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Abstract
Protein-protein complexes power the majority
of cellular processes. Interfering with the for-
mation of such complexes using well-designed
mimics is a difficult, yet actively pursued, re-
search endeavor. Due to the limited availabil-
ity of results on the conformational preferences
of oligosaccharides compared to polypeptides,
the former have been much less explored than
the latter as protein mimics, despite interesting
ADMET characteristics.

In this work, the conformational landscapes
of a series of 956 substituted glucopyra-
nose oligomers of lengths 3 to 12 designed
as protein interface mimics are revealed us-
ing microsecond-timescale, enhanced-sampling
molecular dynamics simulations. Deep convo-
lutional networks are trained on these large
conformational ensembles, to predict the sta-
bility of longer oligosaccharide structures from
those of their constituent trimer motifs. Deep
generative adversarial networks are then de-
signed to suggest plausible conformations for
oligosaccharide mimics of arbitrary length and
substituent sequences, that can subsequently
be used as input to docking simulations. Ana-
lyzing the performance of the neural networks
also yields insights into the intricate collective
effects that dominate oligosaccharide confor-
mational dynamics.

Introduction
Protein-protein (PP) complexes power the ma-
jority of cellular processes and have thus long
since been recognized for their potential as drug
targets. By competing with native protein
partners for recognition and binding, a well-
designed mimic can potentially inhibit or reg-
ulate the formation of a PP complex and the
associated biological function.1 However, this
endeavor is much more challenging than the
design of traditional drugs, designed to fit in-
side a binding pocket of known size, shape and
chemical character and interact with a hand-
ful of well-defined aminoacids only: PP in-
terfaces are usually extensive (involving tens
or hundreds of amino acids of varying chemi-
cal nature) and predominantly comprise large,
flat patches. Alanine-scan experiments have re-
vealed that only a few clusters of amino acids,
often termed hotspots, contribute significantly
to the binding free energy and thus represent
prime drug targets.2 These hotspots usually
correlate with marked evolutionary conserva-
tion and isolation from water in the native com-
plex.3 Recently, more subtle hotspot features
have been captured using machine learning, fur-
thering the ability to predict hotspots at PP
interfaces without resorting to long and costly
scanning experiments.4–6

Binding to a PP interface both strongly and
specifically requires making simultaneous con-
tacts with several hotspots of different chemi-
cal characters and forming a determined pat-
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tern in space. In the native protein part-
ner, this is achieved with complementary amino
acids conformationally constrained by the pro-
tein fold. Indeed, a mimic molecule sufficiently
large to simultaneously target multiple hotspots
would probably lack the required conforma-
tional rigidity: for instance, peptides have been
extensively applied as mimics of protein part-
ners targeting PP interfaces, but need to be
conformationally constrained using scaffolding
groups.7 However, because PP interfaces are
typically much flatter than active sites, the need
for conformational rigidity in mimics is not as
drastic, which allows some latitude in the mimic
design process and is advantageous from the en-
tropic point of view.

Oligosaccharides, the long forgotten third
class of biomacromolecules, are coming of
age as interesting alternatives to peptides
for the design of PP interface mimics: chi-
tosan derivatives,8 sugar foldamers,9 sugar
amino acids,10 leptin-based oligopeptides,11

glycopeptide-antibody chimeras,12 glycosated
dendrimers13 have all demonstrated their value
as modulators of PP interfaces. Oligosaccha-
rides can be obtained from naturally occurring
polymers (chitin, cellulose, starch...) and are
more rigid than peptides of similar sizes due
to the cyclicity of their monomer constituents.
Additionally, they avoid some of the unfavor-
able ADMET profiles of polypeptides (self-
aggregation, proteolysis, immune response).
The synthesis and purification of carbohydrates
have long represented a bottleneck to their
widespread adoption, especially for industrial
applications. Indeed, synthetic pathways lead-
ing to oligosaccharides have had to be painstak-
ingly designed to ensure the specificity of each
monomer addition, usually by adding several
protecting/leaving group steps (and the associ-
ated separation and purification tasks) between
each chain extension phase. Fortunately, the
development of automated synthesis technolo-
gies14 now provides rapid access to a wide va-
riety of oligosaccharides, allowing the screening
of such compounds for drug discovery15. These
methodological developments have also helped
to bolster the bioavailability of oligosaccharide
drugs (one of their long-standing limitations)

by reducing the compounds to their smallest
active components or by combining them with
other molecules. Arixtra, auranofin, zanamivir,
topiramate, acarbose, elmiron, sulodexide, fu-
coidan, idrabiotaparinux, fondaparinux are all
highly bioavailable intravenously, while other
drugs such as pentosan polysulphate can be
orally delivered16. Interstingly, carbohydrate
peptidomimetics often show superior bioavail-
ability compared to the peptides they emulate,
whose amide backbone makes them less perme-
able to membranes17. Notwithstanding other
challenges (such as the rapid clearance by the
organism), oligosaccharide now appear as com-
pelling drug scaffolds.

Selecting a potentially suitable functionalized
oligosaccharide mimic to target a given PP in-
terface requires understanding the impact of
the oligomer length and the nature of its sub-
stituent groups on its conformational prefer-
ence. While globular proteins, in which inter-
residue hydrogen bonds impose secondary and
tertiary structures, can be described by a sin-
gle fold, polysaccharide hydrogen bonds tend
to be displaced by water and have a less strin-
gent effect on the overall conformational prefer-
ence. Oligosaccharides are thus best described
as weighted conformational ensembles, making
these molecules less amenable than proteins
to experimental structural methods.18 Fortu-
nately, this issue has been partly alleviated
by successfully combining molecular dynamics
(MD) with NMR experiments;19 the confor-
mational information garnered by such stud-
ies has progressively been compiled into struc-
tural oligosaccharide databases, initiating with
GlycoMapsDB in 200720 and continuing to this
day. However, most databases map confor-
mational space with only two dihedral angles
per glycosidic linkage21 (neglecting pyranose
degrees of freedom), and even the most recent22

only contains a total of 2598 distinct conforma-
tional maps...

Predicting the conformational preference of
oligosaccharides from their structural formu-
las is thus highly desirable, for applications
ranging from the fundamental understanding of
oligosaccharide conformational space topologies
to the practical design of chemobiological drugs.
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For the latter application, the possible differ-
ences between the free and protein-bound con-
formations of an oligosaccharide mimic (which
depend on the nature of the partners) is not
detrimental: the first steps of the recogni-
tion between partners typically occur at suf-
ficiently large distances for the knowledge of
the free mimic conformational preferences to
remain meaningful23. In this paper, I use
long-timescale (total simulation time ∼ 4 ms),
enhanced-sampling molecular dynamics simu-
lations to extensively characterize the confor-
mational free energy landscape of α−1, 4 glu-
copyranose oligomers of three different lengths
(trimers, hexamers and dodecamers) substi-
tuted with 8 possible moieties. I design a re-
cursive convolutional deep learning network,
trained on this extensive dataset, to predict
the stability of any given conformation of an
oligomer of given length and substitution, and
examine whether this information can be in-
ferred from the stability of its constituent
trisaccharide motifs. Finally, a generative ad-
versarial network is introduced to suggest sta-
ble conformations for arbitrary oligomers; it can
be used as a source of potential PP interface
mimics, for instance to power subsequent high-
throughput protein-mimic docking simulations.

Methods
Molecular simulations. The forcefield pa-
rameters for the oligosaccharide mimics were
derived from the GLYCAM24 and GAFF25

forcefields; the atomic charges for the sub-
tituents were obtained using the RESP pro-
cedure.26 The oligomers were assembled from
the corresponding parameterized fragments us-
ing LEaP27 and ACPYPE28 (see Supporting In-
formation Available for details).

The trimer, hexamer and dodecamer sys-
tems were minimized and equilibrated using
the procedure described in Supporting Infor-
mation Available. They were simulated for re-
spectively 1 µs, 1 µs, 1.5 µs at 300 K and 1 bar;
conformations were recorded every 10 ps. Dihe-
dral principal component analyses (dPCA),29

including all dihedral angles involving non-

hydrogen atoms, were performed on these pro-
duction trajectories. The first two dPCA eigen-
modes (as ranked by contribution to variance)
were used as collective variables to monitor
and enhance conformational sampling. Well-
tempered metadynamics simulations30 of 2 µs,
4 µs, 6 µs were performed along these two vari-
ables for trimers, hexamers and dodecamers,
respectively. Frames were extracted every 10
ps for all simulations for subsequent analysis.
The free energy landscape of each oligomer
was obtained as a function of the collective
variables from the sum of the Gaussian bias-
ing potentials accumulated during the simu-
lations; its convergence with respect to sim-
ulation length was verified (see Supporting
Information Available). Molecular dynamics
simulations were performed using GROMACS
2021.231 and PLUMED 2.5;32 a dPCA module
was implemented inside PLUMED specifically
for this study.

Deep learning. An adequate encoding of
dataset exemplars is crucial to the performance
of deep learning methods. In this work, di-
hedral angles were encoded as their sine and
cosine values, which is a straightforward way
of implementing angle periodicity into the net-
works but requires two input nodes per angle.
Each monomer comprises 18 angles (13 for the
sugar, 2 for the linker, and 3 spanning sugar
and linker), while two consecutive monomers
are linked by 6 angles. The 8 possible monomer
substituent types (see figure 1) were mapped
to integer values between 0 and 7 and encoded
into an 8-dimensional latent space vector us-
ing embedding nodes. Thus, a conformation
of an oligosaccharide of length n was input to
the classifier networks as a vector of dimension
n×(8+2×18)+(n−1)×2×6. The free energy of
each conformation was obtained by interpolat-
ing over the relevant free energy surface based
on the values of the projections on the dPCA
eigenvectors. Conformations with free energy
values lower or equal to 2.5 kcal mol−1 relative
to the global minimum, which form the attrac-
tion basins of the main non-metastable minima
on the free energy surfaces (see Results and dis-
cussion), were labeled as the positive samples of
the dataset; the remaining conformations were
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labeled as negatives. A conformation was con-
sidered to be predicted positive by the classifier
networks if the output of the final sigmoid node
belonged to the [0.5, 1] range, negative other-
wise.

The dataset populations were as fol-
lows: 102 400 512 conformations for trimers,
147 600 369 for hexamers, 45 375 075 for dode-
camers, and 96 976 131 for the mixed set (con-
sisting of trimers, hexamers and dodecamers in
equal proportions). These datasets were ran-
domly partitioned between training and test
set according to a 75/25 ratio. All networks
used the binary cross-entropy loss function
and AdamW optimizer,33 with learning rates
ramping down from 0.1 to 1.0 × 10−4 as train-
ing convergence proceeded and a decay rate
of 1 × 10−4. All neural networks were imple-
mented using PyTorch.34 Additional, non-deep
learning tasks (decision trees, random forests
and ADABoost classifications) were performed
using Scikit-Learn.35

Results and discussion

Figure 1: Markush structures of the mimics under study.
Left: glucopyranose monomer template; an ester linker
connects position 6 on the glucopyranose ring to one of
8 possible functional groups (right panel). Consecutive
monomers are linked via α−1, 4 glycodidic bonds.

Free energy landscapes of oligosaccha-
rides from enhanced sampling simula-
tions. The oligosaccharide mimics were built
from substituted glucopyranose monomers as-
sembled along α−1, 4 bonds. Position 6 on each
monomer was subtituted with a 4-carbon ester
linker bearing one of 8 possible groups. These
were chosen as synthetically amenable isosteres
of the different types of amino acid side chains

(charged, polar neutral, H-bonding, aromatic,
aliphatic, bulky). A glucopyranose substituent
was also included to allow the potential reticu-
lation of oligomers (figure 1). All 512 possible
trimer combinations of these 8 monomers were
constructed. The number of possible combina-
tions for longer oligosaccharides makes it com-
putationally intractable to simulate them all on
the microsecond time scale. Thus, a subset of
369 hexamers and 75 dodecamers, with equal
representations of all 8 substituents and fea-
turing possibly important patterns (repetitions
of 2 and 3 identical substituents), were hand-
picked for simulation. All selected oligosaccha-
rides were simulated for at least 1 µs, and the
resulting trajectories were subjected to dPCA
analysis. The first two eigenmodes for each
oligomer were used as collective variables in
metadynamics simulations of up to 6 µs, reveal-
ing the conformational free energy landscapes
of the oligomers (see Methods for details).

The free energy minima on all trimer sur-
faces were identified and classified in terms of
stability (free energy difference to the lowest
minimum) and topological persistence36 (rele-
vance of the minimum compared to neighbor-
ing ones, evaluated by the height of the barrier
separating them: considering a “water level”
continuously rising on the free energy surface,
how long would it take for both minima to
belong to the same “lake”? See Supporting
Information Available for details). Figure 2
shows that the minima can be classified into
three clusters with respect to these two mea-
sures. (i) Low-energy and high-persistence min-
ima are the representatives of the main attrac-
tion basins on the surface; they are often sur-
rounded, within each basin, by (ii) numerous
other minima of similarly low energies but low
persistence (low energy barriers to neighboring
minima). Finally, (iii) high-energy regions also
feature local minima; they usually correspond
to metastable states delimited by low free en-
ergy barriers, thus have low persistence.

Computing the average minimum stability
and persistence for each trisaccharide reveals
substituent-dependent trends (figure 2). Small,
charged and/or H-bonding groups (OH, COO−,
NH3+) create strong interactions with very spe-
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Figure 2: Left: free energy surface of an example trisaccharide (substituent sequence COO−-Phe-Glc) along the two
first dPCA eigenmodes, showing the different types of minima in terms of stability (ΔG to the lowest minimum) and
persistence (local relevance) as well as cartoons of the corresponding conformations (the centroids of glucopyranose
rings, linker and substituent are respectively colored pink, cyan and purple). Upper right: normalized values of
stability and persistence averaged over the minima of each trisaccharide, showing the division into three clusters.
Lower right: enrichment or depletion of the three clusters in the different substituent types.

cific geometries; trimers bearing such groups
tend to have a large number of highly sta-
ble, well-separated (highly persistent) minima
(green cluster on figure 2). Interestingly,
bulky adamantane groups also tend to generate
such well-defined minima, but simultaneously
favor high-energy, low-persistence metastable
minima (orange cluster). This is the sig-
nature of Van der Waals interactions: very
crowded oligosaccharides with several adaman-
tane groups have specific minima separated by
high barriers which sample the strongly repul-
sive part of the Lennard-Jones potential; on
the other hand, in less constrained trimers,
adamantane interacts weakly via the disper-
sive part of the Lennard-Jones potential, re-
sulting in low free energy barriers and shal-
low minima. Finally, trimers with aromatic
groups tend to present extensive attraction
basins containing multiple minima separated by

low free energy barriers (low ΔG, low persis-
tence – blue cluster): due to limited steric ef-
fects and interaction strengths, such systems
are less conformationally constrained. Sur-
prisingly, trimers bearing glucose substituents
tend to behave similarly despite the bulk and
hydrogen-bonding capacities of the latter; this
could be due to the coexistence of multiple si-
multaneous interactions, not all of which need
to break when transitioning from a local min-
imum to its close-lying neighbor on the free
energy surface. Examples of trimer free en-
ergy surfaces representing these various cases
are provided on Supporting Information Avail-
able figure S2. Because the dPCA eigenvec-
tors are a complex mixture of individual angles,
translating the relative positions of the min-
ima on the free energy surface in terms of con-
formational differences is difficult, except for
very close-lying local minima within a super-
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basin which do tend to show a degree of simi-
larity. This can be verified from the local mini-
mum structures on figure 2: the only detectable
trend is a loose correlation of the first eigenvec-
tor with trimer compacity. Furthermore, the
eigenvectors vary considerably from one trimer
to the next (the average inner product between
eigenvectors of distinct trimers is 0.32±0.12 for
the first eigenvector and 0.31±0.13 for the sec-
ond); the 2D free energy surfaces thus originate
from completely different ‘slices’ of conforma-
tional space, making the comparison between
surfaces rather futile. These considerations are
excellent arguments in favor of using neural net-
works to derive simplified models of the free en-
ergy landscapes: their ‘black box’ nature isn’t
really a drawback when applied to such an ab-
stract dataset.

Figure 3 compares the free energy surfaces of
trimers to these of hexamers and dodecamers in
terms of ΔG and persistence. As previously ob-
served on figure 2, the distribution of ΔG val-
ues for trimers is bimodal: predominant min-
ima within the main attraction basins are lo-
cated less than 2 kcal mol−1 above the global
minimum, while metastable states are centered
around 5 kcal mol−1. The range of populated
persistence values (discounting the global min-
ima, which by definition have a persistence of
255 – see Supporting Information Available) ex-
tends above 100, suggesting multiple, distinct,
very stable local minima. When the oligomer
length increases, the free energy surfaces be-
come more complex; individual minima tend to
fuse into larger attraction basins, shifting the
distribution of persistences toward lower val-
ues. Similarly, the distributions of ΔG val-
ues for longer oligomers progressively lose the
bimodality seen in trimers; this is especially
apparent for dodecamers, which also feature a
much larger proportion of metastable minima.
This can be ascribed to the much higher num-
ber of possible combinations of simultaneous in-
teractions in such larger systems.

Learning trisaccharide conformational
preferences. This initial comparison suggests
a complex evolution of the oligosaccharide free
energy surfaces when moving from trimers to
longer oligomers. Will deep learning meth-

ods, known to reliably capture complex trends,
reveal collective effects linking the dynamics
of larger mimics to that of their smaller con-
stituents? To test this hypothesis, a neural
network (termed “trimer classifier”) was built
and trained to predict whether a trimer of given
conformation and substituent sequence is stable
(i.e., located in a zone of low relative free energy
surrounding one or multiple local minima on the
free energy surface). If this network can achieve
sufficient performance, multiple instances of it
could possibly be combined to predict the sta-
bility of longer isomer conformations, based on
the sequences of their constitutive trimer pat-
terns.

The trimer classifier network has a fully con-
nected architecture which is represented on fig-
ure 4). The input layer comprises 156 input
nodes, consisting of (i) embedding nodes which
encode the nature of each substituent on the
trimer into an 8-dimensional latent space; (ii)
fully connected input nodes which hold the sine
and cosine values of all relevant dihedral angles
of the trimer (see Methods for details). The
156-dimensional vector representing a trimer is
passed through 6 fully connected neuron layers
with nonlinear ReLU activation functions. The
final sigmoid function constrains the output of
the network to the ]0, 1[ range, interpreted as
the probability of the input trimer to be repre-
sentative of a low-lying free energy minimum.

The network was trained for 500 epochs on
a training set of ∼ 77 million conformations
from the metadynamics simulations of all pos-
sible trimers, and tested on a separate test set
of ∼ 26 million conformations (see Methods for
details). The learning process converged within
300 epochs (see Supporting Information Avail-
able), and achieved near-perfect predictions on
the test set (sensitivity 0.96, specificity 0.98,
precision 0.97, accuracy 0.97, F1 score 0.96).
The network was thus successful in captur-
ing the substituent-induced variety of free en-
ergy surface topologies and achieving predic-
tive power on unlearnt samples. Beyond the
topology of the network itself, the quality of
the training set plays a crucial role: the en-
hanced sampling simulations performed in this
work provide a more thorough description of
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Figure 3: Histograms of the relative stability (left) and persistence (right) of all trimer, hexamer and dodecamer
minima.
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Figure 4: Fully connected classifier network used to
learn and predict whether a trisaccharide of given con-
formation and substutient sequence belongs to a stability
basin on the corresponding free energy surface.

conformational space and more accurate free
energy estimates (especially for less-populated
minima) than Boltzmann-statistics simulations
of equivalent computational cost.

Onward to longer oligomers: learning
collective effects. To investigate the exis-
tence of possible collective effects in longer
oligosaccharide mimics, I then examined
whether a relationship could be found between

the status of a hexamer or dodecamer confor-
mation as a minimum, and the corresponding
status of its constituent trimers. These trimers
are defined by sliding a window encompassing
3 sugar units over the oligosaccharide with a
stride of one unit; an oligomer of length n thus
comprises n−3+1 individual trimers. For hex-
amers, a simple decision tree based on the pre-
dictions of the 4 constituent trimers as minima
or non-minima by the classifier network did not
achieve an acceptable performance (F1 = 0.67).
In particular, 58 % of conformations predicted
as minima were false positives; the prediction
of negatives fared somewhat better (23 % of
false negatives). More complex methods, us-
ing the continuous probability output from the
trimer classifier network rather than the binary
mininum/non-minimum classification derived
from it, did not provide better results: the AD-
ABoost method yielded 66 % of false positives
and 24 % of false negatives for both test and
training sets (F1 ≈ 0.6); a random forest of 10
decision trees yielded a near-perfect classifica-
tion of the training set (false predictions<1 %,
F1 = 0.98), but achieved this result using very
large trees with nearly as many leaves as data
points and proved incapable of categorizing the
test set (45 % false positives, 48 % false nega-
tives, F1 = 0.47). For dodecamers, predictions
were strongly biased toward false negatives: a
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simple decision tree on the binary predictions
of the 10 constitutive trimers yielded 99 %
of structures predicted as non-minima; AD-
ABoost on the continuous probabilities output
by the trimer classifier yielded similar results for
both training and test sets, and a random forest
reproduced the training set perfectly but pre-
dicted 98 % of test set samples as non-minima
regardless of their true nature.

From these performances, which are worse or
barely better than those of a random classi-
fier, it appears that trisaccharides bonded to-
gether within a larger oligomer retain no mem-
ory of their individual conformational prefer-
ences. While strong collective effects were
expected, the extent of their domination of
the conformational space of oligomers is strik-
ing. The occurrence of folded conformations in
longer oligomers, driven by intramolecular in-
teractions between monomers that are distant
along the chain but spatially close, is a typ-
ical information that cannot be inferred from
the conformations of isolated trimers; however,
the respective over- and underprediction of hex-
amer and dodecamer minima suggest that addi-
tional, more complex collective effects on differ-
ent scales of polymer length might actually co-
exist. These results are in line with those of pre-
vious conformational studies of polysaccharides
(relatively scarce considering the importance
of these polymers as natural products). In
2002, Rosen at al37 failed to correlate the pre-
ferred conformations of oligosaccharides with
those of the pentasaccharide repeating motifs
on which they were built; however, their work
did not include intrasaccharide degrees of free-
dom and defined stable conformations as MM3
potential energy minima, neglecting entropic
effects which are essential in flexible oligomers.
Two decades later, a state-of-the art study by
Watanabe et al38 mapped the conformational
ensembles of high-mannose-type oligosaccha-
rides obtained from MD simulations by project-
ing their ∼ 100 major internal degrees of free-
dom into a kernel Hilbert space of dimensions
up to 4 and grouped their free energy minima
into 21 clusters; however, within each cluster,
major differences in monomer ring puckering
states, glycosidic linkages, interresidue hydro-

gen bonds and end-to-end distances remained
– a testimony to how little the understanding
of collective effects in oligosaccharides has re-
ally progressed in twenty years.

Convolutional deep neural networks are effi-
cient detectors of multiscale collective patterns.
These networks, popularized by their ability
to identify objects in real-life images regard-
less of their scale and position, are now applied
to datasets of very diverse types and origins.39

They typically contain a sequence of convolu-
tional layers of decreasing dimensions. Con-
volutional layers operate within a window of
chosen size, which is slid over the input vec-
tor with a chosen stride. Input data contained
inside the window are convoluted by a number
of teachable convolution kernels, which react to
collective input patterns spanned by the win-
dow. The output dimensionality depends on
the number of possible window positions but
is typically smaller than the input dimension.
Pooling layers can also be used to decrease this
dimensionality, by averaging or taking the max-
imum value of inputs inside the window. Each
layer aggregates and convolutes the outputs of
the previous one using its own sliding window:
as information flows along the network and the
dimensionality of the layers progressively de-
creases, the layers thus achieve a synthetic view
of increasingly long spans of the original input
vector, and the patterns they detect become
more and more global.

The concept of convolutional networks ap-
pears perfectly suited to the identification of
potentially multiscale collective effects in the
conformational spaces of oligosaccharides. For
instance, by using a window length of 3 and
a stride of 1, the previous assumption of bas-
ing the conformational behavior of oligosaccha-
rides on that of their constituent trimers can be
replicated. However, unlike the previously per-
formed simple aggregation of each trimer’s like-
lihood as a minimum, the recursive convolution
of individual trimer patterns operated by the
successive layers allows the detection of com-
plex collective patterns spanning the length of
the entire oligosaccharide chain; these include,
in longer oligomers, the occurrence of folded
conformations stabilized by intramolecular in-
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teractions.
However, unlike most datasets where all

entries are represented by fixed-size vectors,
oligomers of varying length are encoded with
varying dimensionalities, which conditions both
the size of the network input layer and the
number of convolutional/pooling steps required
to bring down the dimensionality. To tackle
this issue, the convolutional network designed
in this work was built around recursive com-
ponents (figure 5). The input stage consists of
two distinct sets of fully connected layers, re-
spectively taking as input the dihedral angles
of a monomer (sugar and substituent) and a
connector (angles involving atoms connecting
two consecutive sugars). These subnetworks
are called as many times as needed depend-
ing on the polymer length N , and their outputs
concatenated into a vector of size lN . The latter
is fed into a recursive convolutional subnetwork,
featuring two convolutional layers which reduce
the width of the data flow from li to li−1 at
each iteration. This subnetwork is recursively
called N − 2 times, until its output reaches
size l2. At this point, a fully connected sub-
network is applied, which outputs the probabil-
ity for the input conformation to be a free en-
ergy minimum. Because (i) all monomers share
the same fully connected modules regardless of
their position in their containing oligomer and
the length of the latter and (ii) because patterns
in longer oligomers are detected by calling the
same convolutional subnetwork multiple times,
the network is never aware of the size of the
oligomers it is being trained on. This prevents
it from taking the ‘easy way out’ of learning
trends that are specific to an oligomer length;
instead, it is forced to find more global patterns,
which should enable it to better extrapolate to
oligomer length it has not been trained upon.

The recursive convolutional network was
trained for 600 epochs on a mixed set of ∼ 73
million trimer, hexamer and dodecamer con-
formations in equal proportions (see Meth-
ods). The training convergence was reached
within 250 epochs (see Supporting Information
Available). Interestingly, the trained network
performed much better on hexamers and dode-
camers than on trimers: the global F1 score of

0.90 can be decomposed into respective scores
of 0.96, 0.92 and 0.83 for these three oligomer
lengths. The prediction of trimers performs
well in terms of specificity and accuracy, but
less so in terms of sensitivity and precision.
This is caused by true positive and false nega-
tive prediction rates which are respectively low
and high compared to true negatives and false
positives: the network tends to predict as non-
minima trimer structures which are actually
minima. While not optimal, in practical use
this is preferable to flagging as minima confor-
mations which aren’t. Hexamer and dodecamer
minima are very well predicted; the somewhat
lower F1 score for dodecamers is counterbal-
anced by excellent accuracy and specificity
scores which prove the network’s ability to
avoid minima overprediction. The origin of the
performance disparities between trimers, hex-
amers and dodecamers isn’t obvious; because
performance does not vary monotonously from
short to long polymers, it does not involve the
fact that longer polymers benefit from a deeper
network (the recursive layers being invoked
multiple times). In fact, adding convolutional
layers to the recursive subnetwork was tried
and did not result in a noticeable increase in
performance.

Generating stable olisaccharide confor-
mations on the fly. The recursive convo-
lutional network has proved able to identify
stable oligosaccharide conformations regardless
of length. However, in the use-case of high-
throughput docking simulations, the ability to
suggest such conformations on the fly without
the need for costly molecular dynamics simula-
tions is desirable. Therefore, a generative ad-
versarial network (GAN) was built and trained
to suggest potential free energy minimum struc-
tures for oligosaccharides of any length and sub-
stitution (figure 6). It consists of two subnet-
works: (i) a generator, which takes as input a
point in a low-dimensional ‘latent space’ and
generates a corresponding minimum structure;
(ii) a discriminator, which takes such gener-
ated conformations as input and tries to dis-
tinguish them from actual minima. Both sub-
networks are trained simultaneously, with op-
posing goals: the discriminator is fed a train-
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ing set mixing actual minima and generated
conformations and gets better at distinguish-
ing one from the other, while the generator
gets better at ‘fooling’ the discriminator by cre-
ating ever more realistic conformations. The
convergence of this unsupervised learning pro-
cess is achieved once generator and discrimi-
nator reach a stalemate40. The capacity of a
trained generator to create realistic instances of
complex data has been applied to many fields,
including bioinformatics41 and molecular de-
sign.42 Here, the discriminator network employs
the previously validated recursive convolutional
network. For the generator, a monomer and a
connector subnetworks of fully connected neu-
rons are respectively called N and N − 1 times
to generate an N -mer conformation; their out-
put is contrained to the [−1, 1] range using hy-
perbolic tangent nodes and interpreted as the
(cos ϕ, sign(sin ϕ)) values of all relevant dihe-
dral angles Φ. Latent space dimensions of 16
and 8 for the monomer and connector subnet-
works were found to adequately balance gener-
ator performance and computational cost. The
oligomer substituent sequence was fed into both

generator and discriminator networks using em-
bedding nodes, which technically makes the
network a conditional GAN;43 for the genera-
tor, the output of the embedding nodes directly
multiplies the latent space input.

The GAN was trained for 800 epochs on a
set of ∼ 27 million trimer, hexamer and do-
decamer minima. From 400 epochs on, the
binary cross-entropy loss for both generator
and discriminator oscillated repeatedly and pe-
riodically between two values, indicating that
a stalemate between both had been reached
in which each subnetwork continually coun-
termeasures the other’s action. There is no
theoretical guarantee that a given GAN can
achieve simultaneous stabilization of both sub-
networks, and in practice this is seldom the
case even in toy systems44; the learning process
was thus considered complete, having reached
a state of dynamic equilibrium (see figure S5
for additional detail). The generator weights
corresponding to the smallest encountered loss
were retained; the generator was then decou-
pled from the discriminator and used to suggest
the relevant dihedral angles for 100 stable con-

Figure 7: Performance of the GAN for the suggestion of stable conformations of random oligomers, compared to
randomly selected conformations. Top row: distribution of ΔG above the global minimum. Bottom row: distribution
of Euclidean distances to the closest minimum in the plane spanned by the first two dPCA eigenvectors. Quartiles
are indicated by dashed lines.
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formations of each of the oligomers under study
(see Supporting Information Available for the
procedure used to generate conformations from
the dihedral angle values).

The performance of the trained generator
subnetwork is illustrated on figure 7 by com-
paring the distributions of free energies and
distances to the closest minimum on the sur-
face between randomly chosen conformations
and those suggested by the GAN. The distribu-
tion of generated free energies for all oligomer
lengths has an average of 2.2 kcal mol−1 and an
upper quartile of 3.3 kcal mol−1, in stark con-
trast to the random distributions in which very
high-lying conformations (>40 kcal mol−1) ap-
pear prominently. Similarly, the distribution
of distances to the nearest minimum for the
generated conformations efficiently filters out
the high-lying entries in the random distribu-
tion (with respective upper quartiles of 1.3 and
2.5). Interestingly, the relative decrease in the
spread of distance values is not as large as the
one observed for free energies. This is due to
the fact that many free energy surfaces feature
extensive attraction basins containing multiple
minima separated by low barriers: a conforma-
tion can thus be relatively structurally distant
from a minimum and still belong to the latter’s
basin.

These statistics prove the generator’s ability
to generate sensible conformations ‘on the fly’
that can be used in the subsequent steps of a
pipeline: for instance, by populating a library
of potential oligosaccharide mimics which will
be docked to a given protein target. Indeed, we
are currently using the neural networks in this
study to build a library containing hundreds of
thousands of mimics; it will be queried using a
graph representation of the nature and relative
position of the hotspots at the target PP inter-
face, rapidly providing the most likely candi-
dates for the inhibition of the corresponding PP
complex. With the training set generation and
learning protocols validated, new monomer sus-
btituent types of specific interest can be added
straightforwardly, by updating the networks’
training based on additional molecular dynam-
ics simulations.

Concluding remarks
A self-consistent model of polysaccharide con-
formational preference remains in the future.
However, two avenues for improvement can help
bring this goal closer: (i) enrich the corpus
of accumulated conformational data on these
molecules, which is still direly underdevelopped
considering the natural relevance of oligosac-
charides, and (ii) devise models to bridge the
gap between local and global structural de-
scriptors, which remains the stumbling block of
current studies. The present work contributes
to both avenues by providing extensive, long-
timescale, enhanced sampling all-atom simula-
tions with accurate conformational free energy
estimations, on which the ability of conforma-
tional deep learning to detect multiscale spa-
tial patterns is leveraged. It shows that the
conformational behavior of longer oligosaccha-
rides can indeed be inferred from their smaller
constituent spans, but also demonstrates that
the relationship is far from trivial, being dom-
inated by collective effects on spans of differ-
ent sequence lengths. In addition, the capac-
ity to rapidly suggest potentially stable con-
formations of oligosaccharides of given lengths
and substitutions using GANs is very valuable
for the population of libraries of mimics, which
should prove beneficial for the rapid and easy
preselection of possible inhibitors of PP com-
plexes of interest.
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