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Abstract 1 

Urban forests provide benefits to more than half of the global population, but climate change 2 

threatens the delivery of these benefits. We assess climate-change risk of 3,129 tree and 3 

shrub species found in 164 cities across 78 countries, using three metrics: exposure; safety 4 

margin; and risk. Exposure expresses changes in climate in each city, safety margin 5 

measures species’ sensitivity to climate change, and risk is the difference between exposure 6 

and safety margin. We found 1,759 (56%) and 2,045 (65%) species currently experiencing 7 

climate conditions that exceed their safety margin for mean annual temperature (MAT) and 8 

annual precipitation (AP), respectively. By 2050, 2,387 (76%) and 2,112 (68%) species will 9 

be at high risk from projected changes in MAT and AP, respectively, with greater risk in 10 

cities at low latitudes. Our results aid the evaluation of the impacts of climate change on 11 

urban forests to secure long-term benefits provided by these forests. 12 

 13 

Introduction 14 
 15 

Urban areas span ~3% of the Earth’s land surface area1, and accommodate more than 4.2 16 

billion people (55% of the global population)2. Within cities, urban forests (i.e. all trees and 17 

shrubs in a city, present in streets, parks, woodlands, abandoned sites and residential 18 

areas3,4) provide environmental services and socio-economic benefits5. By 2050, cities are 19 

expected to expand in size around the globe, with predictions of 6.6 billion people living in 20 

cities by this time (~70% of the predicted global population)2. As the human population 21 

grows, so too will the societal demands on urban forests. 22 

Planting and preserving climate-resilient urban forests can play an essential role in 23 

people’s connection to nature5 and have the potential to mitigate the adverse effects of 24 

global climate change by: (i) shading buildings and paved surfaces as well as reducing 25 

energy usage for cooling6; (ii) dissipating urban heat through evapotranspiration; and (iii) 26 

capturing greenhouse gases and storing carbon through photosynthesis7. However, the 27 

pace at which climate is changing8 poses a serious threat to the continued persistence of 28 

urban forests globally. 29 

Natural and urban ecosystems are already impacted by climate change resulting in 30 

sub-optimal tree growth and increased mortality9,10. Climate change is predicted to increase 31 

the frequency and severity of extreme events – such as heatwaves, fire and drought8,11,12 – 32 

which contribute to extensive tree dieback and mortality globally9,13. Additionally, features of 33 

urban environments, including impervious surfaces and the urban heat island (UHI) effect, 34 

can locally exacerbate climatic extremes8.  35 
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Urban tree mortality has environmental and socio-economic consequences for 36 

governments and urban residents13,14. Therefore, urban greening policies target the strategic 37 

delivery of ecosystem services and benefits15. However, for these services to be delivered 38 

effectively over the coming decades, it is crucial to quantify exposure to climate change in 39 

cities and identify the most vulnerable tree species by quantifying their risk of poor growth 40 

and mortality under current and future climates16. Unfortunately, studies of tree mortality 41 

driven by climate change in cities are rare and limited in scope and broad applicability16. This 42 

limits the capacity to assess climate risk for species that are currently experiencing 43 

conditions that exceed their climatic tolerance17. Given the slow growth rates of trees and 44 

the importance of promoting tree longevity, successful urban greening must be strategically 45 

planned with future climatic conditions in mind to secure the persistence of urban forests into 46 

the future. 47 

Here, we present a worldwide climate-risk analysis for urban forests. We assessed 48 

the potential impacts of future climate change on 3,129 tree and shrub species present in 49 

164 cities across 78 countries. We calculated three climate-impact metrics: (1) exposure —50 

the extrinsic degree to which a city is exposed to changes in climate; (2) safety margin —the 51 

intrinsic sensitivity of each species to climate change in each city according to its climatic 52 

tolerance; and (3) risk, calculated as the difference between exposure and safety margin17,18. 53 

We calculated species’ realised climatic tolerances from their current geographical 54 

distributions, while climate risk was determined by the projected future climate in cities 55 

where the species are currently present. Because of the mismatch and asynchrony between 56 

the speed of contemporary climate change and the time required for long-lived trees and 57 

shrub species to respond to climate change19,20, aka the macroclimatic debt21, we expect 58 

that significant proportions of species in cities are already at risk or partially decoupled from 59 

macroclimatic conditions as a result of costly management practices (e.g. water supply). 60 

Hence, contemporary urban planning and tree species selection are required to ensure a 61 

successful climate mitigation strategy for the future. 62 

 63 
Results 64 
 65 
Exposure 66 

Exposure (E) is the degree to which a city is exposed to projected climatic change22,23 and 67 

measures the magnitude of change in climate in a given city between baseline (average 68 

during 1979-2013) and future (2050 or 2070) climatic conditions. Under the Representative 69 

Concentration Pathway (RCP) 6.0 (for RCP 4.5 see Table S1) and according to an 70 

ensemble of 10 Global Circulation Models (GCMs), all 164 studied cities are predicted to 71 
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undergo increases in all temperature variables (mean annual temperature, MAT; maximum 72 

temperature of the warmest month, MTWM; and minimum temperature of the coldest month, 73 

MTCM) (Tables 1, S1). The increase in MAT and MTWM is predicted to exceed 2°C for 54 74 

cities in 2050 and increase to 119 cities in 2070. Regarding changes in precipitation, cities 75 

are predicted to become drier in 2050 in terms of annual precipitation (AP, n =138) and 76 

precipitation of the driest quarter (PDQ, n = 96). Cities towards the Equator will be exposed 77 

to larger decreases in AP, whereas cities at high latitudes will be subject to larger increases 78 

in MAT, MTWM and MTCM (Table S2; Figs. 1, S1-S2). 79 

Safety margin 80 

The safety margin (S) describes intrinsic species sensitivity to climate change and indicates 81 

potential tolerance to changing climate conditions18,24 within a given city. The safety margin 82 

is calculated as the difference between baseline climate conditions (e.g. MAT or AP) for the 83 

city and the species’ tolerance limit in relation to the direction of change for the climate 84 

variable being examined (e.g. the upper limit in case of warmer MAT or the lower limit in 85 

case of drier AP) (Fig. S3). For each climate variable, we found species that are currently 86 

exceeding their safety margins in all cities in which they are currently planted: (1) MAT, 532 87 

species (17% of all study species); (2) MTWM, 465 (15%); (3) MTCM, 430 (14%); (4) AP, 88 

789 (25%); and (5) PDQ, 665 (21%) (Appendix 1). We also identified cities that currently 89 

have all their species exceeding their safety margins; across all 164 cities, the mean 90 

proportion of species subject to unsafe current climate conditions was 53% (Table 1; Figs. 91 

2, S4). 92 

Notably, although we found high numbers of species exceeding their safety margins 93 

in at least one city, for most of the species, safety margins were narrow. A narrow safety 94 

margin indicates that baseline climate conditions are close to the species’ upper or lower 95 

tolerance limit in relation to the direction of change (e.g. baseline MAT is too close to the 96 

species’ warm limit under the expectation of a warmer climate). Median values of safety 97 

margins were 0.2°C  for MAT, 0.32°C for MTWM, -6.1°C for MTCM, 56.5 mm for AP and 98 

7.78 mm for PDQ. For MAT, 1,277 species (41%) are exceeding their S by <1°C, while 149 99 

species (5%) exceed their S by >10°C. Similarly, for MTWM and MTCM, 1,189 (38%) and 100 

153 (5%) species, respectively, are exceeding their S by <1°C. For AP and PDQ, 692 (22%) 101 

and 838 (27%) species, respectively, are exceeding their S by <50 mm for AP and by <10 102 

mm for PDQ (Fig. 2; Fig S4). 103 

Risk 104 
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Risk (R) refers to the potential for adverse consequences on biological systems25,26, and is 105 

defined here as the difference between cities’ exposure and species’ safety margins (R = E 106 

– S). By 2050, under RCP 6.0 (for RCP 4.5, see Table S3), projected changes in climate will 107 

result in an increase in numbers of species at risk (i.e. city’s future climate will exceed the 108 

species’ safety margin; R > 0) in at least one city where they are planted in terms of changes 109 

in MAT, MTWM and AP. However, warmer and wetter projections of MTCM and PDQ in 110 

some cities will benefit species by decreasing their future risk (Table 1; Fig. 3). 111 

By 2050, several species are projected to be at risk in all cities where they are 112 

currently planted and this is true for all climate variables we considered: (1) MAT, 1,200 113 

(38%); (2) MTWM, 862 (29%); (3) MTCM, 688 (22%); (4) AP, 1,006 (32%); and (5) PDQ, 114 

661 (21%). For all climate variables, the plant families with the largest number of species at 115 

risk were Myrtaceae, Fabaceae and Rosaceae, while 62 families had 100% of their species 116 

at risk (e.g. Dipterocarpaceae, Cunoniaceae and Taxaceae). Conversely, we found 742 117 

(24%; MAT), 989 (32%; MTWM), 1,241 (40%, MTCM), 929 (30%; AP) and 1,280 (41%; 118 

PDQ) species at no risk in all cities where they are currently planted (Appendix 1). 119 

We found a tendency for the mean climate-change risk to increase towards the 120 

Equator (Fig. 3, Table S4). For all climate variables, except MTCM, the proportion of 121 

species at risk in each city is predicted to increase in 2050 and 2070 (Tables 1, S3), with 122 

65% being the mean proportion of species at risk across all 164 cities in 2050 under RCP6.0 123 

(Figs. 3, S5-S6). Comparing risk profiles across climate variables by 2050, 287 (9%) 124 

species were identified to be at risk for all five climatic variables simultaneously and 1,832 125 

(59%) species were predicted to be at risk because of changes in at least three climatic 126 

variables. No risk was observed for 772 species (25%) in any city where they are currently 127 

planted (Fig. S7). 128 

By 2050 and RCP6.0, the magnitude of risk for most of the species reached median 129 

values of 1.8°C (MAT), 1.4°C (MTWM), 7.3°C (MTCM), 102.9 mm (AP) and -9 mm (PDQ). 130 

We found 1,006 (32%) and 1,060 (34%) species at risk by <1°C increase of MAT and 131 

MTWM, respectively. While 716 (23%) and 811 (26%) species are predicted to be at risk by 132 

<50 mm for AP and by <10 mm for PDQ (Fig. S6). 133 

For each country, we obtained their 2019 Readiness score quantified by the Notre 134 

Dame Global Adaptation Initiative (ND-GAIN)27. ND-GAIN is an index of a country’s 135 

vulnerability to climate change and its capacity for investment in adaptation actions27. We 136 

found climate risk for urban forests was higher in cities projected to undergo decreases in 137 

precipitation, increases in temperature and in countries with low ND-GAIN scores (Table 138 
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S5). This finding implies that these cities may have limited capacity to cope with the impacts 139 

of future climate change on their urban forests. 140 

 141 

Discussion 142 

Climate-driven changes to urban forests will have adverse consequences for city dwellers 143 

and governments globally, although the magnitude of these consequences will vary across 144 

cities. The mitigation of climate change impacts ultimately will depend on the available 145 

resources in each city and its capacity to respond and cope with climatic changes as they 146 

occur.  147 

Urbanization affects the UHI effect and water cycling inputs via alteration in 148 

interception, infiltration and runoff, which are likely to shape species’ growth and survival, in 149 

and around the city34,35. Depending on the location of trees within cities, such changes in 150 

UHI and water cycling may affect species safety margins and increase their future risk. 151 

However, projections of UHI and urban precipitation changes are still lacking at a global 152 

extent, limiting the incorporation of these urban effects. Nevertheless, urban forests that 153 

experience declines in precipitation will be more vulnerable than those facing higher rainfall, 154 

although significant increases in precipitation might also represent a risk factor, i.e. 155 

flooding28. Human management, such as irrigation or stormwater capture, can aid in 156 

mitigating the effects of low precipitation by providing supplemental water during periods of 157 

severe climate stress29 and promoting evapotranspiration (local cooling effect), which will be 158 

crucial to mitigate heatwaves in cities30. However, it may become increasingly difficult to 159 

mitigate the adverse effects of climate change through management actions to offset soil 160 

water deficits, particularly under limited urban water supply and in places where water is 161 

increasingly scarce31,32. These types of costly management actions may explain why so 162 

many tree species are currently present in cities with climates that already exceed their 163 

current safety margins at the dry margin for precipitation. 164 

Urban forests are often water stressed or closely coupled to regional precipitation 165 

and water balance; hence, species growing under hydrologically stressful conditions are 166 

more vulnerable to extreme climate events33, resulting in dieback and higher mortality 167 

rates34. However, our results show that cities currently harbour many species living beyond 168 

their safety margins suggesting there are additional management actions (e.g. irrigation) and 169 

biological factors (e.g. trait plasticity) facilitating species’ presence in cities and decoupling 170 

them from macroclimatic fluctuations. Being planted in an area, however, does not 171 

necessarily mean that a species is performing well in that location. There is also a difference 172 
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between being able to tolerate and persist in certain conditions and being able to grow well 173 

and maintain ecological functions. That is, species whose safety margins are exceeded may 174 

be able to locally survive through local compensation effects, but would not have the 175 

capacity to function and remain healthy under those conditions35,36. The long-term stability of 176 

urban forests depends on the identification of species that are resilient to long-term climate 177 

change and are able to thrive and survive37. 178 

Global warming impacts urban vegetation by increasing dieback and mortality and 179 

altering species phenology13,38,39. Future risk is higher in cities located closer to the equator 180 

where economic resources to mitigate climate change are generally more limited40. 181 

Management options for altering or mitigating rising temperatures, particularly the extremes 182 

(maxima and minima), are limited41. As such, vulnerable species will require more intensive 183 

and costly management actions and replacement if they cannot cope with climate change. 184 

We found cities with high proportions of species at risk located in countries identified as 185 

vulnerable by the ND-GAIN index (e.g. India, Niger, Nigeria and Togo). Noteworthy, for 186 

those low-latitude cities at high risk, climate warming (MAT exposure) is lower at low 187 

latitudes compared to cities at higher latitudes, particularly in the Northern Hemisphere; 188 

therefore, species’ comparatively narrow safety margins at low latitudes might be driving the 189 

more elevated risk there. This highlights a potential mismatch between species selected and 190 

planted in those cities and the changing climatic conditions that have occurred over the last 191 

few decades. Furthermore, differences in risk among cities, particularly those that are close 192 

geographically, might be driven by the species composition of each city (Fig. S8). Presently, 193 

species selection during urban planning has been based on past and current climate, 194 

without accounting for future climate change16, and also on human management, prioritizing 195 

particular characteristics, such as canopy size or aesthetics42, leading to poor considerations 196 

of potentially narrow safety margins. Therefore, considering future climate change in species 197 

selection as a prospective strategy should become a priority in cities worldwide, but 198 

particularly so in low-latitude cities near the equator. 199 

Risk associated with increases in MTWM highlights that extreme heat represents a 200 

significant threat to urban forests. Cities with the highest risk for heatwaves might be those 201 

with a current high UHI effect43. However, we found no correlation between current climate 202 

variables and current daytime average maximum land surface temperatures (i.e., a proxy for 203 

the UHI effect43), probably related to the decoupling between cities’ macro and microclimate. 204 

Predicted changes in extreme seasonal variables (i.e. MTWM, PDQ), therefore, impose 205 

thermal and hydrological stress on plant species. However, warmer temperatures in MTCM 206 

indicate that species will be relieved from cold stress as the urban environment may become 207 

more favourable in the future. Nonetheless, some species require a winter cold period (i.e. 208 
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vernalization) for proper functioning44, and future climate change may represent a risk for 209 

those species. 210 

Our climate risk assessment method targets two key goals. First, the metrics are 211 

easy to interpret and reproducible in cities with access to tree occurrence data. Second, it 212 

provides a useful approach for identifying which species are most at risk of future climate 213 

change (Fig. S9). The safety margin and risk metrics can help to guide prioritization and 214 

substitution with more resilient species (i.e. lower risk) in the coming decades. For example, 215 

planted species far exceeding their safety margin may be prioritized over others for 216 

monitoring and potential replacement. In contrast, planted species with positive safety 217 

margins and low risk may be monitored without need of replacement as they could 218 

potentially tolerate new climate conditions. Species identified as “no risk” across all cities 219 

where they are planted represent a valuable resource for creating climate-proof urban 220 

forests. These resilient species provide a palette of potential candidates to be planted in 221 

cities where they currently occur, and in those with similar climates after assessing the 222 

broader risks associated with introductions (e.g., invasiveness)33. Therefore, our method can 223 

provide a path forward to inform local governments, prioritise monitoring, improve species 224 

selection, prioritize mitigation actions for urban forests under future climates, and maximise 225 

societal benefits in a warmer world. 226 

While we have assessed the global climatic risk of urban forests, there are some 227 

limitations to consider when interpreting findings derived from our method. First, species’ 228 

realised niches (as assessed here) depend, partly, on sampling effort. We used occurrence 229 

records that we related to bioclimatic variables to approximate species’ realised climatic 230 

niches. However, biotic (e.g. competition and facilitation), other abiotic (e.g. soil and 231 

nutrients) factors and dispersal limitations are not accounted for, meaning that one may 232 

underestimate or overestimate the true species’ climatic niches. Second, the safety margin 233 

describes a species’ potential tolerance to changing climate conditions within a given city. 234 

However, species distribution data are often incomplete, potentially leading to the 235 

under/overestimation of the actual realised niche, and individuals at the margin of their 236 

geographical range may exist there because of peculiar but highly suitable microclimate 237 

conditions (i.e. “source” populations) or as climate relicts (i.e. persisting amidst unsuitable 238 

conditions and thus being “sink” populations). Furthermore, artificial selection for horticultural 239 

production may change the breadth of climatic conditions tolerated by species as has 240 

occurred in agricultural crops45r, with flow-on effects where different species’ cultivars or 241 

varieties are used in urban forests. Third, our approach does not fully consider species’ 242 

adaptive capacity and trait plasticity, which facilitate species’ resilience to climate change, 243 

and the potential feedback mechanisms between climate and biota (e.g. the role of 244 
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vegetation in modulating temperature). Other environmental factors can also mitigate (e.g. 245 

presence of water bodies) or exacerbate (e.g. pollution) the effects of climate change. 246 

Finally, given that in many cities comparatively few tree species are abundant, weighted 247 

climate risk could be employed to correct for any influence of rare species.  248 

Ideally, to improve species selection in relation to climate, one would utilise 249 

information on environmental tolerances, as well as ecological functional approaches46 and 250 

trait-based analysis47-49. However, robust trait data are limited and not readily available for all 251 

species worldwide, which increases uncertainty around decision making. To maintain 252 

healthy urban forests in a changing climate, it will be necessary to address economic 253 

constraints, the provision of adequate time and effort for establishing and maintaining urban 254 

plantings and filling the knowledge gaps in appropriate species selection. We highlight the 255 

importance of using prospective — rather than retrospective — strategies to preserve urban 256 

forests to ensure resilience to climate change. We emphasize the importance of taking 257 

immediate actions in terms of the climate emergency8 to secure the survival and persistence 258 

of urban forests globally and the benefits provided by these socio-ecological systems. 259 

 260 

Materials and Methods 261 

Urban forests composition and urban areas 262 

We obtained data of tree and shrub species present in cities from the Global Urban Tree 263 

Inventory (GUTI) database50. This database compiles presence data for 4,734 tree and 264 

shrub species found in 473 urban areas globally and includes data from published and 265 

unpublished tree inventories, online data portals and tree species lists contained in studies 266 

published in the scientific literature. Details on the compilation of these data are given 267 

elsewhere50. 268 

Across the 473 cities, the average number of species per city reported in GUTI was 269 

92 species (standard deviation ± 106), with 72 cities having fewer than 10 species. A small 270 

number of recorded species for a city likely represents under sampling of the diversity of 271 

species and their respective climate niches than is present. To assess possible sampling 272 

bias of climate niches for cities with small numbers of species, we randomly sampled the full 273 

set of species in the dataset to get a mean climate variable expected for X number of 274 

species (i.e. simulating cities with varying numbers of species). We then assessed the 275 

stabilisation of the mean (and variance around the mean) as we increase the number of 276 

species sampled. High instability of the mean at low numbers of species would indicate 277 
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potential bias in the range of climate niches represented by the sample. Based on a visual 278 

assessment, we removed cities with fewer than 50 species (Fig. S10) as well as cities that 279 

were identified as municipalities or local areas within major cities. These resulted in 164 280 

cities from 78 countries and 3,129 tree and shrub species (165 families). 281 

For all 3,129 tree and shrub species, we obtained occurrence records from two 282 

sources: (1) the Global Biodiversity Information Facility (GBIF.org; 18 December 2019 GBIF 283 

Occurrence Download https://doi.org/10.15468/dl.cpwlwc); and (2) sPlotOpen, an 284 

environmentally balanced, open-access, global dataset of vegetation plots (German Centre 285 

for Integrative Biodiversity Research (iDiv): https://doi.org/10.25829/idiv.3474-40-3292). 286 

Vascular plant species recorded in this dataset represent cover or abundance of naturally 287 

co-occurring species within delimited areas51. For sPlotOpen, we only retained occurrence 288 

information (i.e. plot coordinates) and for GBIF, we only retained occurrence records with 289 

sufficient information on geographical coordinates. Records were overlaid on a 1×1 km 290 

raster grid and reduced to a single point per species within each cell. Additionally, 291 

occurrence records were filtered and cleaned by removing spatially invalid or suspect 292 

records that could lead to miscalculation of species' climatic niches and duplicate records 293 

using the CoordinateCleaner package52 in R version 4.0.553. We retained only species with 294 

more than 20 occurrence records. We found 2,555 species (82%) shared between GBIF and 295 

sPlotOpen (data from 95,104 vegetation plots). The average number of occurrence records 296 

per species (GBIF + sPlotOpen) was 1,041 (± 518), with a maximum of 92,331 occurrences 297 

(Quercus robur). Taxonomy was standardized and verified against GBIF and then against 298 

The Plant List (TPL; www.theplantlist.org) using Taxonstand package54 in R53. 299 

Polygons defining the spatial boundaries of 6,018 urban areas (i.e. cities) globally 300 

were obtained from Kelso and Patterson55 as a shapefile (WGS84; 1:10 million; 301 

EPSG:4326). These data were projected to the Mollweide projection, an equal-area 302 

pseudocylindrical map projection (ESRI:54009). Additionally, we obtained population size56 303 

of all 164 cities, daytime average maximum land surface temperatures (i.e. representative of 304 

the urban heat island effect)43 for 122 cites, and for each country the 2019 Readiness score 305 

quantified by the Notre Dame Global Adaptation Initiative (ND-GAIN). ND-GAIN is an index 306 

of a country’s vulnerability to climate change and its capacity for investment in adaptation 307 

actions27. This index measures a country's exposure, sensitivity and ability to adapt to the 308 

negative impact of climate change based on six life-supporting sectors (food, water, health, 309 

ecosystem services, human habitat and infrastructure)27. 310 

Similarities of species composition among cities were evaluated using non-metric 311 

multidimensional scaling (NMDS) based on a presence-absence matrix. The NMDS 312 
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approach projects multivariate data along latent axes based on distances between 313 

assemblages but preserves the underlying dissimilarity structure of the original dataset57. 314 

The distance between cities in the ordination space reflects the dissimilarity in species 315 

composition, such that cities with similar scores are expected to have similar species 316 

composition. For this analysis, we used the vegan package58, and the function metaMDS, 317 

without auto�transformation and Jaccard coefficient as the metric for the presence–absence 318 

community�by�site matrix. 319 

Climate data 320 

Baseline and future climate data were obtained from CHELSA Version 1.2 climatologies at 321 

high resolution for the earth’s land surface areas59, at a spatial resolution of 30 arc-seconds 322 

(∼1 km at the equator). A detailed description of the generation of these data is given in 323 

Karger, et al.59. We selected five climate variables; two of them describing mean conditions: 324 

(1) mean annual temperature (MAT) and (2) annual precipitation (AP); and three variables 325 

describing extremes of climate: (3) maximum temperature of the warmest month (MTWM); 326 

(4) minimum temperature of the coldest month (MTCM); and (5) precipitation of the driest 327 

quarter (PDQ) (Table S6). These variables are known for their biological relevance and 328 

influence on species distributions, ecological interactions and species survival60,61. All 329 

climate data were projected to the Mollweide projection system (ESRI:54009) at a 1-km 330 

resolution using bilinear interpolation. Throughout the text, we refer to “baseline climate” as 331 

the average climate conditions during the baseline period 1979-2013. 332 

For future climate data, we downloaded projections for 10 General Circulation 333 

Models (GCMs): (1) bcc-csm1-1; (2) CCSM4; (3) CESM1-CAM5; (4) CSIRO-Mk3-6-0; (5) 334 

GFDL-CM3; (6) HadGEM2-AO; (7) IPSL-CM5A-MR; (8) MIROC-ESM-CHEM; (9) MIROC5; 335 

and (10) NorESM1-M (Table S7). We extracted values of the five climate variables from all 336 

10 GCMs and estimated the median for all our analyses. By selecting multiple GCMs, we 337 

aimed to capture the uncertainty and variability around future climate scenarios. We selected 338 

two time periods: 2050 (average for 2041–2060) and 2070 (average for 2061–2080) and the 339 

two Representative Concentration Pathways (RCP) 4.5 and 6.0, which project a peak in 340 

emissions around 2040 and 2080, respectively, followed by a decline62. Of all GCMs, 341 

CSIRO-Mk3-6-0 showed the greatest variability for AP and PDQ (Fig. S11). Climate in urban 342 

areas is complex and its future projections can be uncertain. However, recent research has 343 

enhanced model projections43,63-65; therefore, we downloaded global multi-model projections 344 

of local urban climates at a resolution of 0.9° latitude × 1.25° longitude63 for the time period 345 

2040-2060 and RCP8.5 and estimated the maximum temperature of the warmest month 346 

using the same set of GCMs. 347 
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When we compared future climate changes between global circulation models and 348 

global multi-model projections of local urban climates, we found the latter were 0.42 °C 349 

(median) warmer than future projections from CHELSA (Fig. S13). This finding gives 350 

confidence in our estimation of the cities’ future climate for 2050 and RCP6.0. However, we 351 

highlight that the global multi-model projections of local urban climates do not consider the 352 

effects of future urban population growth and future urban land use changes. Therefore, 353 

additional effects of future changes in human population and urban land use are not 354 

included in our analyses and could further amplify the risk, suggesting that our future 355 

estimates are very conservative. 356 

Importantly, we acknowledge that climate data based on coarse-grained spatial 357 

interpolations from weather stations that are shielded from direct solar radiation, as used 358 

here, can fail to identify areas where conditions are more benign or cooler due to the 359 

buffering effect of vegetation cover (i.e. microclimatic processes)55 or areas where harsh 360 

conditions can be exacerbated by the UHI56. We found the current daytime average 361 

maximum land surface temperatures (UHI; see details below) can be 8.4°C (median) 362 

warmer than air temperature based on future climate changes in 2050 as provided by global 363 

circulation models (Fig. S12). Therefore, the risks we calculated are likely conservative 364 

leaving the possibility of greater risks than what we are reporting if urban warming is 365 

intensified in the future. 366 

Species’ realized climate niche and cities’ climate 367 

For all species, we extracted values of the aforementioned climate variables from all global 368 

occurrence records to characterise species’ realised climate niches under baseline climatic 369 

conditions. For each city, we placed a grid (1 km × 1 km) over its area and extracted the 370 

values of all four variables at each cell for both baseline and future climates using the 371 

function “exact_extract” from the exactextractr package66. For global multi-model projections, 372 

we extracted climate data from the grid cells closest to the cities’ polygon, where the median 373 

distance was 25.6 km. 374 

Then, for all species, we estimated their niche breadths (Appendix 2) and the upper 375 

and lower limits of the temperature and precipitation variables, respectively, based on the 376 

global geographic range for each species, whereas cities’ climate values were estimated 377 

using all grid cells of each city. Spatial autocorrelation of climate variables associated with 378 

the species occurrences was assessed using the raster package 67 based on Moran’s I. We 379 

used kernel density functions to estimate the upper and lower bounds of the distribution of 380 

values across the species range to determine whether cities are likely to exceed species’ 381 

limits. For this, we selected the threshold of the 95th percentile of MAT and MTWM and the 382 
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5th percentile of MTCM, AP and PDQ. We used these thresholds to assess the extremes of 383 

these variables as indicative of species safety margin (i.e. species’ thermal and drought 384 

stress tolerance for survival and growth)17 and towards the main direction of change for the 385 

variable being examined (e.g. the warm limit in case of warmer MAT or the dry limit in case 386 

of drier AP). Throughout the text, when referring to these climate variables, we imply the use 387 

of the 95th (MAT, MTWM) and 5th (MTCM, AP, PDQ) percentiles, accordingly (Fig. S3). 388 

Climate change impact metrics 389 

We selected three climate change impact metrics for our analysis: exposure; safety margin; 390 

and risk18,23. These metrics were calculated for all five climate variables, time periods 391 

(baseline and future [2050 and 2070]) and RCPs (4.5 and 6.0). 392 

Exposure (E) is the degree to which a city is exposed to climatic change22 and is a 393 

measure of how much the climate is projected to change (e.g. warmer or drier) between 394 

current and future time periods in a given location; thus, it is calculated as the difference 395 

between the city’s future and baseline climate as follows: 396 ܧ = ୊୳୲୳୰ୣେ୪୧୫ୟ୲ୣݕݐ݅ܥ  −  ୆ୟୱୣ୪୧୬ୣେ୪୧୫ୟ୲ୣ 397ݕݐ݅ܥ 

A positive exposure (E > 0) indicates that warmer (or wetter) conditions are expected 398 

under future climate change scenarios, while negative exposure (E < 0) indicates that colder 399 

(or drier) conditions are expected under future climate change. Here we are more 400 

specifically interested in the positive exposure for MAT, MTWM and MTCM, as expected 401 

under warmer climates, but negative exposure for AP and PDQ as expected under drier 402 

climates. 403 

The safety margin (S) describes a species’ sensitivity to climate change (i.e. warmer 404 

and drier, on average, here) and indicates its potential tolerance to changing climate 405 

conditions that may exceed either of the species’ upper or lower climatic limits (i.e., its upper 406 

limit for MAT and MTWM and or its lower limit for MTCM, AP and PDQ) within a given city 407 

and indicates how much warmer (or drier), a city could become before the upper or lower 408 

tolerance limits of its resident species have been exceeded, and was calculated as follows: 409 

ܵ = ቊSpeciesେ୪୧୫ୟ୲ୣ୚ୟ୰୧ୟୠ୪ୣ[௜]  − ୆ୟୱୣ୪୧୬ୣେ୪୧୫ୟ୲ୣݕݐ݅ܥ(ܯܥܶܯ,ܯܹܶܯ,ܶܣܯ)  ୆ୟୱୣ୪୧୬ୣେ୪୧୫ୟ୲ୣݕݐ݅ܥ −  410           (ܳܦܲ,ܲܣ) େ୪୧୫ୟ୲ୣ୚ୟ୰୧ୟୠ୪ୣ[௜]ݏ݁݅ܿ݁݌ܵ

For S, a species’ climatic limit (SpeciesClimateVariable[i]) was measured as the 95th (MAT, 411 

MTWM) and the 5th (MTCM, AP, PDQ) percentiles of the species’ climate niche based on its 412 

global occurrence records and baseline climatic conditions from CHELSA. The difference 413 
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between SpeciesClimateVariable[i] and the long-term average climatic conditions experienced in 414 

the focal city (i.e. CityBaselineClimate) is calculated as the ‘safety margin’ (S) for each focal 415 

species-by-city combination17. That is, a positive safety margin (S > 0) indicates that the 416 

species has a climatic tolerance limit which exceeds current baseline climatic conditions in 417 

the focal city (e.g. cooler or wetter and thus safer under warmer and drier future conditions); 418 

whereas a negative value (S < 0) indicates that the species is already now experiencing 419 

“unsafe” climatic conditions under the baseline (e.g. warmer than the warm limit or drier than 420 

the dry limit) that the species can actually withstand according to its known limits for 421 

temperature or precipitation) (Fig. S3). 422 

The risk (R) refers to the potential for adverse consequences on biological systems30 423 

and is calculated as the between the city’s extrinsic exposure to future climate change and 424 

the species’ intrinsic safety margin. Thus, if R is positive (R > 0), the exposure to future 425 

climate is greater than the current safety margin for the focal species in a focal city (i.e. high 426 

risk). Yet, if the difference is negative (R < 0) then exposure (E) to future climate change is 427 

still within the range of values allowed by the safety margin (S), thus it is “safe” under future 428 

conditions (i.e. low risk) (Fig. S3). Risk to climate change (R) was calculated as: 429 

  ܴ = ൜  ܧ − (ܵெ஺்,ெ்ௐெ,ெ்஼ெ)ܵ −  430        (஺௉,௉஽ொ)ܧ

Linear regressions were fitted to evaluate the relationship between: (1) climate 431 

exposure and cities’ latitude; (2) species’ risk and cities’ latitude (assessing Northern and 432 

Southern hemispheres independently); and (3) species’ risk and UHI, using independent 433 

linear models (i.e. the lm function in R). The relationship between species’ risk with ND-434 

GAIN score and climate exposure was analysed using linear mixed-effects models (i.e. the 435 

lmer function from the lme4 package68) followed by ANOVA analysis, using country and 436 

species as random intercept terms. Models were developed for each climatic variable as a 437 

response variable and model performance was evaluated through the calculation of the F-438 

statistic at a significance level of P < 0.05. All analyses were conducted using the statistical 439 

software R version 4.0.553. 440 
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Tables  622 
 623 
Table 1. Predicted mean (standard deviation) changes (i.e. exposure) of mean annual temperature (MAT), maximum temperature of 624 

the warmest month (MTWM), minimum temperature of the coldest month (MTCM), annual precipitation (AP), and precipitation of the 625 

driest quarter (PDQ) across 164 cities in 2050 and 2070; number of species (and proportion in brackets) currently exceeding their 626 

safety margins and at high risk of climate change in at least one city where they are planted; and number of cities predicted to have 627 

100% and >50% of their species at risk of climate change in 2050; species (n  = 3,129), cities  (n = 164). Data for 2050 and RCP6.0. 628 

Variable 
Exposure Current safety margin Climate risk in 2050 

2050 2070 Species Species 
100% 

Cities 
100% 

Species 
50% risk 

Cities 
50% 
risk 

Species Species 
100% 

Cities 
100% 

Species 
50% risk 

Cities 
50% 
risk 

MAT 2.1˚C (0.6) 3˚C (0.8) 1,759 (56%) 532 
(17%) 2 610 (19%) 78 2,387 

(76%) 
1200 
(38%) 12 854 

(27%) 133 

MTWM 1.7˚C (0.5) 2.6˚C (0.7) 1,724 (55%) 465 
(15%) 2 684 (22%) 82 2,140 

(68%) 
862 

(28%) 19 941 
(30%) 106 

MTCM 1.3˚C (0.5) 2˚C (0.7) 1,124 (36%) 430 
(14%) 0 239 (7%) 11 902 (29%) 688 

(22%) 0 341 
(11%) 6 

AP -57 mm 
(78.3) 

-62 mm 
(88.7) 2,030 (65%) 789 

(25%) 2 897 (29%) 91 2,220 
(70%) 

1006 
(32%) 3 944 

(30%) 99 

PDQ -1.3 mm 
(8.2) -2 mm (12) 1,880 (60%) 665 

(21%) 4 846 (27%) 92 1,849 
(59%) 

661 
(21%) 0 852 

(27%) 101 

 629 
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 630 
Figures 631 
 632 
 633 

 634 
 635 
Fig. 1. Exposure to future climate change across the world’s cities. Exposure of 164 cities to predicted changes in mean annual 636 

temperature (MAT) in 2050 relative to baseline mean annual temperature between 1979 and 2013 (A); boxplot of changes in MAT 637 

averaged across cities in seven geographical regions (as colored in insert map); numbers in brackets indicate the number of cities for 638 

each region (B). Plots display data for RCP 6.0. 639 

 640 
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 641 
Fig. 2. Contemporary tree and shrub species safety margin across the world’s cities. 642 

Proportion of species currently exceeding their safety margin for mean annual temperature 643 

(MAT; A) and annual precipitation (AP; C) in 164 cities. Frequency distribution of mean 644 

values of MAT (B) and AP (D) safety margins of each species (n = 3,129) across all cities. 645 

Red lines indicate the median and blue lines the 5th/95th percentiles. A positive safety margin 646 

(S > 0) indicates species with an upper (MAT) or lower (AP) climatic tolerance limit greater 647 

than that of current climatic conditions; a negative value (S < 0) indicates species under 648 

“unsafe” climatic conditions.649 
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 650 
Fig. 3. Species at risk of future climate change impacts across the world’s cities. 651 

Proportion of species predicted to be at risk from projected changes in mean annual 652 

temperature (A) and annual precipitation (B) by 2050 in 164 cities. Each point represents the 653 

proportion of species at risk in a given city. Relationship between the proportion of species 654 

at risk and cities’ latitude (Northern Hemisphere: n = 129 cities; Southern Hemisphere: n = 655 

35) (C). Ribbons indicate the 95% confidence interval for predictions from a linear model. 656 

Point size indicates human population size56. Data for 2050 and RCP6.0. 657 

 658 


