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Abstract: Modern discrete-event systems (DESs) are often characterized by their dynamic struc-
tures enabling highly flexible behaviors that can respond in real time to volatile environments.
On the other hand, timed automata (TA) are powerful tools used to design various DESs.
However, they lack the ability to naturally describe dynamic-structure reconfigurable systems. Indeed,
TA are characterized by their rigid structures, which cannot handle the complexity of dynamic struc-
tures. To overcome this limitation, we propose an extension to TA, called dynamic timed automata
(DTA), enabling the modeling and verification of reconfigurable systems. Additionally, we present a
new algorithm that transforms DTA into semantic-equivalent TA while preserving their behavior.
We demonstrate the usefulness and applicability of this new modeling and verification technique
using an illustrative example.

Keywords: dynamic timed automata; formal modeling and verification; graph transformation;
reconfigurable systems; timed automata; UPPAAL

MSC: 68Q45; 68Q60; 93B17; 68Q85

1. Introduction

In recent years, dynamic-structure systems such as cloud computing [1,2], smart
grids [3], Industry 4.0 [4,5], and the Internet of things [6] have gained much attention. The
design of these highly complex systems is a hot topic, yet it remains a challenging issue
that requires suitable and rigorous frameworks [7].

As an intuitive model-checking technique, timed automata [8] (TA) have also found
a wide range of applications in the modeling and verification of discrete-event systems
(DESs). Several works have used timed automata and their toolbox UPPAAL [9–11] as a
modeling and simulation environment [12–16]. However, with the significant development
of technologies in recent reconfigurable DESs, state-transition systems such as TA and Petri
nets [17] exhibit several shortcomings in the design of these modern systems. They do not
enable dynamic structure modeling due to their static structure. To address this issue, many
researchers have introduced graph transformation systems (GTSs) into state-transition
systems to enable their structures to be dynamic [18–21]. GTSs are well suited for designing
complex dynamic systems; however, their high expressiveness impairs any automatic
analysis due to their undecidability property. To the best of our knowledge, there is no
literature that introduces GTSs into TA to model dynamic structures.

In this paper, we propose a new formalism, called dynamic timed automata (DTA),
which allows the modeling and verification of dynamic-structure DESs by handling dy-
namic typologies in TA. We also provide a new algorithm that transforms DTA into se-
mantically equivalent TA, which unfolds reachable configurations of a given DTA into a
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basic TA that preserves the original behavior. This enables a model-checking process to be
carried out using analysis methods supported by off-the-shelf tools, such as UPPAAL. It is
important to note that the proposed approach focuses on the properties of a reconfigurable
system under consideration and does not involve the verification of GTSs themselves.
For instance, a critical pair analysis (CPA) [22], used to detect dependencies and conflicts
between transformation rules, is not considered since it is beyond the scope of this research.
Nevertheless, as suggested in [23], a CPA can assist a designer in detecting dependencies
or conflicts by using existing tools (e.g., AGG [24]). The designer can then modify the
models or keep the conflicts and dependencies. After resolving these issues, the designer
can apply the GTS to a TA modeling an initial configuration to obtain the set of all possible
configurations.

The remainder of this paper is organized as follows. An overview of some related
works is provided in Section 2. Section 3 recalls the necessary basics of TA and graph
transformations. Sections 4 and 5 present the proposed DTA formalism and its unfold-
ing towards TA. The semantic equivalence between any given DTA and its unfolding
towards TA is proven in Section 6. Section 7 exploits the proposed formalism to design a
reconfigurable system. Finally, Section 8 concludes the paper.

2. Related Work

In the literature, an extensive amount of research has used timed automata to model
and verify various kinds of real-time systems [12–16]. The automated consistency checks of
the reconfiguration steps of dynamic software product lines (DSPLs) were facilitated in [25]
by translating real-time requirements into TA. To improve the performance of consistency
checks for DSPL specifications based on TA, different static-analysis techniques were
combined in [26]. To guarantee the consistency of resource delivery in a cloud service, the
authors of [27] used UPPAAL for the modeling and verification of clients, service managers,
and resource services to offer a framework of resource provisioning as a service in the cloud.
To handle the dynamics of reputation, the authors in [28] designed a calculus of mobile
agents to cope with such features and then encoded them into networks of weighted TA.

Timed automata have been adapted to various formalisms to tackle different chal-
lenges. One such adaptation is parametric timed automata (PTA) [29], which allows for
more realistic timing constraints. For instance, a constraint that states “an action X must
occur within the time it takes to execute n actions Y” is more realistic than a constraint
that states “an action X must occur within m milliseconds”. This allows the creation of
specifications that are based on certain parameters of the environment in which a system
operates. Studies in [29,30] found that the problem of determining whether a certain state
was reachable was decidable in two scenarios: when using PTA with a single parametric
clock, and when using PTA with two parametric clocks and a single parameter. However,
the problem of determining reachability was undecidable when using PTA with three or
more parametric clocks.

Cordy et al. [31] proposed featured timed automata (FTA) to model and verify the
variability in software product lines (SPLs). In FTA, clock constraints on switches and
locations were annotated with feature constraints. Hence, instead of considering every
product variant one-by-one during the verification process (which is infeasible), entire
product lines could be verified in a single run. Although FTA provided a powerful tool,
their expressiveness only allowed Boolean feature constraints. To enable unbounded
timing intervals of real-time constraints in FTA, Luthmann et al. [32] defined configurable
PTA (CoPTA) combining FTA and PTA. However, due to their nature, CoPTA potentially
comprised an infinite number of TA model variants. Thus, a variant-by-variant analysis
strategy for CoPTA was impossible. To tackle this issue, Luthmann et al. [33] adapted a
family-based test-suite generation methodology presented in [34] to CoPTA models.

Latreche and Belala [35] developed a new type of timed automata called recursive and
dynamic timed automata (RDTA) which allowed the automata to be recursively invoked
by other automata. These were used to analyze and specify procedures for recovering from
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failures and updating partner services in dynamic Web service compositions. Another
formalism, called dynamic networks of timed automata (DNTA), was introduced in [36]
to allow for the creation and destruction of multiple copies of automata at runtime for
modeling complex systems. In [37], the authors presented dynamic input/output automata
(DIOA) which allowed the dynamic creation, destruction, and changes in the signature
of an automaton. The works provided in [38,39] described an extension of TA, called
reconfigurable hierarchical TA (RHTA), which involved manually constructing all reachable
configurations and incorporating them into a single model which could often lead to
cumbersome models. Moreover, a reconfiguration in RHTA was expressed by a simple
switching between configurations.

Although the cited extensions are considered practical, provide a certain degree of
flexibility in the modeling, and enhance the expressiveness of TA, they cannot model or
verify dynamic-structure automata. For instance, FTA and CoPTA can model variability
in SPLs; however, each variant is static and cannot change its structure. As for RDTA,
they can only specify and analyze the backward recovery procedures and the update of
partner services in case of failure; thus, neither new structures nor other behaviors are
allowed. Even though DNTA and DIOA enable dynamic sets of automata by instantiating
or destroying them, the structure of any automaton remains static. Furthermore, DIOA are
based on untimed automata, and they can only exhibit or hide certain behaviors without
allowing the introduction of new ones. Finally, RHTA represent reconfigurations by static
models, which can only make the modeling process laborious at best, therefore losing the
benefits of a direct representation [37].

The formalism proposed in this paper outperforms the above-mentioned extensions
in several ways:

• It enables the separation of concerns by modeling dynamic structures using GTSs,
which explicitly model system features and component set evolution at two separate
levels [40];

• It provides an unfolding algorithm that transforms DTA to semantic-equivalent TA,
thereby making the design and verification of dynamic systems more efficient by
reusing the existing TA tools in the analysis of DTA;

• All properties that are decidable in the TA formalism remain decidable in the new
extension, since any given DTA can be unfolded to a plain TA that preserves the
behavior of its original DTA.

3. Preliminaries

This section outlines the necessary basics of the formalisms exploited in this work.

3.1. Timed Automata

Timed automata (TA) [8] extend finite automata by introducing real-valued clocks to
accept timed languages. Let C be a set of clocks. For each clock x ∈ C, the following is
considered:

• Initially, the value of x is zero;
• Its value increases simultaneously with other clocks by the same speed;
• It can be reset to zero with any edge.

Let G(C) be the set of conjunctive formulae of atomic constraints built over C of the
form x ./ a or x − y ./ a, where x, y ∈ C, ./∈ {<,≤,=,≥,>}, and a ∈ N. The formal
definition of a timed automaton is provided as follows.

Definition 1. (Timed automaton). A TA A is a tuple 〈S, s0, Σ, C, E, I〉 where:
(1) S is a nonempty finite set of locations;
(2) s0 ⊂ S is a set of initial locations;
(3) Σ is a finite set of actions containing an internal action denoted by τ;
(4) C is a finite set of clocks;
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(5) E ⊆ S× Σ× G(C)× 2C × S is a set of edges between locations, where (s, σ, gc, δ, s′) ∈ E
means the following;

(a) s and s′ are the source and the target locations, respectively;
(b) σ is an action;
(c) gc is an enabling condition built over C;
(d) δ ⊆ C is a subset of clocks to be reset.

(6) I : S→ G(C) assigns invariants to locations.

Example 1. Consider a TA A depicted in Figure 1 that models a system with three states: working,
repairing, and fail_safe. Initially, A is in its initial location working depicted by a double
circle. When a problem arises, the automaton changes its location to repairing and resets clock
x (i.e., x:=0). At location repairing, the system should be repaired within 15 time units. If the
system is repaired before the deadline, it returns to its initial state working. If not, it changes its
state to fail_safe mode and resets clock x. Finally, after entering fail_safe, any breakdown
must be repaired before 50 time units have passed, after which A returns to location working.

Figure 1. A TA modeling a system having three states.

UPPAAL increases the expressiveness of TA by introducing constants, discrete lo-
cal/global variables, and the communication channels [11] used by automata to communi-
cate with each other. Indeed, a set of automata communicating on (shared) global variables
and channels constitutes a global context called a network of TA (NTA).

For an NTA composed of a set of automata, a set of synchronized channels Chan, and
a set of global variables Vg, consider the following.

• Let Sync = {c!, c? | c ∈ Chan} ∪ {−} be a set of synchronizations, such that c! and
c? represent the initiation and the acceptance, respectively, of synchronization over
channel c, and “−” stands for no synchronization.

• Let V = Vg ∪ Vl be a set of variables.
• Let Guards(V) be the set of logical conditions built over V.
• Let Exp(V) be the set of expressions built over V.
• Let Assign(V) be the set of finite sequences of assignments of the form v:=exp, where

v ∈ V and exp ∈ Exp(V).

Definition 2. (Timed automaton in UPPAAL). A TA in UPPAAL is a tuple 〈Vl, S, s0, Σ, C, E, I〉
such that:
(1) Vl is a set of initialized local variables (a variable in UPPAAL can be a real or an integer);
(2) S, s0, Σ, C, and I are as in Definition 1;
(3) E ⊆ S× Σ× G(C)× Guards(V)× Sync× 2C × Assign(V)× S is a set of edges, where

for e = (s, σ, gc, gv, z, δ, α, s′) ∈ E:

(a) s, σ, gc, δ, and s′ are as provided in Definition 1;
(b) gv is an enabling condition built over V;
(c) z is a synchronization on a channel c. Note that the synchronization can take place

only if an edge e of automaton A is sending on c (i.e., c!) and an edge e′ of automaton
A′ is receiving on c (i.e., c?);

(d) α is a sequence of assignments updating the values of variables in V.
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Example 2. Consider a network of timed automata shown in Figure 2. This NTA models a job shop
(inspired by [10]) consisting of workers (see Figure 2a) and tools (see Figure 2b).
In this job shop, workers share certain tools to manufacture products from simple components.
A worker picks up some components and decides whether to perform an easy task with their hands,
i.e., no tool is involved, or a hard task using an available tool.

(a) A worker (b) A tool

Figure 2. A network of timed automata modeling a job shop.

Initially, each worker is in location idle and each tool is in location free. If a worker
decides to perform an easy task, they start working on it straightaway. This behavior is modeled by
moving from location idle to location easy and then to location work_easy. The invariant “x<=0”
associated with location easy models that a worker needs no time to start an easy task. In addition,
the invariant “x<=5” associated with location work_easy means that an easy task is performed at
most in five time units. After finishing an easy task, a global variable called “e” (the number of
finished easy tasks) is incremented.

As for hard tasks, moving from location hard to location work_hard requires the existence
of an available tool. This is modeled by both synchronizations “get_tool!” and “get_tool?”
shown in Figure 2a,b, respectively. That is, a worker automaton sending on channel “get_tool”
can move from location hard to work_hard iff there is a tool automaton receiving on “get_tool”.
Finally, after finishing a hard task, a global variable called “h” (the number of finished hard tasks) is
incremented and the synchronization on channel “put_tool” is initiated.

3.2. Graph Transformation: A Double-Pushout Approach

In this work, the reconfiguration of timed automata is modeled based on a widely used
graph transformation formalism called double-pushout (DPO) approach. This approach
provides a theoretical and suitable framework for modeling dynamic-structure systems in
a rigorous way [18].

We start by defining graph morphism, an important concept in graph transformation.
It preserves the structure of a graph G in a graph H by mapping nodes of G to nodes of H
so that each edge in G must have an image in H.

Definition 3. (Graph morphism). Let VG and EG denote sets of nodes and edges of a graph G,
respectively. Let G = 〈VG, EG〉 and H = 〈VH , EH〉 be two graphs. A function ϕ : VG → VH is a
graph morphism if the following holds: ∀(v, w) ∈ EG, (ϕ(v), ϕ(w)) ∈ EH .

In DPO, a transformation is provided as a rule r = L
ϕl←− I

ϕr−→ R consisting of three
graphs L, I, and R and two graph morphisms ϕl and ϕr, where:

• L is a left-hand side (to be removed);
• I is a common interface;
• R is a right-hand side (to be inserted);
• ϕl : I → L is a graph morphism;
• ϕr : I → R is a graph morphism.
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Given a rule r, elements in L that do not belong to the image of ϕl are called obsolete
and elements in R that do not belong to the image of ϕr are called fresh. A rule r applies
to a graph G if an occurrence (located by a graph morphism m) of its left-hand side L
exists in G. If graph morphisms m, ϕl , and ϕr are injective, then the obsolete elements of
L are removed from G (the obtained graph is called context) and fresh elements of R are
added to the context graph, resulting in a new graph H. This transformation is denoted by
G r,m
==⇒ H. In this paper, we only considered injective graph morphisms. The DPO-based

transformations are also represented by diagrams, as depicted in Figure 3.

n1 n2

L

ϕl

(1)

n1 n2

I

ϕr

(2)

s0 s1

R

ϕi

s1 s2s0

C

s0 s1 s2

G

m

ϕc
s0 s1 s2

H

ϕh

Figure 3. A DPO diagram.

A DPO transformation performs two steps called pushout. Informally, the first pushout
(see Box (1) in Figure 3) resolves the existence of a context graph C to be glued (the graph
gluing is explained below) with L over I to obtain G, denoted by G = C +I L. If C exists,
then the rule applies to G. The second pushout (see Box (2) in Figure 3) glues C with R over
I to yield graph H.

The obtained graph H = 〈VH , EH〉 = C +I R is defined as follows.

1. VH = VC ] (VR \VI) (such that “]” denotes the disjoint union);
2. EH = EC ] ER.

Consider an application of a rule r = L
ϕl←− I

ϕr−→ R to a graph G shown in Figure 3.
The first pushout is performed as follows. A morphism m locates an occurrence of L in
G, such that m(n1) = s0 and m(n2) = s1. Then, a context graph C is defined so that
G = C +I L. Hence, the rule is applicable. In the second pushout, nodes and edges of C
and a fresh edge of R (which is (s0, s1)) are inserted into H.

4. Dynamic Timed Automata

In this paper, we present a new formalism, called dynamic timed automata (DTA), that
overcomes the limitations of traditional TA in modeling dynamic-structure reconfigurable
systems. We also present a new algorithm that transforms DTA into equivalent TA while
preserving their behavior.

This section presents the formal definition of the DPO-based DTA formalism. In the
following sections, we develop an algorithm for unfolding DTA into semantic-equivalent
TA, and we prove the equivalence between DTA and their unfolding towards TA through
the proposed algorithm.

To begin, we extend the definition of graph morphism provided in Definition 3.

Definition 4. (TA morphism). Let A1 = 〈Vl1 , S1, s01, Σ1, C1, E1, I1〉 and A2 = 〈Vl2 , S2, s02, Σ2,
C2, E2, I2〉 be two TA, where Vl1 ⊂ Vl2 , Σ1 ⊂ Σ2, and C1 ⊂ C2. A TA morphism ϕ : A1 → A2 is a
mapping ϕ : S1 → S2 such that the following hold.

• ∀ s ∈ S1, if s ∈ s01, then ϕ(s) ∈ s02. (Note that s01 might be empty);
• ∀ e1 = (s1, σ, gc, gv, z, δ, α, s′1) ∈ E1, ∃ e2 = (s2, σ, gc, gv, z, δ, α, s′2) ∈ E2, ϕ(s1) = s2 and

ϕ(s′1) = s′2;
• ∀ s ∈ S1, I1(s) = I2(ϕ(s)).
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Definition 5. (Transformation rules). A transformation rule r is defined as 〈L ϕl←− I
ϕr−→

R, g, u〉, such that:
1. L is a left-hand side TA;
2. I is a common interface TA;
3. R is a right-hand side TA, |SL| = |SI | = |SR|, such that SA denotes the location set of A;
4. ϕl : I → L is a TA morphism;
5. ϕr : I → R is a TA morphism;
6. g = (s, gc, gv) is a precondition of r such that s is a location and gc (resp. gv) is an enabling

condition built over clocks (respectively, variables);
7. u = (δ, α) is a post-condition (i.e., effect) of r such that δ is a set of clocks to be reset and α is

a sequence of assignments.

Moreover, rules that can only modify the set of edges (i.e., topology) of an automaton
are considered in this work.

Definition 6. (Dynamic timed automata). A DTA D is a pair 〈A0,R〉, such that:
1. A0 is a TA;
2. R is a set of transformation rules.

Let A be a TA. A rule r = 〈L ϕl←− I
ϕr−→ R, g, u〉 with a match m : L → A applies to a

DTA D iff:

1. A is the current configuration of D;
2. There exists a TA C such that A = C +I L;
3. g = (s, gc, gv) is satisfied, that is, s is the current location of A, and the valuations of

both guards gc and gv are true.

After applying r = 〈L ϕl←− I
ϕr−→ R, g, u〉 to A, D changes its configuration towards A′

such that A′ = C +I R.

Example 3. Consider a DTA D = 〈A, {r}〉, where TA A and rule r are depicted in Figure 4. Rule
r = 〈L ϕl←− I

ϕr−→ R, g, u〉 is defined as follows:

L

ϕl

I R

ϕr

A
m

C
ϕi

H
ϕh

ϕc

Figure 4. Reconfiguration via rule r.

1. L, I, R, ϕl and ϕr are shown in Figure 4;
2. g = (s, gc, gv), such that s =repairing, gc ="x<20" and gv =“true”;
3. u = (δ, α), such that δ = {x} and α = ε (i.e., an empty sequence).

Rule r applies to A, given the following:

• Its precondition g is satisfied (i.e., the current location of A is repairing and the value of
clock x is less than 20);

• A morphism m finds an occurrence of L in A, such that the left and right locations of L are
mapped to repairing and fail_safe, respectively;
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• There exists a TA C, shown in Figure 4, such that A = C +I L.

After applying r, the current configuration of D becomes H illustrated in Figure 4.

5. DTA Transformation towards Basic TA

Timed automata enjoy a variety of tools and frameworks exploited in their design
and analysis. This fact motivates the unfolding of DTA into TA. Therefore, the traditional
verification tools designed for basic TA can be utilized in the DTA analysis.

In fact, reconfigurations insert and/or remove edges to enable new behaviors/topologies.
As a result, any given unfolding of a DTA must model these reconfigurations and their effects.
In this context, we developed an algorithm that unfolds any given DTA D into a semantic-
equivalent TAA according to its shape and behavior.

For a DTA D = 〈A0,R〉, consider the following:

1. Let C = {A0, . . . , An} be a set of TA obtained by applying sequences of rules in R
to A0.

2. Let Ei be the set of edges in Ai.
3. Let E =

⋃n
i=0 Ei be a set of edges.

4. Let C(e) = {Ai | Ai ∈ C and e ∈ Ei}.
5. Let T = {(As, r, At) | As, At ∈ C and As r

=⇒ At} be a set of transformations applicable

to DTA D, where r is an applicable rule to D, and As, At are its source and target
configurations, respectively.

The intuition of the proposed unfolding algorithm provided in Algorithm 1 that
transforms a given DTA D to a TA A is given as follows:

1. Let A0 = 〈Vl0 , S0, s00, Σ0, C0, E0, I0〉 be an initial configuration of D.
2. Let Enum : C −→ {0, . . . , n} be an enumeration of configurations A0, . . . , An in C by

means of a natural ordering.
3. Let Vl ← Vl0 ∪ {cfg}, where cfg is a bounded local integer variable (initialized to

zero) used to represent the current configuration ofD, that is, if cfg=i then the current
configuration of D is Ai, where Enum(Ai) = i.

4. Let E←− ∅.
5. For each edge e ∈ E that is present in every configuration in C, i.e., C(e) = C, insert e

into E, i.e., E←− E ∪ {e}.
6. For each edge e = (s, σ, gc, gv, z, δ, α, s′) ∈ E that does not belong to certain configura-

tions in C, i.e., C(e) ( C, do:

(a) Build a condition le of the form “cfg==i0||...||cfg==i|C(e)|” (|| and &&
stand for “logical or” and “logical and”, respectively), where i0, . . . , i|C(e)| are
the indices, obtained by Enum, of configurations in C(e).

(b) Create e′ = (s, σ, gc, g′v, z, δ, α, s′), where g′v =“le && gv” (6a).
(c) Insert e′ into E, i.e., E←− E ∪ {e′}.

7. For each transformation (As, r, At) ∈ T , do:

(a) Let g = (s, gc, gv) and u = (δ, α) be the pre- and postconditions of rule r.
(b) Let g′v =“cfg==i && gv”, where i = Enum(As).
(c) Let α′ =“α,cfg:=j”, where j = Enum(At).
(d) Create an edge e = (s, τ, gc, g′v,−, δ, α′, s) (recall that τ and “−” stand for

internal action and no synchronization, respectively).
(e) Insert e into E, i.e., E←− E ∪ {e}.

8. Let S← S0, s0 ← s00, Σ← Σ0, C ← C0, and I ← I0.
9. Let A = 〈Vl, S, s0, Σ, C, E, I〉.

Consider Steps (6) and (7). In fact, the former represents an edge e of D by an edge
e′ in A, where the condition “le&&gv” enables e′ only if (i) the current configuration of A
is one of the configurations in which e appears, and (ii) gv, the enabling condition of e, is
true. By the latter, the algorithm creates an edge e to represent an application of a rule r to
source configuration As yielding a target configuration At, such that: (i) the guards of e are
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identical to those of r and, in addition, the current configuration is As which is expressed
by “cfg==i” where cfg is a variable used to represent the current configuration of D and
i is the index of configuration As; and (ii) the effects (clocks to be reset and variables
assignments) of e are identical to those of r, and, in addition, the current configuration
becomes At which is expressed by “cfg:=j”, where j is the index of configuration At.

Algorithm 1 DTA transformation towards TA.

Require: D = 〈A0,R〉: DTA
Ensure: A = 〈Vl, S, s0, Σ, C, E, I〉: TA

1: Initialization:
2: Let A0 = 〈Vl0 , S0, s00, Σ0, C0, E0, I0〉
3: cfg←− 0
4: Vl ←− Vl0 ∪ {cfg}
5: 〈S, s0, Σ, C, I〉 ←− 〈S0, s00, Σ0, C0, I0〉
6: E←− ∅
7: Apply rules inR to A0
8: Compute T
9: Compute C

10: Let Enum : C −→ {0, . . . , n} be an enumeration
11: E ←− ∅
12: for each Ai ∈ C do
13: E ←− E ∪ Ei
14: end for
15: Represent edges of D in A:
16: for each e = (s, σ, gc, gv, z, δ, α, s′) ∈ E do
17: if C(e) = C then
18: E←− E ∪ {e}
19: else
20: Pick arbitrarily A from C(e)
21: le←− "cfg=="+Enum(A)
22: for each Ai ∈ C(e) \ {A} do
23: le←− le+"||cfg=="+Enum(Ai)
24: end for
25: e′ ←− (s, σ, gc, le&&gv, z, δ, α, s′)
26: E←− E ∪ {e′}
27: end if
28: end for
29: Represent rules ofR in A:
30: for each (As, r, At) ∈ T do
31: g′v ←− "cfg=="+Enum(As)+"&&gv"
32: α′ ←− α+",cfg:="+Enum(At)
33: e←− (s, τ, gc, g′v,−, δ, α′, s)
34: E←− E ∪ {e}
35: end for
36: Termination:
37: A ←− 〈Vl, L, l0, Σ, C, E, I〉

Example 4. In this example, we applied the unfolding algorithm to DTA D shown in Figure 4.
The resulting TA A is depicted in Figure 5.
In the following, we use the proposed algorithm to create an equivalent TAA = 〈Vl, S, s0, Σ, C, E, I〉 to
D = 〈A,R〉.
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Figure 5. Equivalent TA A to DTA D.

Initialization: First, we start the creation of automaton A such that its sets of locations, initial
locations, actions and clocks, and function I are identical to those in A. Additionally, we add a local
variable, called cfg, initialized to zero, to those of A to create a local variable set of A. Thus,

• Vl = {cfg}, where Vl0 = ∅;
• S = {working, repairing, fail_safe};
• s0 = {working};
• Σ = {τ};
• C = {x};
• I : S −→ {true}, where true means there are no invariants on location.

Second, we apply rules inR to A to yield two sets: (i) C = {A, H}, where configurations A and H
are illustrated in Figure 4, and (ii) T = {(A, r, H)}. Finally, we enumerate the configurations in
C using a natural ordering; hence, Enum(A) = 0 and Enum(H) = 1.

Represent edges of D in A: First, we consider edges in D that remain unchanged during reconfig-
urations, i.e., they exist in configurations of D. These edges are:

• e1 = (working, τ, true, true, problem!, {x}, ε, repairing);
• e2 = (repairing, τ, "x<15", true, repaired!, ∅, ε, working);
• e3 = (fail_safe, τ, "x<50", true, repaired!, ∅, ε, working),

where true indicates “no guards”, and ε denotes “an empty sequences”.

Consider edges that do not appear in every configuration of D, namely:

• eA = (repairing, τ, "x>=15", true, delayed!, {x}, ε, fail_safe) in A;
• eH = (repairing, τ, "x<10", true, failsafe!, {x}, ε, fail_safe) in H.

Since edge eA only belongs to configuration A, i.e., C(eA) = {A}, the enabling condition
(built over variables) of edge e′A, which represents eA in A, is computed as follows “cfg==0&&true”,
where true is the enabling condition of eA and 0 is the index of configuration A. Thus, e′A =
(repairing, τ,"x>=15","cfg==0",delayed!, {x}, ε,fail_safe). Similarly, e′H, which represents
eH, is defined as follows: e′H = (repairing, τ,"x<10", "cfg==1",failsafe!, {x}, ε,fail_safe).
Finally, edges e1, e2, e3, e′A, and e′H are added to set E.

Adding edges to emulate rules: An application of r to A results in H, where eA is no longer
present and eH is newly added. In D, r applies under the following conditions: (i) its current
configuration is A, (ii) the value of clock x is less than 20, and (iii) the current location of A is
repairing. Hence, the preconditions of edge er, which represent this application, are (i) “cfg==0”
and (ii) “x<20”; furthermore, (iii) the source and target location of er is repairing. Moreover,
when r applies, (a) clock x is reset, and (b) the current configuration of D is changed to H.
Therefore, the postconditions of edge er are (a) “x:=0” and (b) “cfg:=1”. Finally, we insert



Axioms 2023, 12, 230 11 of 18

er = (repairing, τ, "x<20", "cfg==0",−, {x}, "cfg:=1", repairing) into E. Recall that τ
and “−” stand for internal action and no synchronization, respectively.

Termination: Finally, the equivalent TA A = 〈Vl, S, s0, Σ, C, E, I〉 to DTA D is given as follows.

• Vl = {cfg};
• S = {working, repairing, fail_safe};
• s0 = {working};
• Σ = {τ};
• C = {x};
• C = {e1, e2, e3, e′A, e′H , er};
• I : S −→ {true}.

6. Proofs of Termination and Equivalence

This section is dedicated to proving the following three claims: (i) the termination of
graph transformations applied to a given DTA D, meaning that its structure is finite; (ii)
the termination of the unfolding algorithm; and (iii) the equivalence between a given DTA
D and the TA A obtained by the unfolding process.

6.1. Graph Transformation Termination

It is important to note that this paper only considers rules that can modify the topology
of an automaton, i.e., adding, removing, or modifying edges. Hence, the set of locations in
any given DTA is static and finite. Regarding the set of edges after a rule application, we
can distinguish three types of rules:

1. Rules that decrease the number of edges, i.e., if G r
=⇒ H, then |EG| > |EH |;

2. Rules that preserve the number of edges, i.e., if G r
=⇒ H, then |EG| = |EH |;

3. Rules that increase the number of edges, i.e., if G r
=⇒ H, then |EG| < |EH |.

Obviously, applying rules of the first and second types will not result in infinite
structures, i.e., an infinite set of edges.

In the following, we focus on rules belonging to the third type. Let r be a rule.
Applying r to a configuration G requires a morphism m that matches its left-hand side L to
a part of G. Since G has a finite structure, the number of occurrences of L in G is also finite.
Indeed, if p and n are the number of locations in L and G, respectively, then there are at most
Ap

n = n!
(n− p)! occurrences of L in G. Moreover, if G r,m

==⇒ H1
r,m
==⇒ H2, i.e., r is consecutively

applied twice to G with the same morphism m, then H1 = H2, since adding an existing edge
to an automaton does not change its semantic. Accordingly, any consecutive application of
r to a configuration G yields at most Ap

n distinct configurations. Finally, if two rules r1 and
r2 are applied in the order G

r1,m1===⇒ H1
r2,m2===⇒ H2

r1,m1===⇒ H3, then H2
r1,m1===⇒ H3 inserts edges

already inserted by G
r1,m1===⇒ H1 (recall that inserting an existing edge to an automaton does

not change its semantic), i.e., H2 = H3. Therefore, applying any sequence of rules in R
to an initial configuration of DTA D yields a finite set of configurations C. Accordingly,
the set of possible transformations T = {(As, r, At)|As, At ∈ C and As r

=⇒ At} is also finite.
Therefore, any graph transformation applied to any given DTA D terminates.

6.2. Unfolding Termination

The unfolding algorithm described in Section 5 preserves certain finite sets of an
initial configuration A0 = 〈Vl0 , S0, s00, Σ0, C0, E0, I0〉 of a given DTA D in its unfolding
A = 〈Vl, S, s0, Σ, C, E, I〉, such that Vl = Vl0 ∪ {cfg}, S = S0, s0 = s00, Σ = Σ0 and C = C0.
As for edges, let E = Ee ∪ Et, such that Ee and Et correspond to edges and transformations
in D, respectively.

As proven in the previous subsection, the set of configurations C = {A0, . . . , An} is
finite, and so is the set of edges E = ∪n

i=0Ei belonging to these configurations. On the other
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hand, for each edge e ∈ E the unfolding algorithm inserts a single edge into the initially
empty set Ee to represent e. This means that set Ee is also finite. Similarly, for each possible
rule application G r

=⇒ H, the proposed algorithm inserts a single edge into set Et. As the set
of possible transformations T is finite, it follows that set Et is finite as well. Finally, since
all sets involved in the computation of an unfolding A of a given DTA D are finite, the
unfolding algorithm terminates.

6.3. Equivalence between DTA and Their Unfolding TA

In order for a given DTA to be equivalent to its unfolding TA, the latter must preserve
the behavior of the former. That is, if a run s0

e1−→ s1
e2−→ s2 . . . sq

r−→ sq . . . sn−1
en−→ sn . . . ,

where ei is an edge and r is a rule, is recognized by D, then s0
e′1−→ s1

e′2−→ s2 . . . sq
er−→

sq . . . sn−1
e′n−→ sn . . . , where e′i and er (inserted by the unfolding algorithm) correspond to ei

and er, respectively, is recognized by A and vice versa.

Lemma 1. When the configuration of D is Ai (i.e., cfg = i), and s e−→ s′ is a possible step in Ai,

then s e′−→ s′, where e′ is an image of e in A, is a possible step in A and vice versa.

Lemma 2. When the configuration of D is Ai (i.e., cfg = i), and rule r applies to Ai at location s,
then s er−→ s, where er is an image of r in A, is a possible step in A and vice versa.

Proof. We start by proving Lemma 1. There are two cases to consider. First, if edge e is
present in all configurations of D, then e and its representation e′ are identical. Second, if
edge e is not present in all configurations of D (i.e., it disappears in certain configurations),
then the proposed algorithm computes the preconditions of e′ according to those of e
and where e appears. In other words, if g = (s, gc, gv) is the precondition of edge e, then
g′ = (s, gc, le&&gv) is the precondition of its representation e′, where le is valuated true
only when the current configuration of A is the one in which e appears. Hence, if s e−→ s′ is

a possible step in Ai, then s e′−→ s′ is a possible step in A and vice versa. It is important to
note that the postconditions of both e and e′ are the same.

Regarding Lemma 2, if an application of rule r = 〈L ϕl←− I
ϕr−→ R, (s, gc, gv), (δ, α)〉 from

configuration As at location s to configuration At is represented by edge er, then the follow-
ing holds true by definition. (i) The preconditions of er are g′ = (s, gc, "cfg==i&&gv"), such
that i is the index of As. (ii) The postconditions of er are u′ = (δ, "α,cfg:=j"), such that j
is the index of At. Consequently, if rule r applies to As at location s under preconditions
gc and gv, then s er−→ s is a possible step in A, with preconditions (s, gc, "cfg==i&&gv").
This relationship also holds true in the reverse direction.

Theorem 1. If a run s0
e1−→ s1

e2−→ s2 . . . sq
r−→ sq . . . sn−1

en−→ sn . . . is recognized by D, then

s0
e′1−→ s1

e′2−→ s2 . . . sq
er−→ sq . . . sn−1

e′n−→ sn . . . is recognized by the unfolding A and vice-versa.

Proof. From Lemmas 1 and 2, we can conclude that if a run s0
e1−→ s1

e2−→ s2 . . . sq
r−→

sq . . . sn−1
en−→ sn . . . is recognized by D, then the equivalent run s0

e′1−→ s1
e′2−→ s2 . . . sq

er−→

sq . . . sn−1
e′n−→ sn . . . is recognized by its unfolding A and vice-versa.

7. Illustrative Example

In this section, we present a description of a reconfigurable system, demonstrate the
use of the proposed formalism in modeling it, and finally, apply the unfolding algorithm.

We consider a job shop that consists of m machines sharing t tools to manufacture two
types of products, A and B, from simple components, with m > t. The machines select



Axioms 2023, 12, 230 13 of 18

some components and determine whether to produce either an object of type A, B, or A′

using the available tools.
Initially, the two product types, A and B, are being produced. Each machine is in the

idle state and each tool is in the free state. If a machine decides to produce a product of
type A, it picks up one tool and begins production, which should take no more than five
time units. For products of type B, a machine requires two tools and takes 20 time units to
complete production.

Due to the shared use of tools among the machines, the job shop is prone to deadlocks.
For example, if a certain number of machines decide to produce B products, each machine
picks up only one tool, no other tools are available, and other machines remain idle, then
the job shop is deadlocked. In such situations, the job shop is reconfigured into recovery
mode, such that:

• Each idle machine can only start manufacturing a product of type A′ without requiring
any tools;

• At least one of the machines that decided to produce a B product returns a picked tool
and begins production of type A′;

• The remaining machines continue to produce type B and once finished, start manufac-
turing a product of type A′.

Once all tools are available, the job shop returns to its normal mode.
Consider the network of timed automata illustrated in Figure 6, which models the job

shop described above. The following points characterize the network:

1. The initial configuration A0 of machines and a model of tools are depicted in
Figure 6a,b, respectively;

2. The synchronization channels get_tool and put_tool are present;
3. Local clock x is used;
4. Constant t represents the number of tools;
5. Constants maxA, maxB and maxA_ correspond to the maximum number of products A,

B, and A′ to be manufactured, respectively;
6. Local variables a, b, and a_ and global variables f and w are used to store the number

of manufactured products A, B, and A′, available tools, and waiting machines for a
second tool, respectively;

7. We distinguish a variable d used to indicate the presence of a deadlock;
8. The use of local variable c is explained later.

(a) A machine (b) A tool

Figure 6. A network of timed automata modeling a reconfigurable job shop.

When the value of w equals t, i.e., the number of waiting machines for a second tool
equals the number of tools, the job shop is in a deadlock state. In this scenario, any waiting
machine can identify the presence of a deadlock. This is modeled by an edge from location
Waiting to location Dead (see Figure 6a) with the guard “w==t” and the effect “d:=1,c:=0”.
Recall that variable d is used to indicate the presence of a deadlock state.
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Once the value of d becomes one, the job shop must be reconfigured into the recovery
mode. First, we apply reconfiguration r0 illustrated in Figure 7 to the machine which
detected the presence of a deadlock, such that its precondition is gr0 = (Dead, true, true).
The obtained configuration is shown in Figure 8a.

(a) L0 (b) R0

(c) L1 (d) R1

Figure 7. Transformation rules r0 and r1.

Remark 1. Since the left- and right-hand sides and the interface of any rule have the same location
set, we omit the interfaces of the rules in the figures presented in this section.

For the rest of the machines, we apply reconfiguration rule r1 depicted in Figure 7 to
each idle machine, whose precondition is gr1 = (Idle, true, d==1). The obtained configu-
ration is presented in Figure 8a.

Note that when r0 is applied to a machine, it can move from location Dead to location
Idle (see Figure 8a), and then release the tool. Then, any waiting machine can use that tool
to resume the production of product B. After finishing, reconfiguration rule r1 is applied to
it.

When all tools are available, i.e., f==t, the job shop can return to its initial con-
figuration by applying rules r2 and r3 shown in Figure 9. Rule r2 is applicable to con-
figuration C1 whose pre- and postconditions are gr2 = (Idle, true, f==t||d==0) and
ur3 = (∅, "d:=0,c:=0"), respectively. However, rule r3 applies to configuration C2 whose
pre- and postconditions are gr3 = (Idle, true, (f==t||d==0)&&c!=0) and ur3 = (∅, d:=0).
Here, variable c is used to prevent the application of r3 to a machine that has detected the
presence of deadlock before applying r2. This is to ensure that r2 only applies if r3 has not
been applied first.

Now, we apply the unfolding algorithm to DTA D = 〈A0, {r0, r1, r2, r3}〉, where initial
configuration A0 is shown in Figure 6a. The obtained TA A illustrated in Figure 10 is
semantically equivalent to D.

Finally, to verify some properties of the job shop, we use UPPAAL (i) to create an NTA
consisting of three machines m1, m2, and m3 and two tools t1 and t2; (ii) and then to check
certain properties. The obtained results are demonstrated in Table 1.
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(a) Configuration C1

(b) Configuration C2

Figure 8. Configurations C1 and C2.

(a) L2 (b) R2

(c) L3 (d) R3

Figure 9. Transformation rules r2 and r3.
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Figure 10. TA A semantic-equivalent to D.

Table 1. Verification of some properties of interest.

Property Meaning

A<> m1.cfg==0 && m2.cfg==0 && m3.cfg==0 The job shop can always return to its initial mode

A<> m1.Idle && m2.Idle && m3.Idle The job shop can always return to its initial state

E<> m1.cfg!=0 && m2.cfg!=0 && m3.cfg!=0 A state in which m1, m2, and m3 are either in C1 or C2 is reachable

m1.Dead –> m1.cfg!=0 Whenever m1 reaches location Dead, then it can always change its configuration

A[] not (m1.cfg==2 && m2.cfg==2 && m3.cfg==2) A state in which all machines are in C2 at once is never reachable

E<> m1.cfg==1 && m2.cfg==1 && m3.cfg==1 A state in which all machines are in C1 at once is reachable

A[] m1.a<=maxA && m1.b<=maxB && m1.a_<=maxA_ m1 never exceeds the production limit

t1.taken –> t1.free A tool currently used by a machine will always be free after a while

Remark 2. To ensure that a TA does not remain in a location indefinitely during model-checking,
locations PA, PB, Wait, and Dead are set as urgent. This means that an automaton must move
immediately from these locations whenever possible. In fact, urgent locations can be expressed
using only clocks. Hence, no modifications are needed to the proposed formalism level to support
this feature.

8. Conclusions

Modern systems are designed with reconfigurable structures and a high flexibility to
meet various complex requirements while maintaining cost-effectiveness. This creates a
challenging issue in developing such systems and requires the use of rigorous tools such as
timed automata.

The integration of graph transformation systems into formal methods brings several
benefits. Nevertheless, several properties that need to be verified by designers become
undecidable. To the best of our knowledge, there is no existing work that empowers timed
automata by graph transformation systems to model dynamic structures.

In this paper, we presented an approach involving the transformation of timed au-
tomata. We leveraged the theory of the double-pushout approach to formulate the trans-
formation rules, resulting in a new formalism called dynamic TA (DTA). Furthermore, we
proposed an algorithm that transformed DTA into semantic-equivalent TA. This aimed to
enable the use of existing TA analysis tools for the DTA analysis.

In future work, we will exploit the nature of the underlying models to ensure the
preservation of global properties of TA models. This will allow a reduction of the temporal
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and spatial complexities of the verification process. Additionally, we will consider the rela-
tionship between rules, such as a critical pair analysis and compositional rule application,
to provide more assistance to designers at the modeling step.
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