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Abstract
Most of the natural sources that intervene in Information Theory have a positive entropy. They are
well studied. The paper aims in building, in an explicit way, natural instances of sources with zero
entropy. Such instances are obtained by slowing down sources of positive entropy, with processes
which rescale sources or insert delays. These two processes – rescaling or inserting delays – are
essentially the same; they do not change the fundamental intervals of the source, but only the
“depth” at which they will be used, or the “speed” at which they are divided. However, they modify
the entropy and lead to sources with zero entropy. The paper begins with a “starting” source of
positive entropy, and uses a natural class of rescalings of sublinear type. In this way, it builds a
class of sources of zero entropy that will be further analysed. As the starting sources possess well
understood probabilistic properties, and as the process of rescaling does not change its fundamental
intervals, the new sources keep the memory of some important probabilistic features of the initial
source. Thus, these new sources may be thoroughly analysed, and their main probabilistic properties
precisely described. We focus in particular on two important questions: exhibiting asymptotical
normal behaviours à la Shannon-MacMillan-Breiman; analysing the depth of the tries built on the
sources. In each case, we obtain a parameterized class of precise behaviours. The paper deals with
the analytic combinatorics methodology and makes a great use of generating series.
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1 Introduction

General context. A source is one of the main objects of Information Theory. A source is a
probabilistic process which emits a digit from a given alphabet Σ, one at each discrete time.
Very often, a source P is defined on the unit interval I and associates with x ∈ I an infinite
word M(x) = (a1, a2, . . . , an, . . .) where the successive symbols ai = ai(x) belong to Σ. This
infinite word is the expansion of x in “base” P . Some sources are directly defined in relation
with some concepts of Information Theory (memoryless sources, Markov chains), whereas
other ones are related to objects of Number Theory, via numeration systems, for instance.
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1:2 Building Sources of Zero Entropy

When both the input x and a depth k are fixed, one considers the reals y for which the word
M(y) has the same prefix of length k as M(x). In a quite general setting, this defines an
interval denoted as Ik(x) of length Ik(x). When the unit interval is endowed with some
density, and for any fixed k, the random variable x 7→ − log Ik(x) plays a central role. The
source admits the entropy h (in Shannon’s meaning) when E[− log Ik(x)] ∼ h · k. Most of
the classical sources (in Information Theory contexts) have a finite entropy.

Here, we focus on sources of zero entropy. Adapting the philosophy described in [3], we
say that a source admits a Shannon weight f if E[− log Ik(x)] ∼ f(k) (when k → ∞). In
fact, we deal with a slightly stronger notion, and consider the notion of exponential weight
(see Definition 3). Papers [2] and [3] study various sources of zero entropy that arise in
Number Theory contexts, and notably two sources, the Stern-Brocot source, and the Sturm
source. In [2], the authors analyze the tries built on these two sources; they exhibit in [3]
their weight (however not à la Shannon, see definition 2.1 in [3]), and prove that the weight
of the Stern-Brocot source is of order Θ(k/ log k) whereas the weight of the Sturm Source
is of order Θ(log k). There do not appear, in this Number Theory context, other sublinear
weights, for instance of square root type

√
k.

Rescaling or inserting delays. We wish to build a class of sources which appear in a
natural way, and admit weights (à la Shannon) of various sublinear growth. We use rescaling
processes, that do not really change the source –namely the intervals Ik(x)– but modify the
depth where such an interval will be used. Here, rescaling processes, via rescaling functions
g, “slow down” an initial source P of positive entropy and transform it into a source P⟨g⟩ of
zero entropy. Another intuitive process, for slowing down the source, consists in inserting in
P waiting times γ (called here delays) between two symbols of P . One obtains in this way a
source P⟨γ⟩ with “delays”. The two processes coincide for a convenient choice of the pair
(g, γ), and provide a double point of view that will be used in the sequel of the paper.

Our strategy is as follows: We first choose as initial sources P three types of sources in our
favorite set (see Definition 13), and a “natural” class of delays, described with two parameters
(a, b) and defined in Eqn (18); we then insert delays γa,b inside each source P and obtain a
class of sources Pa,b. The Shannon weights ga,b of Pa,b –except for (a, b) = (1, 0), where we
recover the initial source – are all sublinear (and may be of various types: see Proposition 15).
As we start from the same initial source P, with nice probabilistic properties, and the
rescaling process does not modify the fundamental intervals of the source, (only the depth
at which they are used), we expect the source Pa,b to keep the memory of some important
features of the source P . Indeed, as the present paper shows it, such a source may be precisely
analysed, and its main probabilistic properties exhibited; we focus on two phenomena: the
precise behaviour of the function x 7→ log Ik(x) (à la Shannon-MacMillan-Breimann), and
the probabilistic analysis of the tries built on words emitted from Pa,b.

Methods and results. Our methods are inspired by analytic combinatorics described in the
book of Flajolet and Sedgewick [15]. In this context of Information Theory, the generating
series of a source introduced in [22] are Dirichlet series, here called the Λ series of the source,
and may be defined and a priori used for any source: paper [22] exhibits their importance
in the analysis of the main probabilistic properties of the source. Later on, various papers
[6, 4, 12], using the Rice method, relate the analysis of the shape of a trie built on the source
with the Λ(s) series. However, until now, except in [2], these series were only used in the
context of sources of positive entropy.
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Here, we use these Λ series in the wider context of sources with a possible zero entropy.
We start with sources of positive entropy (gathered in a favorite set), and we distort the
starting sources into sources of zero entropy. This distortion is translated into a relation
between the two Λ series –attached respectively to the new source, and to the initial source–
(see Proposition 8). The Λ series of sources in our favorite set are precisely described, notably
from the tameness point of view (see Definition 12 and Proposition 14). Using a delay γa,b

first modifies the nature of the dominant pole of the initial Λ(s): the parameter a moves
its location, and the parameter b increases its order (See Proposition 17). Theorem 18 then
describes some sufficient conditions – both on the initial tameness and parameters (a, b))–
under which the tameness of the new source Pa,b may be proven.

We obtain two types of results. A first result (see Theorem 4 and Lemma 16) deals with
the lengths Jk(x) of fundamental intervals of the new source and proves phenomena à la
Shannon-MacMillan-Breimann, described by the asymptotic normality of x 7→ log Jk(x),
adjusted with the “speed” ga,b(k) attached to the delay γa,b. This result is a straightforward
consequence of the Quasi-Power theorem of Hwang [16]. A second result describes the
expectation of the trie depth and is more subtle. Theorem 5 first relates, in a very general
context, the tameness of a source (of possible zero entropy) and the expectation E[Dn] of its
trie depth. This result (not really new) gathers many various results, some of them being
classical, and some of them having not been yet considered. Using this general result and
applying it to our sources Pa,b provides in Theorem 19 the analysis of the average depth
E[Dn] for tries built on Pa,b. As previously, the parameters (a, b) intervene in the behaviour
of the trie, with two regimes, respectively obtained for a = 1 and a > 1.

Plan of the paper. Section 2 describes the general context. Section 3 explains the two
slowing down processes which transform a source with positive entropy into a source of zero
entropy. Section 4 describes the favorite set which gathers all the sources that will be used
as starting points. Finally, Section 5 describes the class of sources Pa,b and exhibits their
main probabilistic properties (asymptotic log-normality à la Shannon-MacMillan-Breimann
and estimates for the average depth trie).

2 Sources, weights, generating series

We first describe a general source Q –of possible zero entropy– related to partitions in Section
2.1 and introduce its generating functions. The following sections then explain how these
series intervene in two questions of interest: the asymptotic normality of x 7→ log Ik(x)
relative to the source Q (in Section 2.2) and the asymptotic behaviour of the average trie
depth, when the trie is built on the words emitted by the source Q (in Section 2.3).

2.1 General sources associated with partitions
A source Q is a probabilistic process which emits a digit from a given alphabet Σ of cardinality
r (possibly infinite denumerable), one at each discrete time. A source Q is very often defined
on the unit interval I and associates with x ∈ I an infinite word M(x) = (a1, a2, . . . , an, . . .)
where the successive digits ai = ai(x) belong to Σ. This infinite word is called the expansion
of x in “base” Q. Some sources are directly defined in relation with some concepts of
Information Theory (memoryless sources, Markov chains), whereas other ones are related to
objects of Number Theory, via numeration systems, for instance.
For a fixed depth k, one considers the reals y for which the word M(y) begins with a given
prefix w of length k. When both the input x and a depth k are fixed, one also considers the
reals y for which the word M(y) has the same prefix of length k as M(x). In a quite general
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1:4 Building Sources of Zero Entropy

setting1, this defines (up to a denumerable subset of I) two families of intervals, respectively
denoted as Iw and Ik(x). The interval Iw for w ∈ Σ⋆, of length pw, is the fundamental
interval associated with the prefix w; its length pw is the probability that the word M(x)
begins with prefix w; the interval Ik(x), of length Ik(x), is the k-th coincidence interval of x.
When the unit interval is endowed with some density, the mapping x 7→ log Ik(x) is, for
any fixed k, a random variable of great interest, whose asymptotics (when k → ∞) is
widely studied. In particular, the paper [3] defines two notions of weights (related to the
asymptotics of this random variable) that extend the notions of entropy (almost everywhere,
in probability) introduced in [9].
Here, we consider two weights of different flavour: first, now, the Shannon weight; then, in
the next Section, the exponential weight.

▶ Definition 1. A source Q has a Shannon weight g(k) ≥ 0, and, resp. a Shannon entropy
h > 0, if the sequence E[− log Ik] satisfies the following (for k → ∞),

(1/g(k))E[− log Ik] → 1 , (1/k)E[− log Ik] → h .

The notion of Shannon weight thus extends the Shannon entropy, and sources with zero
Shannon entropy have a sublinear Shannon weight g(k) for which g(k)/k → 0. The second
weight (exponential weight) is described via the generating series of the source. These
generating series were first introduced and used in [22].

▶ Definition 2. For s ∈ C, the Λ generating series of the source involve the fundamental
probabilities pw that a word begins with a prefix w, for a given depth k, or for all depths k,

Λk(s) =
∑

w∈Σk

ps
w, Λ(s) :=

∑
w∈Σ⋆

ps
w =

∑
k≥0

Λk(s) . (1)

These generating series are Dirichlet series that satisfy |Λk(s)| ≤ Λk(ℜs), |Λ(s)| ≤ Λ(ℜs).

2.2 Exponential weight and asymptotic normality of log Ik(x).
The exponential weight is defined via the (possible) quasi-power behaviour of the Λk(s) series.
We will relate it later with the Shannon weight (Theorem 4a).

▶ Definition 3. The source Q has an exponential weight f if its Λk series satisfies the
following: There exist a real number A (with −∞ ≤ A < 0) and two analytic functions u

and v defined on a complex neighborhood V of the real half-line s > A, for which, for any real
c > A, there exists a complex neighborhhod Vc of c and a function ϵc for which the following
estimate for Λk,

Λk(s) = v(s) · u(s)f(k) · [1 + O(ϵc(k))] , ϵc(k) → 0 (k → ∞) (2)

holds (uniformly) for s ∈ Vc. The function u is called a base function.

The series Λk(s) is closely related to the moment generating function Mk(s) of the
variable (− log Ik(x)). Indeed, as the random variable x 7→ Ik(x) is a staircase function that
has value pw on the interval fundamental Iw (w ∈ Ak), the moment generating function
Mk(s) = E[I−s

k (x)] is expressed in terms of the family (pw) for w ∈ Ak,

Mk(s) = E[I−s
k (x)] =

∑
w∈Ak

p−s
w · pw =

∑
w∈Ak

p1−s
w = Λk(1 − s) . (3)

1 This is the case when there is an underlying sequence of partitions, in the sense of [9] or [2]. This will
be the case here (Section 4).
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The importance of exponential weight is related to the Quasi-Power Theorem due to
Hwang [16] that deals with the moment generating function, when it has a quasi-power form
as in (2). Due to Relation (3), it leads to an asymptotic Gaussian law for the mapping
x 7→ log Ik(x). The occurrence of a Gaussian law is a refinement of the Shannon-MacMillan-
Breimann Property, which usually deals with the almost everywhere behaviour of log Ik(x).

▶ Theorem 4. Consider a source Q and the length Ik(x) of its k-th coincidence intervals. If
the source Q admits an exponential weight f with base u, the random variable x 7→ log Ik(x)
satisfies the following:
(a) Its expectation and its variance admit the following asymptotic estimates for k → ∞,

E[log Ik(x)] = u′(1) · f(k) + O(1), Var[log Ik(x)] = (u′′(1) − u′(1)2) · f(k) + O(1) .

In particular, the source Q has a Shannon weight equal to |u′(1)| · f(k).
(b) If the function u(s) is strictly log-convex, the variable x 7→ log Ik(x) asymptotically

follows a gaussian law

Pr
[
x

∣∣∣∣ log Ik(x) − u′(1)f(k)
[(u′′(1) − u′(1)2)f(k)]1/2 ≤ x

]
→ 1√

2π

∫ x

−∞
e−t2/2dt .

Usually, classical applications of the Quasi-Power Theorem exhibit asymptotic gaussian
laws for which the expectation and the variance are (most of the time)2 of order Θ(k) or
Θ(log k) (See [16]). The present paper will provide natural instances of applications of the
Quasi-Power Theorem with various behaviours of the expectation and the variance (See
Section 5.2 and Theorem 16).

2.3 Role of the Λ series in the analysis of tries
We are also interested in a probabilistic analysis of the shape of a trie Trie(x) built on a
sequence x of (infinite) words that are independently drawn from the source Q of alphabet
Σ. Trie(x) is a tree that is recursively defined via the cardinality N(x) of the sequence x:

(a) If N(x) = 0, then Trie(x) = ∅ ;
(b) If N(x) = 1, with x = (x), then Trie(x) is
a leaf labeled by x;
(c) If N(x) ≥ 2, then Trie(x) is formed with
an internal node and r subtriesa resp. equal to

Trie(x⟨0⟩), . . . , Trie(x⟨r−1⟩) ,

where x⟨σ⟩ denotes the sequence consisting of
words of x which begin with symbol σ, stripped
of their initial symbol σ.
a r is the cardinality of the alphabet Σ.

x
3

b

x
2

c

a

a

a

x
6

a

x
4

b

c

a

x
5

c

b

x
1

a

x
7

c

c

Here, we focus on a particular parameter of Trie(x), defined as the length of a random
branch and called the trie depth. When N(x) = n, it is denoted by Dn(x).

2 There is a notable exception in the study of partitions [17] where expectations and variance of order kd

for any d ∈]0, 1[ occur.
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1:6 Building Sources of Zero Entropy

The trie is central in text algorithmics [11]. The study of its geometric parameters,
notably its depth, is thus an important subject in analysis of algorithms, where two different
strategies have been introduced: the paper [13] uses the Rice method, whereas the book [21]
is based on Depoissonization tools. (See [23] for a comparison of these methodologies). Here,
we choose the Rice method, which was introduced by Nörlund [18], [19] and widely used in
analytic combinatorics since the seminal papers of Flajolet and Sedgewick [13] [14]. The Rice
method is indeed dedicated to the study of sequences of the form Eqn (4), which exhibit the
main role played by the function sΛ(s), provided it be tame at s = c for c < 2.

Tameness is a central notion in analysis of algorithms which has been only recently
introduced in various works (see [4], [7], [5], [2] for instance). It is defined by a position,
an order and a shape. Tameness will be precisely described later in Definition 12. For the
moment, we give an informal definition:
The function Λ(s), that is analytic on {ℜs > c} is tame at s = c, with order b ≥ 0, if there
exists a region Rc ⊃ {ℜs ≥ c} where the function Λ is meromorphic, has a sole possible pole
of order b + 1 (b ≥ 0) at s = c and is of polynomial growth there as |ℑs| → +∞. Moreover,
this region Rc has one of the three following possible shapes, described in Definition 12 and
in Figure 1: a periodic shape (P ), an hyperbolic shape (H), or a strip shape (S) .

Figure 1 Tameness regions, drawn at c = 1, and their possible shapes (from left to right) :
Periodic shape (P ) – Hyperbolic shape (H) – and Strip shape (S).

The next result relates the analysis of the average depth E[Dn] and the tameness of the series
Λ(s). The proof is given in the annex (Section B.1). The result has not been stated before
in its full generality, because the study of sources with positive entropy only relies on the
case (c = 1, b = 0), and the possible strip shape only recently “discovered”. Only two other
particular cases (c = 1, b = 1) and (c = 3/2, b = 0) have been already studied in [2].

▶ Theorem 5.
(i) If the series Λ(s) is well-defined for s ≥ 2(and thus for ℜs ≥ 2), the expectation E[Dn]

of the trie depth is expressed as an alternating sum which involves Λ(ℓ), for ℓ ≥ 2,

nE[Dn] =
n∑

ℓ=2
(−1)ℓ

(
n

ℓ

)
ℓ Λ(ℓ) . (4)

(ii) If the series sΛ(s) is tame at s = c for 1 ≤ c < 2 with order b and a tameness region
Rc delimited by a frontier δc, the following holds:
(a) the expectation nE[Dn] involves the Rice kernel Ln(s) and decomposes as

nE[Dn] = Res [Ln(s) · sΛ(s); s = c]+
∫

δc

Ln(s)·sΛ(s)ds with Ln(s) := Γ(n + 1)Γ(−s)
Γ(n + 1 − s) .
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(b) The general estimate holds,

nE[Dn] =


ncPb(log n) +O(nc−δ) , (S) shape ;
ncPb(log n) +ncO (exp[−(log n)ρ]) , (H) shape ;
ncGb(τ log n) +O(nc−δ) , (P ) shape .

(5)

The dominant term Res [Ln(s) · sΛ(s); s = c] involves a polynomial Pb, or a combin-
ation Gb between polynomials and a periodic function Π, together with the boolean
[[c = 1]],

Pb(u) = [[c = 1]] αb+1 ub+1+
[

b∑
i=0

αiu
i

]
, Gb(u) = [[c = 1]] αb+1 ub+1+

[
b∑

i=0
αiu

i

]
Π({u}) .

The remainder term
∫

δc
Ln(s) · sΛ(s)ds involves the tameness shapes of Definition

12; in particular, in case of the (H) shape with exponent ν, the exponent ρ satisfies
ρ < 1

1+2ν . For the other two shapes, δ is the strip width.

The two main theorems (Theorems 4 and 5) exhibit the importance of the two generating
series Λk(s) and Λ(s) of the source Q: the Λk series intervenes via the exponential weight of
the source in the study of the map x 7→ log Ik(x); the Λ series intervenes via its tameness in
the study of the average trie depth. The strategy of the paper is then as follows: we start
with a given source P of positive entropy, with a well-known behaviour of its generating
series Λk(s) and Λ(s). Section 4 describes the choice of the “starting” sources. Then, we
distort the source P into another source Q (of zero entropy), in a way Q keeps the memory
of some important features of P. The next Section describes the distortion process.

3 Change of sources via rescaling or inserting delays

This section describes two processes for slowing down a given source: first, the rescaling
process (in Sections 3.1 and 3.2), then the insertion of delays (in Section 3.3). The two
processes are essentially the same, and they are compared in Section 3.4. Then we describe
in Section 3.5 the particularities of these new sources when using tries. The Section finally
establishes (in 3.6) a transfer of fundamental importance, between the Λ series of the initial
source and the Λ series of the new source.

3.1 Rescaling sources and change of weights
The following process creates another source Q from a given source P : It keeps the same
fundamental intervals, but it changes the depth where they are used. It thus modifies the
“speed” of the subdivision of the related partitions.

▶ Definition 6.
(i) A function g is a rescaling function if it is defined on {0} ∪ R≥1 and satisfies the

following:
(a) the equalities g(0) = 0, g(1) = 1 hold ;
(b) g is a strictly increasing continuous map g : R≥1 → R≥1, with limx→∞ g(x) = ∞ ;
(c) the inverse function g−1 has integer values at integer points.

(ii) With a source P, its coincidence intervals Ik(x), together with a rescaling function g,
one associates the source Q where the coincidence intervals Jk(x) satisfy

Jk(x) := I⌊g(k)⌋(x) . (6)

The source Q is the rescaled source of P via rescaling g. It is denoted as P⟨g⟩.

AofA 2022



1:8 Building Sources of Zero Entropy

Rescaling acts here on the depth of fundamental intervals in a uniform3 way: it changes
the depth in the same way for all the intervals of the same initial depth. Remark that Item
(c) entails the equality Ik = Jg−1(k). Using the notions of the rescaled source (Definition 6)
and various weights (given in Definitions 1 and 3), this leads to the following result:

▶ Proposition 7. Consider a rescaling g. If the source P has weight f (exponential, resp.
Shannon), then the source P⟨g⟩ has a weight (exponential, resp. Shannon) equal to f ◦ ⌊g⌋.

Rescaling changes the weight; starting with a source P of entropy h > 0 (i.e., a Shannon
weight f(k) = h · k), the source P⟨g⟩ has a Shannon weight h · ⌊g(k)⌋.

Then, using rescaling g for which g(k)/k → 0, the source P⟨g⟩ is of zero entropy.

3.2 Rescaled source
We associate with a rescaling g its sequence of differences,

δ(g)(k) := ⌊g(k)⌋ − ⌊g(k − 1)⌋ k ≥ 1 . (7)

When g(k) = k for any k, the differences δ(g)(k) are all equal to 1. For other functions g,
there may exist integers k for which δ(g)(k) may be 0, or strictly larger than 1. We now
describe the influence of rescaling on the expansion of x in base P,

M (P)(x) = a1 a2 a3 . . . ak, . . . , (ai ∈ Σ) ; (8)

we consider the generalized digits b1 b2 . . . , bk, . . . bn, . . . , where each bk is a block of initial
digits of length δ(g)(k), and the expansion of x in base P⟨g⟩ is

M (P⟨g⟩)(x) = b1 b2 b3 . . . bk . . . , bk =
[
a⌊g(k−1)⌋+1 . . . a⌊g(k)⌋

]
, . . . (9)

When the k-th block is empty (i.e., δ(g)(k) = 0 or ⌊g(k)⌋ = ⌊g(k − 1)⌋), the equality
Jk(x) = Jk−1(x) holds between two successive coincidence intervals, and the source P⟨g⟩
does not emit any digit from Σ at time k. In this situation, we decide to emit a fictive symbol
[·] at time k; in this way, we get a proper coding for the words emitted by the new source,
and remember that it does not emit any digit from Σ at time k. Letting Σ0 := {[·]}, the
generalized digit bk always belongs to Σδ(k).

3.3 Inserting delays in a source P.
The rescaled source P⟨g⟩ may emit generalized digits as soon as δ(g)(k) ≥ 2. We now
decide to always deal with a rescaling g for which all the differences defined in (7) satisfy
δ(g)(k) ∈ {0, 1}. In this case, the source P⟨g⟩ only emits digits from the alphabet Σ = {[·]}∪Σ.
In such a source P⟨g⟩, we view the symbol [·] as a waiting symbol, describing the situation
where we wait for emitting the next symbol and do not emit any symbol from Σ. In this
way, the length γ(ℓ) ≥ 1 of the plateau between the two successive indices (where symbols
aℓ−1 ∈ Σ and aℓ ∈ Σ are emitted) measures the ℓ-th waiting time between two times when
symbols from Σ are emitted. In computer science contexts, the waiting time γ(ℓ) is called
the ℓ-th “delay”.

We are then led to another process for slowing down a source P defined on Σ: starting
with source P, where the expansion of x in base P is given in (8), we insert, for each ℓ, a
delay γ(ℓ) between aℓ−1 and aℓ, and obtain a new expansion, on the alphabet Σ = {[·]} ∪ Σ,

M (P⟨γ⟩)(x) = a1 [·]γ(2)−1 a2 . . . [·]γ(ℓ)−1 aℓ . . . . (10)

3 See the conclusion for a possible non-uniform definition.
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3.4 Comparing the two points of view
Starting from a source P on Σ, we have thus introduced two new sources on Σ = {[·]} ∪ Σ,
(a) P⟨g⟩ is rescaled from P via a rescaling g with differences δ(g) ∈ {0, 1} (described in (9)).
(b) P⟨γ⟩ is obtained from P via inserting delays γ ≥ 1 (described in (10)).

First, the equivalence holds: δ(g)(k) ∈ {0, 1} ⇐⇒ γ(ℓ) ≥ 1
Second, in this case, comparing the two expansions described in (9) and (10), and using Item
(c) of Definition 6 proves the coincidence of the two sources P⟨g⟩ and P⟨γ⟩ when the pair
(g, γ) satisfies

Relation (R)
ℓ∑

k=1
γ(k) = g−1(ℓ) for any integer ℓ ≥ 1 . (11)

3.5 Sources P⟨γ⟩ in Information Theory contexts.
We deal with infinite words emitted by P⟨γ⟩, described in (10). As the inserted delays γ

are the same for any word of the source, the words of P⟨γ⟩ are very particular, and easy
recognizable: they are obtained with the insertion of a deterministic process (the delays) at
deterministic indices into a probabilistic one (the source P).

We are interested in sorting a sequence x of words emitted by P⟨γ⟩. A first idea is to
use the trie Trie(x). In fact, there is a close connection between the two tries: Trie(x) and
Trie(y) built on the compressed sequence y, formed with the compressed words of x, where
the delays are removed. In the annex, (see Section D.1), we compare the branches of the
two tries, and their lengths, and prove the following important property which will be the
starting point for proving Proposition 20:
When the branches of the compressed Trie(y) have length ki(y), the branches of Trie(x)
have length g−1(ki(y)), where g is the rescaling associated with γ via Relation (R).

When we use Trie(x) for sorting the sequence x, there are three cases: the first case
arises when the “trie-woman” knows that she deals with a source of type P⟨γ⟩, with a precise
knowledge of the delays. In this case, as she is not stupid, she probably does not build
the trie Trie(x) : she first compresses the sequence x (i.e. removes the delays), obtains a
sequence y, and then uses the trie Trie(y) –built on the source P– to sort the sequence
x. However, there are other two cases, that are called “blind cases” : [(i) the “trie-woman”
knows that she deals with a source of type P⟨γ⟩, without knowing the form of the delay or
(ii) she does not know that she deals with a P⟨γ⟩ source]. In these blind cases, she builds the
trie T (x) and uses it. We assume here that the “trie woman” is always blind.

3.6 Influence of rescaling or inserting delays on the Λ series.
The following result describes the influence of rescaling –or inserting delays– on the Λ series.

▶ Proposition 8. The Λk series of the source P⟨g⟩ obtained by rescaling P with g is

Λ(P⟨g⟩)
k (s) = Λ(P)

⌊g(k)⌋(s) . (12)

The Λ series of the source P⟨γ⟩ obtained by inserting delays γ in P is

Λ(P⟨γ⟩)(s) =
∑
k≥0

Λ(P⟨γ⟩)
k (s) =

∑
ℓ≥0

γ(ℓ) Λ(P)
ℓ (s) . (13)
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1:10 Building Sources of Zero Entropy

This easy result, of fundamental importance, shows that each point of view –rescaling or
inserting delays– is of interest: The Λk series of a rescaled source P⟨g⟩, via a rescaling g, will
be studied via g. The Λ series of a source P⟨γ⟩, with delays γ, will be studied via γ.

4 The favorite set

The paper starts with a well understood source of positive entropy, and transforms it with
rescaling or inserting delays. This section is devoted to the “starting” sources. We will use
dynamical sources (see Section 4.1), and we need these sources to be good (see Section 4.2)
and tame (see Section 4.3). We then describe in Section 4.4 our favorite set which gathers
the “starting” sources we choose: they are all good and tame, with various tameness shapes.

4.1 Dynamical sources
Dynamical sources, introduced by Vallée in [22], are related to dynamical systems of the
interval I := [0, 1]. One starts with a topological partition {Iσ} of I indexed by symbols σ ∈ Σ,
a coding map τ : I → Σ which equals σ on Iσ, and a shift map T : I → I. The mapping T is
defined by its branches Tσ : Iσ → I that are assumed to be surjective, of class C2, and strictly
monotonic. The source produces on the real x the word M(x) that encodes the trajectory
(x, Tx, T 2x . . . ) via the coding map τ , namely, M(x) = (τ(x), τ(Tx), τ(T 2x), . . . ) ..
When the input x is randomly drawn from I, this becomes a probabilistic process.
Each (local) inverse of T k is associated with a prefix w ∈ Σk and denoted as hw. As each
branch of T is surjective, each inverse branch hw is defined on I, and the image of hw is
the interval Iw = [hw(0), hw(1)] which gathers all the reals x for which M(x) begins with w.
There is thus an underlying sequence (Pk)k of partitions, with Pk := {Iw | w ∈ Σk} which
will be inherited for rescaled sources.

All memoryless sources are dynamical sources, associated with a increasing piecewise
linear shift. A main instance is the standard binary system, obtained by T (x) = {2x} (where
{·} is the fractional part). Another dynamical source plays a central role here: the source CF,
related to continued fraction, and associated with the non-linear shift T (x) = {1/x}.

In the context of analytic combinatorics, the importance of dynamical sources relies on
the following fact: their Λ series are themselves generated by the secant transfer operator:

▶ Lemma 9. The secant transfer operator Gs of the source involves the inverses hσ of the
branch Tσ and acts on functions F : I2 → C, as follows:

Gs[F ](x, y) =
∑
σ∈Σ

∣∣∣∣hσ(x) − hσ(y)
x − y

∣∣∣∣s F (hσ(x), hσ(y)) . (14)

The k-th iterate Gk
s involves the inverse branches hw of the shift T k

Gk
s [F ](x, y) =

∑
w∈Σk

∣∣∣∣hw(x) − hw(y)
x − y

∣∣∣∣s F (hw(x), hw(y)) .

The fundamental relations hold: Λk(s) = Gk
s [1](0, 1), Λ(s) = (I−Gs)−1[1](0, 1) .

4.2 Good sources
The Good Class gathers the dynamical sources for which there is an iterate T n of the shift
T that is strictly expansive. This class contains, together with all the memoryless sources,
many other sources, as the Continued Fraction Source.
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▶ Definition 10. A dynamical source is good if it satisfies the following:
(i) The constant ρ defined as follows satisfies ρ < 1,

ρ = lim sup
k→∞

(sup
w∈Σk

pw)1/k .

(ii) There is a constant B > 0, for which, for any w ∈ Σ, one has |h′′
w| ≤ B|h′

w|.
(iii) There exists A < 1 for which the series

∑
w∈Σ ps

w converges on ℜs > A.

Item (i) is the most important; items (ii) and (iii) are only useful for sources on infinite
alphabets Σ, and the real A in (iii) is the convergence abscissa of the series Λ1(s).
When the source is good, the secant transfer operator, defined in (14), when acting on
the functional space C1([0, 1]2), has, for any real s > A, a unique dominant eigenvalue
λ(s), separated from the remainder of the spectrum by a spectral gap. The function λ(s)
(which depends analytically on s) is called the dominant eigenvalue of the source. It satisfies
λ(1) = 1, λ′(1) = −h where h > 0 is the entropy of the source. Moreover, there exists a
(complex) neighborhood V of the real axis (s > A) on which the series Λk(s) has a quasi-power
behaviour that involves functions v(s) and ck(s), that are analytic on V, under the form,

Λk(s) = v(s)λ(s)k + ck(s) = v(s)λ(s)k

[
1 + 1

v(s)
ck(s)
λ(s)k

]
= v(s)λ(s)k

[
1 + O(ρk)

]
. (15)

The last estimate indeed holds, due to the Spectral Radius Theorem and the existence of a
spectral gap. Comparing with Eqn (2) leads to the following result:

▶ Proposition 11. A good source has a “dominant eigenvalue” denoted as λ(s). It has an
exponential weight equal to k, with a base u(s) = λ(s). Its Shannon entropy is |λ′(1)|.

Moreover the pressure function L(s) = log λ(s) admits convexity properties : it is always
convex and the two conditions are equivalent (see for instance [1]):
(a) the source is conjugated4 to an unbiased memoryless source;
(b) the function L is affine.
For a memoryless source (p, q), the function λ(s) is defined on the whole plane C, and

λ(s) = (ps + qs) , Λ(s) = 1
1 − λ(s) . (16)

The three conditions are equivalent (See Section C.1 in the annex).
(a) There exists τ > 0 for which λ(1 + 2iπτ) = 1 ;
(a) The function λ is periodic with period 2iπτ ;
(a) The ratio (log q)/(log p) is rational.
In this case, the memoryless source is periodic with period τ . Otherwise, it is aperiodic.

4.3 Tameness and tameness shapes
With Eqn (15), the Λ series satisfies

Λ(s) = v(s) 1
1 − λ(s) + c(s), c(s) =

∑
k

ck(s) , (17)

4 Two sources are conjugated if their shifts are conjugated in C2([0, 1]).
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1:12 Building Sources of Zero Entropy

where v(s) and c(s) are analytic for s ∈ W := V ∩{ℜs > τ} for some τ < 1. As the inequality
|Λ(s)| ≤ Λ(ℜs) holds on the hyperplane ℜs > 1, the function Λ(s) is meromorphic on the
domain {ℜs > 1} ∪ W with an only simple pole at s = 1. However, in order to apply the
Rice formula and to be able to study tries (see Theorem 5), we need to know a region on the
left of the vertical line ℜs = 1 where the Λ series is tame, i.e, meromorphic and of polynomial
growth when |ℑs| → ∞. We now give a general definition of tameness, where the point of
tameness may be any c ≥ 1. This definition is already used in the statement of Theorem 5.

▶ Definition 12.
(i) A function M(s) analytic on {ℜs > c} (c real) is tame at c of order b ≥ 0, if there

exists a region Rc ⊃ {ℜs ≥ c} where the function M is meromorphic, has a sole possible
pole of order b + 1 at s = c and is of polynomial growth as |ℑs| → +∞. Moreover, this
region Rc has one of the three following possible5 shapes (See Fig. 1):
(S) Strip shape: Rc = {s | ℜs > c − δ} for some δ > 0 .
(H) Hyperbolic shape (of exponent ν): Rc = R+

c ∪ R−
c (with positive constants A, B)

R+
c := {s = σ+it | |t| ≥ B, σ > c− A

|t|ν , R−
c := {s = σ+it | |t| ≤ B σ > c− A

Bν , } .

(P) Periodic6 shape (of period τ): Rc = {s | ℜs > c − δ} \
⋃

{sk} where the points sk,
of the form sk = c + 2kiπτ (for k ∈ Z, k ̸= 0) are poles of Γ of order at most b + 1.

(ii) A source Q is tame at c of order b with a tameness shape in {S, H, P} if its Λ series is
tame at c of order b with the given tameness shape.

(iii) A good source is tame if its Λ series is tame at s = 1 with order 0.

4.4 Instances of tame sources. Our favorite set of starting sources
These various prescribed tameness shapes (that may appear at a first glance somewhat
artificial) indeed intervene in possible behaviors of classical sources. Here, we choose
particular sources P of positive entropy as starting points: we wish good sources, proven
to be tame, with various tameness shapes in {S, H, P}. This leads us to our favorite set of
starting sources:

▶ Definition 13. The favorite set of starting sources contains three types of sources:
(a) the class MP of all the periodic memoryless sources ;
(b) the class MA of all the aperiodic memoryless sources related to a pair (p, q = 1 − p) for

which the ratio β = (log q)/(log p) is irrational with a finite irrationality exponent;
(c) the Continued Fraction source, denoted as CF, associated with the shift T (x) = {1/x}.

The following theorem first shows that our favorite set is well-chosen. Then, using
Theorem 14 inside Theorem 5 leads to the analysis of the trie depth for each “favorite” source.

▶ Theorem 14. All the starting sources of the favorite set are tame. Their shape is
(P) for any source of the class MP
(H) for any source of the class MA: the exponent ν of the tameness region is related to the

irrationality exponent µ of β = log p/ log q via the equality ν = 2(µ + 1).
(S) for the CF source.

5 To the best of our knowledge, these shapes are the only ones to occur in “classical” analyses.
6 This means here that M(s) is of polynomial growth on a family of horizontal lines t = tk with tk → ∞,

and on vertical lines ℜ(s) = c − δ′ with some δ′ < δ.
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The proof of the previous result is not trivial (see a sketch of proof in the annex). The first
assertion is classical, but the second and the third assertions are based on subtle properties.
For aperiodic memoryless sources, the geometry of the tameness region has not been precisely
described before the works of [12] and [20], which relate it to the irrationality exponent.
This is why the associated remainder term in previous trie analyses was not precise, too.
The third assertion is based on a seminal work of Dologopyat [10], extended by Baladi and
Vallée [1] to the case of the CF dynamical system, then to the secant operator by Cesaratto
and Vallée [4].

Sketch of the proof. See Section C in the annex. ◀

5 Sources Pa,b associated with a source P from the favorite set.

The sources to be analyzed are defined in Section 5.1 by the insertion of a delay γa,b described
in (18). Then, after computing the rescaling ga,b which is associated with the delay γa,b, we
obtain in Section 5.2 our first result about asymptotic normality à la Shannon-MacMillan-
Breiman (Theorem 16). Then Section 5.3 is devoted to the description of Λ series of the
sources Pa,b. Section 5.4 “inserts” the results of Section 5.3 inside Theorem 5 and provides
the final result (Theorem 19). Section 5.5 provides a direct comparison between the tries of
the two sources (the initial one, and the one with delays). Finally, Section 5.6 focuses on a
particular class of delays, the computational delays, of main algorithmic interest.

5.1 The sources Pa,b.
We start with a source P of our favorite set and consider the source Pa,b obtained from P by
inserting in P delays γa,b that satisfy, for any integer ℓ ≥ 1,

γa,b(ℓ) = ⌊aℓ⌋ · ℓb , (a > 1, b integer, b ≥ 0) . (18)

The particular form of these delays is interesting from four points of view
(a) The initial source P is the source P1,0. The parameters (a, b) describe the distortion the

delays γa,b impose to the initial source P;
(b) This class contains the computational delays, defined in Section 5.6 ;
(c) Proposition 8 provides an expression for the Λ(s) series of source Pa,b, from which we

exhibit its main singularity (in Proposition 17) and then describe its possible tameness
(in Proposition 18). This will be central for applying Theorem 5 and obtain estimates
for the expected depth E[D⟨a,b⟩

n ] of the trie built on the source Pa,b;
(d) Proposition 8 provides an expression for the Λk(s) series of source Pa,b that will be

used for applying Theorem 4 and obtain gaussian laws for log I
⟨a,b⟩
k (x), provided that the

source Pa,b be viewed as a rescaled source via an explicit rescaling ga,b associated with
delay γa,b via Relation (R). We study this last point in the next Section.

5.2 Rescaling ga,b and asymptotic gaussian laws for log Ik(x).
Relation (R) described in (11) does not lead (generally speaking) to an explicit expression of
ga,b; but, as we deal with exponential weights, we only need the principal7 part g

(0)
a,b of ga,b,

for which the following lemma provides an explicit expression.

7 We recall that the principal part g(0) of g is given by the decomposition

g(x) = g(0)(x) + A + ϵ(x), ϵ(x) → 0, g(0) (1/x) → 0 (x → ∞) . (19)
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▶ Lemma 15. Consider a delay γa,b defined in (18). The principal part g
(0)
a,b of the rescaling

ga,b associated with γa,b via Relation (R) satisfies

g
(0)
1,b (x) = (b+1)1/(b+1) x1/(b+1) , (b ≥ 0) ; g

(0)
a,b(x) = loga

[
x

(loga(x))b

]
, (a > 1, b ≥ 0) .

Proof. Given in the annex. (Section B.2). ◀

Using Proposition 8 and Definition 3 leads to the first important result of the paper:

▶ Theorem 16. The source Pa,b has an exponential weight equal to ⌊g
(0)
a,b⌋ defined in

Lemma 15, with the eigenvalue function λ(s) of the initial source P as a base function.
Applying Theorem 4 to the source Pa,b with g := ⌊g

(0)
a,b⌋ provides asymptotical normality à la

Shannon-MacMillan-Breimann for the source Pa,b.

This result is a straightforward application of the Quasi-Power Theorem of Hwang [16].
It leads to asymptotical normality phenomena related to a quite general behaviour of
expectations and variances. For more effective results, –in particular, in analyses related
to tries–, we have limited ourselves to rescalings g = ga,b that are associated with delays
γ = γa,b defined in (18). However, with Proposition 7, the previous result holds for any
rescaling g that fulfills Definition 6 and satisfies g(k)/k → 0.

We thus provide “natural” instances of asymptotic normality phenomena, with expectations
and variances of order Θ(g(k)) where g is any increasing function with g(k)/k → 0.

5.3 Study of the Λ(s) series of the Pa,b source.
The delays γa,b involve the integer part ⌊aℓ⌋. Using Proposition 8 and decomposition
⌊aℓ⌋ = aℓ − {aℓ}, the Λ series of the source Pa,b decomposes as a sum,[∑

ℓ

aℓℓbΛℓ(s)
]

−

[∑
ℓ

{aℓ}ℓbΛℓ(s)
]

. (20)

We then mainly study the first series, which provides the “main” behaviour of the total Λ(s)
series (its dominant singularity, its possible tameness), and finally, for non integer values of
a, we have to restrict ourselves to the half plane ℜs > 1, due to the occurrence of the second
series that is (only) analytic on ℜs > 1 and bounded on each half-plane ℜs ≥ 1 + ρ > 1.

We first prove that the dominant singularity of the Λ series attached to the source Pa,b is
a pole of order (b + 1) located at σa, where σa ≥ 1 is defined by the equation aλ(s) = 1.

▶ Proposition 17 (Dominant singularity). Consider any source P from the favorite set, with
a dominant eigenvalue λ(s), and the modified source Pa,b obtained from P by inserting delays
of the form γa,b with a ≥ 1. Consider the real σa defined by the relation aλ(σa) = 1.
The Λ series of the source Pa,b has a pole of order b + 1 located at σa, and is meromorphic
on the domain {ℜs > σa} ∪ Wa; with W defined in Section 4.3, there are two cases for Wa:
Wa = W for a = 1. If a > 1, there exists τa < σa for which Wa = W ∩ {ℜs > max(1, τa)}.

Proof. Given in the annex. (Section B.3). ◀

We now describe conditions under which the source Pa,b is proven to be tame at s = σa.
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▶ Proposition 18 (Tameness). Consider any source P from the favorite set. The source Pa,b

is tame at σa in the following cases:
(i) [a = 1, any P]: The source Pa,b is tame at s = 1, of order b, with the same shape as

P;
(ii) [a > 1 and P is memoryless and tame]: The source Pa,b is tame at s = σa of order

b with a tameness region Rσa of the same shape as R1, but limited to the half plane
ℜs > 1;

(iii) [P = CF and a ≠ 1 is close enough to 1]: The source Pa,b is tame at s = σa with a
tameness strip defined from the tameness strip S of P as S ∩ {ℜs > 1}.

▶ Remark. For P = CF and a not close enough to 1, we do not know the tameness of the
source Pa,b at s = σa. The case σa close enough to 1 is particular from this point of view.

Proof. It is done in Section C of the annex. ◀

5.4 Average depth for tries built on the source Pa,b

We now obtain our second main result. We first limit the real σa to be less than 2 (i.e.,
a < 1/λ(2), where λ(s) is the eigenvalue of P), so that Condition (a) of Theorem 5 is fullfilled.

▶ Theorem 19. Consider any source P from the favorite set (with an eigenvalue λ), a delay
γa,b, the source Pa,b obtained with inserting a delay γa,b in P, and the blind8 trie built on
words of the source Pa,b. Define σa by the relation aλ(σa) = 1 and assume the parameter a

be less than 1/λ(2).
With notations of Theorem 5, the estimate holds for the average depth of the blind trie,

E[D⟨a,b⟩
n ] =


nσa−1Pb(log n) [1 + O(n−δ)] , P = CF, a close to 1 ;
nσa−1Pb(log n) [1 + O (exp[−(log n)ρ])] , P ∈ MA, 1 ≤ a ≤ 1/λ(2) ;
nσa−1Gb(τ log n) [1 + O(n−δ) , P ∈ MP, 1 ≤ a ≤ 1/λ(2) .

This theorem exhibits a class of various behaviours that may occur in the average trie
depth E[D⟨a,b⟩

n ], both in the dominant term and the remainder term. In particular, a term
nd with d ∈]0, 1[ arises in the dominant term as soon as parameters d and a are related by
the equality d = λ[−1](1/a) − 1, where λ[−1] is the inverse of the eigenvalue mapping. For
the unbiased memoryless source (1/2, 1/2), the relation between a and d is d = log2 a.

5.5 A direct estimate for the average depth E[D⟨a,b⟩
n ].

We have mentioned in Section 3.5 a direct connection between the two tries
(i) Trie(x) built on a sequence x = (x1, x2, . . . , xn) of words emitted by the P⟨γ⟩ source;
(ii) Trie(y) built on the compressed sequence y obtained by removing all the delays in the

words xi of the sequence x. Trie(y) is thus built on the source P.
This relation leads to the following result (proven in Section D.1 of the annex.)

▶ Proposition 20. Consider any source P of the favorite set, and the source Pa,b built with
insertion of delays γa,b. The following inequality holds between the average trie depth of the
Pa,b source and the average trie depth of the initial source P = P1,0:

E[D⟨a,b⟩
n ] ≥ g−1

a,b

(
E[D⟨1,0⟩

n ]
)

.

The estimate is sharp for a = 1. For a > 1, the right member involves a term n(1/h) log a

whereas the left member involves a term nσa−1 (see Theorem 19 ). The equality between the
two exponents holds for some a > 1 only if the starting source P is memoryless unbiased.

8 This notion is defined in Section 3.5.
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This is an interesting result which applies to sources Pa,b (even if they are not proven to be
tame) provided they be associated with a tame source P; this is the case for the CF source
when the parameter a is not close to 1 and varies in the whole interval ]1, 1/λ(2)[. We obtain

E[D⟨a,b⟩
n ] ≥ n(1/h) log a Pb(log n) [1 + O(n−δ)] , with 1/h = (6 log 2)/π2 .

5.6 Computational version of a source from the favorite set
The exact computation of the word M(x) given in (8) is an important algorithmic issue for
the initial source P. See for instance [8] for a description in the case when when P = CF.
This leads to two important questions: – the first one about the needed precision π(ℓ) for
computing exactly the ℓ-th digit of the source P when the first (ℓ−1) digits have been already
computed, – the second one, about the cost (in arithmetical complexity) for computing
exactly the ℓ-th digit of the source P when the first (ℓ−1) digits have been already computed.
As all the favorite sources have a positive entropy, the needed precision π(ℓ) is Θ(ℓ) and the
main operations that are performed are multiplications (on integers with Θ(ℓ) digits). Then,
the computational cost is Θ(ℓ2). This defines a (particular) delay γ̂, called the computational
delay, that is equal here to γ1,2 for any reference source. The source P̂ attached to the delay
γ̂ “replaces” the theoretical source P in any complexity issues (related in particular to tries),
and is called the computational source. (See Section D.2 in the annex for precisions).

With Lemma 15, the principal part of the scaling g1,2 is equal to (3x)1/3. Applying the
main Theorems (Theorems 16 and 19) in this particular case leads to the following result:

▶ Theorem 21. Consider the computational source P̂ associated with a reference source P.
(a) Except in the case when the reference source is memoryless unbiased, the random variable

x 7→ log Îk(x) asymptotically follows a gaussian law

Pr
[

x

∣∣∣∣ log Îk(x) − |λ′(1)| · ⌊(3k)1/3⌋[
|λ′′(1) − λ′(1)2| · ⌊(3k)1/3⌋

]1/2 ≤ u

]
→ 1√

2π

∫ u

−∞
e−t2/2dt .

(b) The general estimate holds for the average depth of the blind trie, with the notations of
Theorem 5 and b = 2, for which P2 and G2 are of degree 3,

E[D̂n] =


P2(log n) [1 + O(n−δ)] , P = CF ;
P2(log n) [1 + O (exp[−(log n)ρ])] , P ∈ MA ;
G2(τ log n) [1 + O(n−δ) , P ∈ MP .

6 Conclusion and open problems

The paper introduces sources with delays that provide “natural” instances of sources with
zero entropy: here, the ℓ-th delay (that is inserted between the symbols aℓ−1 = aℓ−1(x) and
aℓ = aℓ(x)) only depends on the depth ℓ where it is inserted, and is uniform (i.e., the same
for any input x). In this sense, this is a “toy-model”, that however “shows the path” for
future research. We may indeed think about more realistic models where the (non uniform)
ℓ-th delay may depend on the prefix Mℓ(x) of length ℓ of the word M(x), that is itself defined
in terms of interval Iℓ(x). Such delays intervene in the modelling of two classical sources
in Number Theory: the Stern-Brocot source is viewed as a source with delays from the CF
source, and the Sturm source as a source with delays from the Stern-Brocot source. Such
generalized delays also intervene in the analysis of VLMC sources (VLMC = Variable Length
Markov Chains). In this sense, using generalized (i.e., non uniform) delays may be of great
interest in the modelling and analysis of a large variety of sources of zero entropy.
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A Annex

The annex is organized into three Sections. The first Section (Section B) gathers proofs of
Theorem 5, Lemma 15, Proposition 17. The second Section (Section C) gathers the material
which is related to tameness. It is first used in the proof of Theorem 14 but also in its
extension in Theorem 18. Finally the third Section (Section D) is devoted to the proofs of
the last two results that are stated in Section 5: direct comparison of the tries (stated in
Section 5.5) and computational version of the source (stated in Section 5.6).

B Proofs of Theorem 5, Lemma 15, Proposition 17

B.1 Proof of Theorem 5
We summarize (Part I) the general estimates that are needed. Then, we describe the dominant
parts (Part II) and finally the remainder terms (Part III)

Part I. Needed estimates. Along the proof, we compare the two functions, the Rice kernel
Ln(s) and the function nsΓ(−s) along a vertical (or an hyperbolic) line. The comparisons
are based on the estimates provided in the annex of [4], and summarized as follows. Note
that the exponential decreasing of the Γ function along vertical (or hyperbolic) lines plays a
central role.

▶ Lemma 22. Consider a curve γ, that is a vertical line γ = {ℜs = c} or an hyperbolic
curve, and, for some τ > 0, the infinite set of points ck = c + 2iπkτ for k ∈ Z. The curve γ

is decomposed into two parts : the central part γ−
n := {s ∈ γ | |ℑs| ≤

√
n} and the exterior

part γ+
n := {s ∈ γ | |ℑs| >

√
n}. In the same way, the set Z is decomposed into two parts,

the central part Z−
n := {k | 2π|k|τ ≤

√
n} and the exterior part Z+

n := {k | 2π|k|τ >
√

n}.
The following holds:

(i) The series
∑

k∈Z ckΓ(−ck) and the integral
∫

γ
sΓ(−s) are absolutely convergent.

(ii) The following integrals or sums are O(1/n) for n → ∞,

∫
γn

+
nsΓ(−s)ds ,

∫
γn

+
Ln(s)ds ,

∑
k∈Z+

n

nck ckΓ(−ck) ,
∑

k∈Z+
n

Ln(ck) ,

https://doi.org/10.4204/EPTCS.63.26
https://doi.org/10.1007/BF02679622
https://doi.org/10.4230/LIPIcs.AofA.2018.35
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(iii) The following estimates holds between the residues A
(1)
n (c) = Res[sLn(s)) · Λ(s); s = c]

and A
(0)
n (c) = Res[nssΓ(−s)Λ(s); s = c],

A(1)
n (c) = A(0)

n (c)
[
1 + O

(
1
n

)]
. (21)

(iv) The following estimates hold between the series of residues,

Σ(1)
n :=

∑
k∈Z

A(1)
n (ck), Σ(0)

n :=
∑
k∈Z

A(0)
n (ck) Σ(1)

n = Σ(0)
n ·

[
1 + O

(
1
n

)]
. (22)

(v) The two integrals satisfy∫
γ

Ln(s)ds =
[∫

γ

nsΓ(−s)ds

] [
1 + O

(
1
n

)]
.

Part II. Study of the dominant parts. The dominant terms are brought by residues. For a
meromorphic function F with a pole of order b + 1 at s = c, the term Res[nssF (s); s = c] is
computed from the singular expansion of ns · F (s) at s = c, using the analytic expansion of
ns at s = c,

ns = es log n = nc
∑
i≥0

1
i! (s − c)i logi n.

Then, the residue Res[nssF (s); s = c] is written as nc · Q(log n) with a polynomial Q of
degree b. There are four cases, according to the shape: in cases (S) and (H), there is only
one pole at c, whereas in case (P ), all the points ck = c + 2iπkτ are also poles. Moreover,
the boolean [[c = 1]] intervenes due to a supplementary pole brought by Γ(−s) at s = 1.

Case (S) or (H). The two residues A
(1)
n (c) and A

(0)
n (c) are compared with (21) and:

(i) c ≠ 1. As c is a pole of order b + 1 of Λ(s) at s = c, the function sLn(s)) · Λ(s) has a
pole c of order b + 1, and A

(0)
n (c) = ncc Γ(−c) Q(log n), with a polynomial Q of degree

b.
(ii) c = 1. As Γ(−s) has a pole at s = 1, the function Γ(−s) · Λ(s) has now a pole at

s = 1 of order b + 2, and A
(0)
n (c) = ncc Q(log n), with a polynomial Q of degree b + 1.

Case (P). The function Λ admits poles ck = c + 2iπkτ (for k ∈ Z) of order b + 1. Then,
there arise the two series Σ(1)

n and Σ(0)
n that are compared in (22).

(i) Case c ̸= 1. In the series Σ(0)
n , each pole ck brings a term A

(0)
n (ck), where the

polynomial Q is the same for each ck (because Λ(s) is periodic), and

Σ(0)
n =

∑
k∈Z

nck ck Γ(−ck) Q(log n) = ncQ(log n)Π(n), Π(n) :=
[∑

k∈Z
n2iπkτ ck Γ(−ck)

]
.

The function Π is absolutely convergent, due to exponential decreasing of the Γ function.
Moreover, with the equality n2iπkτ = e2iπkτ log n, the function Π is a periodic function
(of period 1) of the variable τ log n, and finally the series of residues is

Σ(0)
n = nc Q(log n) Π({τ log n}), Π periodic of period 1, Q polynomial of degree b.

(ii) The pole c = 1 is now a pole of order b + 2, whereas the other poles ck (for k ̸= 0) are
of order b + 1. We consider the pole c = 1 separately, together the expansion it brings,
then the other poles for k ̸= 0, and we obtain

Res[nssΓ(−s)Λ(s); s = c] + Σ(0)
n = n [R(log n) + Q(log n) Π({τ log n})] ,

where R and Q are polynomials of resp. degree b + 1 and b.

AofA 2022
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Finally, we check, in each of the four cases, the form of the dominant terms that is stated in
Theorem 5.

Part III. Study of the remainder terms. The remainder terms are easily obtained in the
cases (S) or (P ) where the curve δc is a vertical line. In case (H), the remainder term is
not precisely studied in the litterature except in the case of a memoryless aperiodic source,
where the study is done in [12] and [4]. We recall the study here. On the hyperbolic curve δ,
and letting s = σ + it and L := log n, the following estimates hold

|ns| = nσ = nc exp[−ALt−ν ], |Λ(s)Γ(−s)| ≤ exp[−Kt] ,

and entails the bound |nsΛ(s)Γ(−s)| ≤ nc exp[−Kt − ALt−ν ] .

When n (and then L) is fixed, the minimum of the function t 7→ Kt + ALt−ν is reached
for tν+1 = νL/K and the maximum of the function is of order nc exp[−(log n)β ] with
β < 1/(1 + ν). Using the same principles as in Laplace’s method, this entails the estimate∫

δ

Ln(s)Λ(s) = ncO
(
exp[−(log n)β ]

)
.

B.2 Proof of Lemma 15
Consider a delay γa,b defined in (18). The associated rescaling ga,b via Relation (R) and its
inverse g−1

a,b satisfy the following:
(a) the inverse g−1 satisfies

g−1
1,b(x) = 1

b + 1xb+1
[
1 + O

(1
ℓ

)]
, (a = 1) ; g−1

a,b(x) = a

a − 1aℓℓb
[
1 + O

(1
ℓ

)]
, (a > 1) .

(b) the function ga,b and the principal part g
(0)
a,b satisfy

g
(0)
1,b (x) = (b+1)1/(b+1) x1/(b+1) , (a = 1) ; g

(0)
a,b(x) = loga

[
x

(loga(x))b

]
, (a > 1) ;

with g1,b(x) = g
(0)
1,b (x) + Lb + O

(
1
x

)
; ga,b(x) = g

(0)
a,b(x) + Ka + O

(
log log x

log x

)
.

Proof. The proof has two steps.

Proof of Item (a). Expression de Γa,b(ℓ) =
∑

k≤ℓ γa,b(k) .

When a = 1, one has Γ1,b(ℓ) :=
ℓ∑

k=1
kb = 1

b + 1ℓb+1
[
1 + O

(
1
ℓ

)]
. (23)

For the general case a > 1, we consider the sum, first without integer parts, then with integer
parts. First, without integer parts,

Γ̂a,b(ℓ) :=
ℓ∑

k=1
akkb = aℓℓb · Θa,b(ℓ) with Θa,b(ℓ) =

ℓ−1∑
k=0

a−k

(
1 − k

ℓ

)b

.

Now, Θa,b(ℓ) has a limit (when ℓ → ∞) equal to the geometric sum
∑

k≥0 a−k = a/(1 − a).
The difference indeed decomposes as

∑
k≥0

a−k − Θa,b(ℓ) =
ℓ−1∑
k=0

a−k

[
1 −

(
1 − k

ℓ

)b
]

+
∑
k≥ℓ

a−k .
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The second term tends to 0 for ℓ → ∞ (with exponential speed). As each term of the first
term is less than (k/ℓ) · b, the first term is itself less than

b

ℓ

ℓ−1∑
k=0

ka−k ≤ b

ℓ

∞∑
k=0

ka−k,

∞∑
k=0

ka−k < ∞ ,

and is O(1/ℓ) (for ℓ → ∞). Finally,∑
k≥0

a−k − Θa,b(ℓ) = O

(
1
ℓ

)
, Γ̂a,b(ℓ) = a

a − 1aℓℓb

[
1 + O

(
1
ℓ

)]
.

We now consider the sums with integer parts. The difference with the previous case is
ℓ∑

k=1
{ak}kb = O(ℓb+1) = aℓℓbO

(
ℓ

aℓ

)
= aℓℓbO

(
1
ℓ

)
,

and finally for a > 1 Γa,b(ℓ) :=
ℓ∑

k=1
⌊ak⌋kb = a

a − 1aℓℓb

[
1 + O

(
1
ℓ

)]
. (24)

Proof of Item (b). Expression for g
(0)
a,b .

With Relation (R) described in (11) and the estimates (24) and (23), we have to determine
the principal part g

(0)
a,b(x) of the function ga,b(x) for which the inverse g−1

a,b(x) admits the
estimate

g−1
a,b(x) = a

a − 1axxb

[
1 + Ob

(
1
x

)]
(a > 1), g−1

1,b (x) = 1
b + 1xb+1

[
1 + Ob

(
1
x

)]
.

We begin with the easy case a = 1, and obtain, for some constant Lb,

g1,b(x) = (b + 1)1/(b+1)x1/(b+1) + Lb + O
(

x−1/(b+1)
)

.

When a > 1, we check the estimate ga,b(x) = loga(x) − b loga(loga x)) − loga

(
a

a − 1

)
,

with the following remainder terms O

(
log log x

log x

)
(b ̸= 0), O

(
1

log x

)
(b = 0) .◀

B.3 Proof of Proposition 17
Consider a source P of the Good Class, and the modified source Pa,b obtained from P by
inserting delays of the form γa,b with a ≥ 1. Consider the real σa ≥ 1 defined by the equation
aλ(s) = 1 so that σ1 = 1.
The Λ series of the source Pa,b has a pole of order b+1 located at σa, and is meromorphic on a
neighborhood Wa of the real axis. With W defined in Section 4.3, there are two cases for Wa:
for a = 1, Wa = W. If a > 1, there exists τa < σa for which Wa = W ∩ {ℜs > max(1, τa)}.

Proof. We will deal in the paper with the delay γa,b already defined in (18), but we first
study a delay πa,b closely related to γa,b and defined as

πa,b(ℓ) = ⌊aℓ⌋ · πb(ℓ), with πb(ℓ) := (ℓ + 1)(ℓ + 2) . . . (ℓ + b) . (25)

We will return at the end of the proof to the delay γa,b with the relation

ℓb =
∑
c≤b

αcπc(ℓ) γa,b(ℓ) = ⌊aℓ⌋ℓb =
∑
c≤b

αcπa,c(ℓ), αb = 1 . (26)

We first deal with the modified series (associated with π instead of γ),

Λ⟨a,b⟩(s) =
∑

ℓ

πa,b(ℓ)Λℓ(s) = Λ̂⟨a,b⟩(s)+
∑

ℓ

{aℓ}πb(ℓ)Λℓ(s), Λ̂⟨a,b⟩(s) =
∑

ℓ

⌊aℓ⌋πb(ℓ)Λℓ(s) .

AofA 2022
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Case a = 1. With the definition of delay π, the equality holds, with (17), and the real
neighborhood W defined there,

b!
[

1
1 − λ(s)

]b+1
=
∑
ℓ≥0

πb(ℓ)λ(s)ℓ,
∑

ℓ

πb(ℓ)Λℓ(s) = b!v(s)
[

1
1 − λ(s)

]b+1
+ d(s) , (27)

where d(s) :=
∑

ℓ πb(ℓ)cℓ(s) is analytic on W. The series Λ⟨1,b⟩(s) is then meromorphic on
{ℜs > 1} ∪ W and has a pole of order b + 1 at s = 1.

Case a > 1. The series Λ̂⟨a,b⟩(s) is written as

∑
ℓ

aℓπb(ℓ)Λℓ(s) = b!v(s)
[

1
1 − aλ(s)

]b+1
+ da(s), with da(s) =

∑
ℓ

aℓπb(ℓ)cℓ(s) .

It has a dominant singularity (a pole of order b + 1) at s = σa where σa is the real s for
which aλ(s) = 1. Near the real axis, using the neighborhood W, there exists τa < σa for
which da(s) is analytic and Λ̂⟨a,b⟩(s) is meromorphic on W ∩ {ℜs > τa}. As the second
series (with fractional parts) is analytic for ℜs > 1, the series Λ⟨a,b⟩(s) is meromorphic on
the domain {ℜs > σa} ∪ Wa with Wa := W ∩ {ℜs > max(1, τa)} with a unique pole of order
b + 1 at s = σa.

We now return to the Λ series defined with delays γa,b with (26). ◀

C Tameness

This section is devoted to tameness studies. First, in Section C.1, we focus on the memoryless
case and recall the dichotomy between periodic memoryless sources and aperiodic ones. Then,
Section C.2 describes the aperiodic memoryless case in the general case a ≥ 1. The first case
a = 1 was studied in works [12] and [20] and used in the proof of Theorem 14. The second
case a > 1 is new (however in the same spirit as the case a = 1), and used in the proof of
Theorem 18. Finally, Section C.3 studies the tameness of the source P = CF, first for the
parameters (a = 1, b = 0) (where the Dolgopyat-Baladi-Cesaratto-Vallée result is recalled
and used in the proof of Theorem 14) then for a close enough to 1 (where the previous study
is extended and used in the proof of Theorem 18).

C.1 Generalities for memoryless sources

When the source P is memoryless, the Λ series of the source Pa,b decomposes as in (20).
The second series (that does not appear for integer values of a) is analytic on ℜs > 1 and
bounded on each vertical line ℜs = 1 + ρ with ρ > 0. We focus on the first series (without
integer parts), here in the memoryless case. We use the coefficients πa,b(ℓ) defined in (25),
the polynomial decomposition (26) and the identity (27). This gives in the memoryless case

Λ̂(Pa,b)(s) =
∑

ℓ

aℓℓbΛℓ(s) =
∑

ℓ

aℓ
∑
c≤b

αcπc(ℓ)λ(s)ℓ =
∑
c≤b

αc c!
[

1
1 − aλ(s)

]c+1
. (28)

For a real a ≥ 1, we consider the value σa defined by the implicit equation aλ(s) = 1.
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Periodicity condition. We now recall conditions under which a memoryless source (p, q) is
periodic. Assume that there is τ > 0 for which the two equations hold

[p + q = 1, p1+2iπτ + q1+2iπτ = 1] .

Then the triangular inequality holds

1 =
∣∣p1+2iπτ + q1+2iπτ

∣∣ ≤
∣∣p1+2iπτ

∣∣+
∣∣q1+2iπτ

∣∣ = p + q = 1 ,

and becomes an equality. This may occur only if there exists a real θ for which the equality
holds, q1+2iπτ = θ · p1+2iπτ . This leads to the sequence of equalities

1 = p1+2iπτ + q1+2iπτ = (1 + θ) · p1+2iπτ = (1 + θ) · p = 1 ,

which entails p2iπτ = q2iπτ = 1 and then
[
(2iπτ) log p = 2iπk, (2iπτ) log q = 2iπℓ

]
.

Finally, (log q/ log p) = (k/ℓ) for some pair of integers (k, ℓ) for which gcd(k, ℓ) = 1. Now,
the equality satisfied by e1/τ , namely 1 = p + q = (e1/τ )k + (e1/τ )ℓ proves that e1/τ is an
algebraic integer.

Periodic memoryless sources. If the source P is periodic, then the function s 7→ λ(s) is
periodic of period 2iπτ with some τ > 0. This entails that the function s 7→ aλ(s) is periodic
too with the same period, and the poles of Λ̂Pa,b are located at points σa + 2iπkτ . The
second series (with fractional parts) has no poles on the hyperplane ℜs > 1. Then, the poles
of ΛPa,b are located at points σa + 2iπkτ .

C.2 Aperiodic memoryless sources
The pair (p, q) is here denoted as (p1, p2). We consider together the cases a = 1 and a > 1.
In the case a = 1, the proof of [12] studies the set Z := {s | λ(s) = 1, s ̸= 1} , and exhibits
its hyperbolic shape defined via the irrationality exponent µ of β = (log p2)/(log p1). We
consider here, for any a ≥ 1 the set

Za := {s | λ(s) = 1/a, s ̸= σa} , λ(σa) = pσa
1 + pσa

2 = 1/a , (29)

which gathers the poles of Λ̂(Pa,b) defined in (28). As previously, these poles will be the only
poles of ΛPa,b on ℜs > 1. We wish to determine a region on the left of the vertical line
ℜs = σa but close to the vertical line ℜs = σa where ΛPa,b is analytic: we look for a (non
empty) region Rσa

located “between” Za and the vertical line ℜs = σa, and defined by an
equation of hyperbolic type as in Definition 12. We follow the general scheme of [12] given
for a = 1 that we easily extend to a general a ≥ 1.

An implicit equation. We let log p1 := w1, log p2 = w2, and consider rational approxima-
tions of the ratio w2/w1 (that do not depend –of course– on the real a), and thus integers q

for which there exists an integer q2 such that

v = q
w2

w1
− q2 is small and thus w2

(
2iπ

q

w1

)
= 2iπv + 2iπq2 (v small) . (30)

We focus on the points of Za close enough to the vertical line ℜs = σa with an imaginary
part close to a multiple of (2π)/w1 of the form q(2π)/w1. We then let :

s ∈ Za, s = σa + ∆a + 2iπ
q

w1
,
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and focus on complex numbers s for which the complex number ∆a has both a small real
part and a small imaginary part. With (30), the two equalities hold, ps

1 = exp
[
w1(σa + ∆a + 2iπ q

w1
)
]

= pσa+∆a
1

ps
2 = exp

[
w2(σa + ∆a + 2iπ q

w1
)
]

= pσa+∆a
2 · exp[2iπv]

(31)

and entail the equality pσa+∆a
1 + pσa+∆a

2 · exp[2iπv] = 1
a

. (32)

Then ∆a = ∆a(v) is implicitely determined (via Eqn (32)) as a function of v, and Eqn (29)
entails the equality ∆a(0) = 0. With the complex version of the implicit theorem, the first
two derivatives of ∆a at v = 0 involve two real numbers δ

(1)
a and δ

(2)
a > 0 under the form,

∆′
a(0) = iδ(1)

a , ∆′′
a(0) = −δ(2)

a ,

and there exists, for any q ∈ Z, for each (small) real number v, a point s = σ + it of Za, with

σ = σa − δ(2)
a v2 + O(v4), t = 2iπ

q

w1
+ iδ(1)

a v + O(v3) . (33)

Diophantine approximations. We consider now the reals v which are associated with a pair
(q, q2) as in (30), and focus on rationals q2/q which are a best diophantine approximation
of β = w2/w1: this means that, for every rational number q′

2/q′ different from q2/q with
0 < q′ ≤ q, one has

|qβ − q2| < |q′β − q′
2| .

We recall that ν is an irrationality exponent for β if, for any ϵ > 0, there is a finite number
of rationals q2/q for which

|qβ − q2| ≤ q1−ν−ϵ .

Continued fractions theory proves the existence of an infinite number of rationals q2/q for
which |qβ − q2| ≤ q−1. Then an irrationality exponent is at least equal to 2.
The irrationality exponent of β is the smallest possible irrationality exponent of β; it is
denoted as µ(β). The inequality µ(β) ≥ 2 always holds.

Two curves. As in [12], we consider a ratio β = w2/w1 with an irrationality exponent µ(β),
and we deal with v as in (30), now associated with a rational q2/q which is a best diophantine
approximation of β = w2/w1. Then the point s = s(q) ∈ Za in (33) is “close” to a curve

s = σa − C(a)t−2µ−2 , for some constant Ca .

More precisely, as in [12], the following holds, with the irrationality exponent µ = µ(β):
(i) For any ν > µ, there exists B

(a)
ν > 0, for which all elements s = σ + it of the set

Za ∩ {ℑs ≥ 1} satisfy σ ≤ σa − B
(a)
ν t−2ν−2 .

(ii) For any θ < µ, there exist A
(a)
θ > 0, and an infinite set of elements s = σ + it of Za

such that σ ≥ σa − A
(a)
θ t−2θ−2.

Part (i) of the result provides the free of poles region Rσa we look for, with its frontier. Part
(ii) says that this region is in a sense optimal.
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Tameness. Consider ν′ = ν(1 + ϵ) with ν > µ and the curve C defined by the equation
s = σa − B

(a)
ν t−2ν′−2. Any point s = σ + it of this curve is at a distance δ of Za, with

δ > B(a)
ν

[
1

t2ν+2 − 1
t2ν′+2

]
= B(a)

ν

t2(ν′−ν) − 1
t2ν′+2 ≥ 1

t2ν′+2

for |t| large enough. Moreover, for any s = σ + it that is at a distance δ from a point of Za,
the following inequality holds and proves that Λ is of polynomial growth on the curve C.

|Λ(s)| ≤ 1
|λ′(σa)|

1
δ

= Θ(t2ν′+2)

C.3 Tameness in the CF case
We begin with the decomposition (20). We first focus on the first series and use the Dolgopyat-
Baladi-Cesaratto-Vallée results:
For P = CF, there is a “truncated” vertical strip

S := {s = σ + it | |σ − 1| ≤ θ, |t| ≥ t0, t0 > 0},

where the Λℓ(s) series satisfy for any ℓ ≥ 1, the bound

|Λℓ(s)| ≤ ρℓ · |t|ξ for some ρ < 1 and some ξ > 0.

We first give sufficient conditions on a under which σa belongs to the strip S. As the
relation holds,

(a − 1)/a = |λ(1) − λ(σa)| ∼ |σa − 1||λ′(1)| ,

a sufficient condition for a under which σa belong to S is a < 1/(1 − θ|λ′(1)|).
When s belongs to the vertical strip S, and as soon as aρ ≤ δ < 1, one has

|Λ̂(s)| ≤
∑

ℓ

aℓℓb|Λℓ(s)| ≤

(∑
ℓ

ℓbaℓρℓ

)
· |t|ξ ≤

(∑
ℓ

ℓbδℓ

)
· |t|ξ,

and using a similar decomposition as in (28) one obtains

Λ̂(s) ≤ Aδ · |t|ξ with Aδ :=
(∑

ℓ

ℓbδℓ

)
=
∑
c≤b

|αc| · c!
(

1
1 − δ

)c+1
.

Finally, when a satisfies the two following conditions, for some δ < 1, that involve the
geometric characteristics on the “free of poles” strip of the source P,

a ≤ min
(

δ

ρ
,

1
1 − θ|λ′(1)|

)
,

the real σa belongs to S, the series Λ̂(s) is tame at σa, with a tameness strip

{s = σ + it | 1 − θ < σ < 1 + θ} .

However, as a ̸= 1, the second series (with fractional parts) appears: it is analytic on ℜs > 1
and bounded on each vertical line ℜs = 1 + κ with κ > 0. Finally, a tameness strip for the
total series Λ(s) is {s | 1 + κ ≤ σ < 1 + θ} , with 1 + κ < σa < 1 + θ .

We have to compare the two terms, the principal term nσa and the remainder term n1+κ =
nσa · n1−σa+κ where κ is any positive number such that 1 + κ ∈]1, σa[. With barycentric
coordinates, we have 1 + κ = µ + (1 − µ)σa with µ ∈]0, 1[ so that

1 − σa + κ = µ + (1 + µ)σa − σa = µ(1 − σa) = −µ(σa − 1) .

Then, the multiplicative remainder term is n1−σa+κ = n−µ(σa−1), for any µ ∈]0, 1[ .
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D Comparisons between tries. Computational version of a source

D.1 Direct comparison between tries of the two sources
We first prove an inequality related to a conjecture which appears at the end of [3]. This
conjecture states the equality in (34). We will exhibit in the following cases when the equality
does not hold.

▶ Proposition 23. Consider a delay γ, the associated rescaling g via Relation (R), (see
Eqn (11)) and its inverse g−1. If the function g−1 is convex, the following inequality holds
between the average trie depth E[D⟨γ⟩

n ] of a trie built on the source P⟨γ⟩ and the average trie
depth E[Dn] of a trie built on the source P,

E[D⟨γ⟩
n ] ≥ g−1 (E[Dn]) . (34)

Proof. For a sequence x = (x1, x2, . . . , xn) ∈ In, we consider the two sequences of expansions

M(x) = (M(x1), M(x2) . . . M(xn)), M ⟨γ⟩(x) = (M ⟨γ⟩(x1), M ⟨γ⟩(x2) . . . M ⟨γ⟩(xn)) .

We wish to compare the two tries Trie (M(x)) and Trie (M ⟨γ⟩(x)), and notably their depths

Dn(x) = Dn [Trie(M(x))] , D⟨γ⟩
n (x) = Dn

[
Trie (M ⟨γ⟩(x))

]
.

Due to the definition of the source P⟨γ⟩ in terms of the source P, and definition of
Trie (M ⟨γ⟩(x)), the branches of the two tries are related, as we now see: we denote by Mk(x)
the prefix of the expansion M(x) of length k, and by M

⟨γ⟩
k (x) the prefix of the expansion

M ⟨γ⟩(x) of length k. Remark first that a comparison between two words of P⟨γ⟩ always
terminates on a symbol in Σ. Remark also that the prefixes of M ⟨γ⟩(x) that end with a
symbol in Σ are exactly those of length equal to g−1(k) for some k. Then, for i ∈ [1..n],
the i-th branch of the second trie Trie (M ⟨γ⟩(x)) is thus written for some ki = ki(x) as
M

⟨γ⟩
g−1(ki)(xi) (and has a length g−1(ki(x))) whereas the corresponding i-th branch of the

first trie Trie (M(x)) is Mki
(xi) (and has a length ki(x)). Then the depths of the two tries

are respectively

Dn(x) = 1
n

n∑
i=1

ki(x), D⟨γ⟩
n (x) = 1

n

n∑
i=1

g−1(ki(x)) .

The depth Dn of a trie for which the lengths of branches are D
(i)
n is defined via its law

Pr[Dn ≥ k] = 1
n

n∑
i=1

Pr[D(i)
n ≥ k], so that E[Dn] = 1

n

n∑
i=1

E[D(i)
n ] .

The expectations of the two depths are thus

E[Dn] = 1
n

n∑
i=1

E[ki(x)] E[D⟨γ⟩
n ] = 1

n

n∑
i=1

E[g−1(ki(x)] .

When g−1 is a convex function, the following inequalities hold and entail the stated bound,

g−1 (E[Dn]) = g−1

(
1
n

n∑
i=1

E[ki(x)]
)

≤ 1
n

(
n∑

i=1
g−1 (E[ki(x)])

)

g−1 (E[ki(x)]) ≤ E[g−1(ki(x))] . ◀
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The present paper exhibits a class of delays of the form γa,b(ℓ) = aℓℓb for which the inverse
of the weight is

g−1(x) =
{

g−1
1,b (x) = Θ

(
xb+1) (a = 1) ,

g−1
a,b(x) = Θ

(
axxb

)
(a > 1) ,

(35)

and is convex for x ≥ 1.
As our starting sources are tame sources P for which Theorem 5 applies with (c = 1, b = 0),
the depth E[Dn] satisfies, with h = |λ′(1)|,

E[Dn] = An [1 + O(ϵn)] An := 1
h

log n , ϵn = 1
log n

;

For n → ∞ and, for any g := ga,b, the estimates E[Dn] ∼ An lead to the estimates
g−1(E[Dn]) = Θ

(
g−1(An)

)
. Then, using the equality a(1/h) log n = n(1/h) log a), one obtains

g−1(E[Dn]) = Θ
(
g−1(An)

)
=
{

Θ
(
(log n)b+1) (a = 1) ,

Θ
(
n(1/h) log a (log n)b

)
(a > 1) .

(36)

Theorem 19 of the present paper exhibits the following estimates for E[D⟨γ⟩
n ] that involve

the real σa given by the equation aλ(σa) = 1,

E[D⟨γ⟩
n ] =

{
Θ
(
(log n)b+1) (a = 1) ,

Θ
(
nσa−1) (log n)b

)
(a > 1) .

(37)

Then, in the case a > 1, there are two exponents (a priori) distinct:
(i) an exponent equal to (1/h) log a in the estimate of g−1(E[Dn])
(ii) an exponent σa − 1 in the estimate of E[D⟨γ⟩

n ].

With Proposition 23, we prove (in an indirect way) the inequality σa − 1 ≥ 1
h log a .

For an unbiased memoryless source of cardinality r with entropy log r, the equality holds,
[σa − 1 = log a/ log r], and the two exponents are the same. We now directly compare the
two exponents :

▶ Lemma 24. The following inequality holds between the two exponents,

σa − 1 ≥ 1
h

log a ,

and the equality holds only in the case of a source conjugated to an unbiased memoryless
source.

Proof. Inside the proof, we use the notation σa = σ(a). The function x 7→ σ(x) is defined
through the implicit equation xλ(σ(x)) = 1 that involves the dominant eigenvalue s 7→ λ(s).
The derivative σ′(x) satisfies λ(σ(x)) + xσ′(x)λ′(σ(x)) = 0 and thus

σ′(x) = 1
x

[
− λ(σ(x))

λ′(σ(x))

]
= 1

x

[
−1

L′(σ(x))

]
,

where L(s) is the pressure function equal to L(s) = log λ(s). The function L is always convex,
so that u 7→ L′(u) is increasing. Then, the function u 7→ −1/L′(u) is thus increasing, too,
and as the function σ(x) is increasing, this entails that the function τ : x 7→ −1

L′(σ(x)) is also
increasing, and satisfies, for u ≥ 1 the inequality τ(u) ≥ τ(1) with τ(1) = −1

L′(1) = 1
h . Thus

the inequality holds,

σ(a) − 1 =
∫ a

1

1
u

τ(u)du ≥ 1
h

∫ a

1

1
u

du = 1
h

log a .

The inequalities become equalities only in the case when L′ is linear, which occurs only when
the source is conjugated to an unbiased memoryless source. ◀
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D.2 Computational version of a good source
The computation of the successive symbols of the word M(x) indeed involves the computation
of the intervals (I1(x), I2(x) . . . , Iℓ(x), . . .) . The computation of the ℓ-th digit of the word
M(x), when the first ℓ − 1 digits (which form the prefix w) have been already computed,
continues inside the interval Iℓ−1(x) = Iw. We already know the prefix w of length ℓ − 1,
and, as this interval Iw is the union of intervals Iw·σ for σ ∈ Σ, we have to compare x and
the end points of the possible intervals Iw·σ, in order to output the new digit σ for which x

belongs to Iw·σ.
We have then to deal with the convenient precision π(ℓ) (on the real x and on the end

points aℓ(x) and bℓ(x) of Iℓ(x)) that is needed for an exact comparison between the end
points and the input x. We deal in the classical model where there is an oracle which freely
gives, for each real y and a given precision π, a rational approximation of y whose numerator
p and denominator q are integers, with a number π of binary digits, for which |y −p/q| ≤ 2−π.
We freely ask the oracle, but, when the rational approximations are given by the oracle, we
have to compute with the integers p, q we are given; now, the computation is not free, and
depends on the binary size of the rationals, and thus on π.

The main questions are: first, how is the integer π(ℓ) compared to the depth ℓ? second,
what are the main operations on the integers (numerators and denominators) to be done? For
our reference sources, of positive entropy, the needed precision is π(ℓ) = Θ(ℓ) and the main
operations used in the computation of the shift T are additions and multiplications. Then,
for our reference sources, the arithmetic complexity for computing aℓ when (a1, a2, . . . , aℓ−1)
is already computed is of the form Θ(π(ℓ)b) = Θ(ℓb) with b = 2.
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