contrast agent
dissolved in the electrolyte. Visualization without a contrast
agent is a subject of current research. In both methods, the
wetting fronts of the electrolyte and, thus, the wetted areas can
be displayed arithmetically averaged over the cell thickness in
a two-dimensional image. Likewise, statements about the
wetting quality, such as the formation and distribution of
bubbles of the residual gas, are possible. Another methodology
is electrochemical impedance spectroscopy, in which the AC
resistance is measured. Due to the lack of formation, the
resulting impedance spectra do not correspond to the known
semicircular spectra. However, a conclusion on the degree of
wetting can be drawn from the temporal change of the spectra.
Possible evaluation criteria can be the high-frequency resist-
ance at an imaginary part of 0 ohm[162] or the resulting
impedance at a frequency of 1 Hz.[160] Over time, both
resistances decrease due to the increasingly wetted area.

As another method, research is being conducted on ultra-
sonic sensors that can provide information on the degree of
wetting due to the different transmission properties of non-
wetted (pores filled with gas) and wetted (pores filled with
electrolyte) areas.[163] Furthermore, it is also possible to show
the degree of wetting with the aid of thermography.[157]

Continuum and discrete models focus on the wetting rather
than the filling as they are mostly concerned with micrometer
scale phenomena. An empirical model dealing with the
influence of evacuation pressure and temperature comes from
Günter et al.[153] The authors used a model based on a full linear
momentum balance of liquid in an inclined tube to describe
the liquid transport and thus also the degree of wetting within
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porous cell material. The effects of both residual gas and
gravity are taken into account. The validation of the model was
done by experiments on Hardcase and Pouch cells.

As explained in Section 3.2.4., LBM is a discrete model that
has been used to model the flow of electrolyte within the pore
network of electrodes individually and in full cells
(wetting).[52,164] This accurate technique is limited in domain
sizes and cannot currently describe a real-sized system. The
main inputs for these models are related to the identity of the
electrolyte (viscosity, density), the solid/fluid interaction (con-
tact angle, type of collision operator), the inlet pressure, and
the structure acting as the simulation domain. The output is
the electrolyte and air densities at each point within the pores
as a function of time, from which a saturation curve can be
obtained. Temperature is a critical parameter to consider
indirectly, as it affects viscosity, density, and contact angle.
Dosing, dosing speed, pressure, and press rolling parameters
are all grouped in the external pressure, used as a boundary
condition. This parameter can be fixed or considered as a
function of time. The wetting time can be easily considered
from the saturation curves, closely related to the wetting
degree, which is explicitly obtained as output. The final state of
the simulation can be used for subsequent electrochemical
simulations to evaluate the electrical function, albeit with an
additional high computational cost.[52]

ML models are a relevant tool to bypass the high computa-
tional cost LBM simulations.[53] The analysis of the electrolyte
infiltration along time appears as the most critical output of the
ML models, where the 3D mesostructure can be directly
embedded as the input of the model. We extract the pore-
network configuration from such a 3D volume to evaluate the
meaningful features describing the mesostructure and then
calculate the infiltration without launching the LBM simulation.
Table 11 summarizes the experimental and model parameters
involved in electrolyte filling and wetting steps.

The step that immediately follows electrolyte infiltration is
the sealing of pouch cells or soldering in cylindrical cells. To the
best of our knowledge, no models have been reported to
describe these processes. This indicates a notable opportunity
for future research. Sealing of pouch cells is a very elementary
process when it comes to cell quality and lifetime. It is carried
out by hot bars or heated resistances. In terms of character-
ization, the critical parameters of this process are pressure, time
and temperature.[165] A good seal is necessary to ensure long
calendar life,[166] since it limits gas and moisture permeation.
However process control is quite easy when the parameters
have been determined. In terms of tests, the pouch cells are
checked with X-ray radiography for any foreign particles and
alignment issues. The seals can also be inspected visually to
find wrinkles or other defects. To estimate the sealing quality
and tightness, a megger test can be performed.[167] Lastly, the
impedance between the anode and a probe such as a
conductive brush (e.g., copper wire) on top of the pouch foil
can also be used to detect any openings in the sealing.

4.1.8. Formation process and degassing

The formation process is important for battery manufacturing
because of the high cost and time demand and the tight
relationship with battery degradation and safety issues. Form-
ing refers to the initial processes of charging and discharging
the battery cell. Subsequently, the cells are guided into special
carriers in form stands and brought into contact with them by
spring-loaded contact pins. During the formation process,
lithium ions are intercalated in the crystalline structure of the
graphite on the anode side. Electrolytes used in LIBs consisting
mainly of carbonates solvents are not stable below around
0.8 V vs. Li+ and are reduced on the surface of graphite. This
creates the solid electrolyte interface (SEI), a boundary layer
between the electrolyte and the electrode. At this step, gaseous

Table 11. Summary of the parameters relevant to the electrolyte filling and wetting steps.

Electrolyte filling and wetting Importance (criticality)[c] Measurability[d] Accuracy[e] Online/
Offline[f]

Empirical Continuum Discrete ML

MP[a] Electrolyte quantity
(filling)

Machine parameter Online

Temperature (filling) Online
Dosing speed and cycles
(filling)

Machine parameter Online

Chamber pressure profile
(filling)

Machine parameter Online

Temperature (wetting) N/A Online
Pressure profile (wetting) N/A N/A Online
Press rolling parameters
(wetting)

Online

Wetting time N/A N/A Online
SP[b] Wetting degree EIS, HFR, charge transfer, Ultrasound;

X-Ray/neutron CT/radiography
Offline

Electrical function OCP, EIS, Test for Shorts Offline

[a] Machine parameters (MP), which are externally controlled inputs. [b] Structure parameters (SP), which are resulting or output properties. [c] Criticality for
setting and validating the modeling parameters evaluated as: red for high, yellow for intermediate, and blue for low. [d] For the measurability columns, blue:
great difficulty, yellow: intermediate difficulty, and red: easily measurable. [e] For accuracy, blue: poorly accurate, yellow: moderately accurate, and red:
highly accurate. [f] The measurement can be made in real-time during production (online) or needs to be made separately (offline).
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byproducts are formed. The parameters during formation vary
depending on the cell manufacturer and significantly impact
the cell‘s performance. They depend on both the cell concept,
targeted application, and cell chemistry and represent the basic
knowledge of a cell manufacturer.

In some cases, the cells in the particular bag are pressurized
by special product carriers applied during the forming process.
First charges are normally carried out between 0.1 C and 0.5 C,
and a state of charge (SOC) of approximately 20% to 80%. The
duration of the charging process can be up to 24 hours. These
slow formation steps can significantly increase the cost of
capital investment and consume more labor and space
resources.

In addition to the electrochemical activation conditions, the
temperature is another important parameter to consider during
the forming process. Increasing the ambient temperature leads
to faster formation processes and lower cell internal resistance.
Higher temperatures can increase the conductivity of the
electrolyte through the separator, improve the diffusivity of
solids in the AM particles and reduce the resistance to charge
transfer at the electrode-electrolyte interface. But it also leads
to the formation of an unstable SEI layer due to electrolyte
degradation. The appropriate temperature conditions are still
unclear. Therefore, it is necessary to record the temperature
during the formation process for its subsequent relation to the
final performance of the battery.

At some point during formation, when SEI has been
formed, and gas evolution is complete, a degassing step is
applied in the case of pouch cells since this format cannot
tolerate internal pressure. On the other hand, for cylindrical
cells like 18650, gassing results in internal pressure build-up
without consequence on the dimension of the cell, so
degassing is not mandatory. In the case of hard casing
prismatic cells, cells can be degassed or not depending on
mechanical design and gas volume produced during formation.

For this reason, the degassing process has been of great
interest to the scientific community for some years now.
Recently, methods have been developed to determine the
volume, pressure, and identification of the gases generated
during the formation process.

The simplest method to monitor the gas evolution is the
measurement of the thickness of the cells in the pouch cell.
The variation of the cell thickness should provide information
on the degree of gas evolution or the consumption of lithium-
ion batteries. However, this inaccurately assumes that the
expansion is uniform throughout the cell.[168] Archimedes’
principle has been used to devise a method of monitoring cell
volume during operation and provides a more accurate
representation of the amount of gas evolution.[169,170] Although
these methods give information about the extent of gassing,
they do not give information about the composition of the
gases. Gas chromatography and mass spectrometry are
techniques being developed to identify these gases.[171–173] Mass
spectrometry has the greatest potential application in the
industry due to its ability to perform online measurements.

Quality control is an integral part of the manufacturing
process. It is usually done at the end of the manufacturing line

by measuring the self-discharge after a long period (after
weeks). Abnormal voltage drop and short circuit may indicate
defects arising from electrode misalignment, separator defect,
or foreign particles in the cell. Resistance and capacity measure-
ment may also be analyzed after electrical formation. Addi-
tional tests include end-of-line testing, which is done by
performing pulse tests, internal resistance measurements (DC),
optical inspections, OCV tests, and leakage tests.[174,175]

One can define empirical functions relating the electro-
chemical parameters and chamber temperature with the cell
capacity and internal resistance.

Continuum models based on the Newman approach
typically consider electrochemical parameters to predict the SEI
thickness evolution.[60,176,177]

A similar situation is for discrete models based on the
kinetic Monte Carlo approach reported in the literature.[178,179]

ML models have been used to correlate electrochemical
parameters with SEI formation in a few ways: generate ML
potentials for MD simulations, predict electrode density, or
predict reaction networks.[180] They are also considered useful in
scale bridging for multiscale simulations and generating micro-
structure-electrochemical property correlations through varia-
tional autoencoders or generative adversarial networks.[180]

Table 12 summarizes the experimental and model parameters
involved in the formation and degassing steps.

4.2. Data management solutions (software)

For modeling (mechanistic and data-driven), desired data needs
to be acquired from various data sources characterizing
relevant information concerning production processes and
products. This data needs to be allocated to the corresponding
entities (e.g., intermediate products, structures, process steps,
production lots) to establish a relation between the physical
world of battery production and the acquired data. Finally, the
data can be stored either as raw data or be reduced to only the
relevant information and stored as consolidated data after
several preprocessing and transformation steps. It is then
important to establish access to the data in the data storage for
modeling purposes.

In battery cell production, a plethora of different data
sources exist process step/production machines, energy carrier
meters, technical building services (TBS)/room sensors, inter-
mediate product analytics, final product analytics, and opera-
tional data (see Figure 8). These data sources contain data
providing different information, e.g., energy demand, inter-
mediate product structures, production times, or ambient
conditions. A connection to the physical data access point must
be established to acquire data from these sources. These
physical data access points are hardware through which the
data of the data source can be obtained (e.g., PLC, sensor,
measuring device, server). The data can then be acquired
through a data acquisition interface. This interface can be
communication protocol (e.g., Profinet, OPC UA, Modbus),
analog/digital signals, connection to a file (e.g., Excel files,
word files, image files), or a database (e.g., SQL, NO-SQL)
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connection. The acquired data can be of different formats, such
as time series, spatial, and discrete data, and can be available
either live or as stored historical data. Many sensors and
analytical devices can additionally be distinguished between
being in-line or offline concerning the production line.

In-depth data analytics or modeling approaches require
large amounts of data to exploit their fullest potential. Due to
the previously discussed complexity of the battery production
process and the manifold of different data sources, traceability
becomes more important to gather as much data as possible
and supply sufficient information (i. e., batch vs. instance level).
Traceability is defined as “the ability to trace the history,
application or location of an object”.[183] In the past, traceability
systems were used when handling recall campaigns in different
industries. In the context of battery cell production, recalls are
still important, but since quality management (e, VQG) is
becoming more relevant due to the high environmental (e.g.,
scrape rates, energy consumption) and economic/political
(costs, regulations) impact of the battery production process,
transparency along the process chain and product-specific data
is essential.

The key function and the role of traceability within
production environments are shown in Figure 9. Traceability
embodies two core elements: (1) trace and (2) track.[184] Tracing
describes an upstream process of recreating or extracting a
specific object‘s product and process history (i. e., trace-object)
in an interlinked and consistent data set. Tracking is the
downstream process and embeds the function of identification
and linkage of the trace object to a unique ID and the
information recording and saving.[185] As battery production
covers batch (or semi-contentious) and single-unit processes
with converging and diverging material flow, identifying the
“right” trace object and equipping it with an identification
technology (e.g., QR-code, RFID-chip) without influencing the

perceived quality of the product is under ongoing research.
Solutions and technology suggestions for different identifica-
tion approaches have been discussed and presented in.[186–188]

Next to the object identification through ID, the detection of
production stages through energy monitoring can support the
often manual tracking process.

The functions of the information recording and sharing
within a traceability system for battery production are challeng-
ing, i. e., due to heterogeneous data distribution and the large
volume, which leads to incompatibility of applications relying
on its functionality. To encounter this, ontology-based systems
can support better integration of specific domain knowledge
and thereby improve the interoperability of applications, new
data integration, and improved data quality.[188]

OpenSemanticLab[189] is an initiative to build an ontology-
ready end-to-end data and knowledge management solution
based on OpenSource web services. MediaWiki provides the
core document and file storage with extensive interfaces for
humans (editors) and machines (APIs). Templates and forms
ensure uniformity and efficiency. The extension Semantic
MediaWiki provides the Wiki with numerous possibilities for
linking and annotating data. In addition, semantic queries can
be sent directly to the Wiki or its SPARQL endpoint, and results
can be visualized in various ways. The core (meta) data
structure is flanked by a time series database specialized in
continuous data acquisition. Such data streams can be trans-
mitted from the laboratory using Node-RED, especially from
OPC-UA capable devices. Finally, users can access via Jupyter-
Lab all data stored in the system, process it, and push the
results back. The project is currently under heavy development
and is planned to get released within the next month. Some of
the results are already being used in a nationally-funded
project.[190]

Table 12. Summary of the parameters relevant to the formation and degassing steps.

Formation parameter and degassing Importance (criticality)[c] Measurability[d] Accuracy[e] Online/
Offline[f]

Empirical Continuum Discrete ML

MP[a] Electrochemical parameters
(current, Voltage, time.)

Formation bench,
Control battery system

μA or mV Online

Chamber Temperature Tc, IR sensor °C Online
External mechanical
pressure

N/A Pressure sensor,
dynamometric wrench

MPa Online/

SP[b] Capacities (ch. /discharge) Control battery system mAh/g Online
Coulombic efficiency N/A N/A Calculation Percentage Online
Energy efficiency Calculation Percentage Online
Initial capacity loss Calculation Online
Initial irreversible thickness
increase

μm Online

Internal resistance EIS, DC pulse mOhm Online
Quality control N/A Voltmeter Online
Degassing: gas volume
and composition

Archimedes, GC/MS μL/ppm, %/nmol Offline/
online

Hard casing cells: internal
pressure

Gas pressure sensor Offline

[a] Machine parameters (MP), which are externally controlled inputs. [b] Structure parameters (SP), which are resulting or output properties. [c] Criticality for
setting and validating the modeling parameters evaluated as: red for high, yellow for intermediate, and blue for low. [d] For the measurability columns, blue:
great difficulty, yellow: intermediate difficulty, and red: easily measurable. [e] For accuracy, blue: poorly accurate, yellow: moderately accurate, and red:
highly accurate. [f] The measurement can be made in real-time during production (online) or needs to be made separately (offline).
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Figure 8. Exemplary data sources in LIB production and relevant information for data acquisition. Adapted with permission from Refs. [181,182] Copyright
(2020) Wiley-VCH.

Figure 9. Functions of a traceability system. Adapted with permission from Ref. [182] Copyright (2020) Elsevier.
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An example of a European project where data management
and storage are crucial is the BIG MAP project.[191] This project
deals with developing an AI-orchestrated infrastructure capable
of optimizing SEI and Cathode Electrolyte Interphases in LIBs.
The project combines multiple experimental and computa-
tional modeling efforts to collect data used for the AI. There-
fore, it becomes crucial to harmonize data, ease its search-
ability, and ensure interoperability. Software technologies are
being developed for that purpose (Figure 10).

For example, the Battery Interface Ontology (BattINFO) is a
battery chemistry ontology based on the top-level European
Materials and Modelling Ontology (EMMO).[192] BattINFO aims to
formalize the current state of knowledge on physical and
chemical processes at the inner interfaces. The definitions
included in BattINFO are based as much as possible on
accepted standards and other reference literature on the
subject. The goal is to provide a unified structure to support
interoperable data for battery characterization and modeling
within the BIG-MAP project.

The Battery Value Chain Ontology (BVCO) is a sister
ontology of BattINFO, aiming to ontologize essential parts of
the battery value chain.[192,193] BVCO is dedicated to the higher-
level process chains for material processing and manufacturing
to create a unified structure for process specifications and
process-related data. It imports BattINFO (and therefore also
EMMO) and applies the basic definition of the battery as a
system made there. The BVCO also interacts directly with the
General Process Ontology (GPO),[194] which describes terms

common across different process engineering domains. The
BVCO is being developed under the coordination of Fraunhofer
ISC as part of both EU and national research projects. It is
hosted in a public repository on GitHub[195] and available for
use under a creative commons CC-BY-4.0 license.

In terms of synthetic data from models, one approach for
generation is the ARTISTIC project online calculator.[196] This is a
freely accessible platform with a user-friendly interface that
gives access to 3D manufacturing models. The manufacturing
steps currently include the slurry phase, drying, and electrode
calendering. It is envisioned to expand these to electrolyte
infiltration and electrochemical characterization. Each simula-
tion launched by the users is available to all. Thus, it consists of
a continuously growing open-access database that links
manufacturing conditions and 3D electrode microstructures.[28]

5. Conclusion

The development of digital technologies is required to improve
the industrialization of new batteries and shorten the time to
market. For instance, the design of ML-supported algorithms
will accelerate the discovery of materials and the development
of AI-orchestrated characterization of battery materials and
battery cells. Combining computer-aided engineering tools and
experimental measurements will help understand and predict
battery performance. The democratization of such tools and
methods will be essential for a competitive industry in Europe.

Figure 10. BVCO-BattINFO alignment. Reproduced from Ref. [192] (CC BY 4.0).
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Digital twins can be used during the discovery, R&D, produc-
tion, and usage cycles to improve battery performance, lifetime,
safety, manufacturability, and recyclability. Methods for big
data analytics can be developed and feed the digital twins,
while the internet of things-based data analytics can improve
the maintenance cycle. The design of experiment method-
ologies can benefit from digital twins to accelerate the
industrialization of new batteries.

After discussing the need for digital twins for battery
manufacturing, in this article, we first reviewed some of the
ongoing European research efforts on the digitalization of
manufacturing processes and key aspects underlying their
computational modeling (methodologies currently developed
and available software). One can say that computational
modeling gives promises to be at the heart of battery
manufacturing and engineering. The first step is to make the
best use of the available modeling approaches and combine
them when possible. The next step is to integrate these
available models with other digital technologies, like product
lifecycle management, industrial internet of things, manufactur-
ing operations management, and supply chain-related solu-
tions. The integration of modeling tools with such other
technologies is already possible. Nonetheless, it highly depends
on the motivation of battery laboratories and companies to
launch digital transformation programs with an end-to-end
integrated digital platform.

Then, we reported a novel classification of LIB manufactur-
ing data types to develop digital twins of prototypinglines. This
classification can be seen as a data model or metadata
template. It was performed regarding the criticality of develop-
ing different process models (based on empirical, continuum,
discrete, or ML approaches), the accuracy of the experimental
measurements of relevant properties (e.g., coating thickness),
and the possibility of not measuring in real-time. Materials
science, process engineering, characterization aspects, compu-
tational modeling, and data sciences support such classification
results from a collaborative transdisciplinary effort. This study
identifies several gaps between parameters that can be
measured and parameters needed for the development of
some of the computational models, such as material storage
conditions for the slurry, temperature during electrolyte
wetting, or self-discharge after formation. Given the techno-
logical progress, one could foresee that it will become possible
to measure online some of the parameters that cannot be
measured online today, such as PSD or particle morphology
during slurry formulation, binder distribution after drying or
calendering, or wetting degree after electrolyte infiltration.

Finally, we discuss ways to deal with this type of data,
needed hardware and software infrastructures, by mentioning
some initiatives towards this.

While the analysis was performed for LIBs, this study is fully
transferable to some other battery types (e.g., Sodium-Ion
Batteries) where the wet processing approach is used. Addi-
tionally, some of the manufacturing stages for the production
of different battery technologies are partially transferable from
LIB, as detailed in a review by Duffner et al.[197] and as such our
discussion is also relevant in those cases, particularly for

electrolyte filling and SEI formation steps. However, some of
these technologies involve significantly different manufacturing
steps, and as such will require radically different approaches.
For some of these, such as lithium-sulphur battery manufactur-
ing, initial steps have been taken to address these issues,[198]

but as these technologies are developed, more work will be
required regarding digitalization, accounting for each specific
step and technology.

The use of computational software for battery manufactur-
ing at an industrial level is not yet democratized. It relies
heavily on the habits of engineers and PhDs and their personal
experience with such tools. Still, there is a clear acceleration in
the interest in modeling technologies. The community will take
some time to adopt them and fully benefit from their
capabilities. Ultimately, we envision that computational model-
ing will be used in the battery manufacturing industry to a
larger extent.

We believe that the present work paves the way towards
concrete digitalization of battery manufacturing pilot lines and
eventually including autonomous processes, which started to
emerge in other fields.[199,200] This is because we think that our
work provides a solid background to establish practical recipes
and a list of good practices and recommendations on how to
implement digital twins of battery prototyping lines. It also
constitutes a solid background for battery manufacturing data
standardization and ontology initiatives such as the ones
mentioned in the roadmap of the European Battery 2030+

research program or the ones that could be undertaken in
future European projects. Last but not least, it is worth
mentioning that several of the data types discussed in our
study can also be found in production lines. Therefore, we are
confident that this work also provides useful information for
the industry. From an industrial perspective, the parameters
mentioned above related to the entire manufacturing process
are of utmost importance. These parameters are typically
measured and controlled to ensure a stable process and, in the
end, a safe product for the customers. Enhancing the insights
one gets from these parameters through the presented
approaches will surely lead to beneficial developments on the
production scale, especially for the quality and the reduction of
energy consumption throughout the entire process.

Appendix

The present article is accompanied by an interactive website
that allows exploring the information presented in Tables 5
through 12 in an interactive way. This website can be accessed
through the following URL: https://www.erc-artistic.eu/filead-
min/user_upload/LiPLANET/index.html.
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