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A B S T R A C T   

Electrode wetting is a critical step in the Lithium-Ion Battery manufacturing process. The injection of electrolyte 
in the electrodes’ porosity requires the application of pressure-vacuum pumping strategies without warranty that 
the full porosity will be fully occupied with electrolyte at the end of this process step. The electrode wettability 
strongly depends on the contact angle between the electrolyte and the electrode, the electrode microstructure 
characterized by its porosity, pore network and tortuosity factor, the electrolyte viscosity and density. Compu
tational fluid dynamics approaches such as the Lattice Boltzmann Method can provide relevant information of 
the filling process, yet these approaches come with significant computational cost. The use of machine learning 
techniques can provide surrogate models for the optimization of this multi-parameter process that depends on 
both chemical and physical properties. Within this context, we propose a general workflow for realizing this 
objective and provide detailed simulation-based experiments. These physics-informed surrogate models open the 
path to tractable, rapid solutions of parameter identification and design optimization problems. They also pro
vide a general workflow for applications on other optimal battery material design problems.   

1. Introduction 

Energy storage is one of the most prominent problems that humanity 
needs to solve in the 21st century. Climate change, the availability and 
the price instability of fossil fuels are some of the key reasons for this. 
Electrochemical energy storage devices and in particular lithium-ion 
batteries (LIBs) are among the most suited technologies to overcome 
this challenge, due to their capability to be discharged and recharged 
multiple times, their compactness, their high energy densities and their 
(relative) operational simplicity [1]. Indeed, LIBs are enablers of the 
undergoing energy transition, particularly manifested through the 
electrification of the automotive sector. This triggers in turn a race to
wards LIB cell optimization, to increase even more their energy densities 
and lifetime, to decrease as much as possible their cost and to improve 
their recyclability [2,3]. These characteristics are to a significant extent 
impacted by the cell manufacturing process. Such a process involves 

numerous steps and parameters that need to be fine-tuned in order to 
achieve desired performances. The starting point being the positive and 
negative electrodes fabrication, through the mixing of the active mate
rial, carbon additive and binder powders in a solvent, the casting of the 
resulting slurry on a current collector and its drying, followed by the 
calendering aiming to improve the electronic percolation between the 
particles forming the electrode. Still, the latter should be carried out 
carefully to avoid the collapse of the pores that will be detrimental to the 
electrode wettability by the liquid electrolyte [4]. Once the cell is 
mounted with the two electrodes and the polymer separator between 
them, the electrolyte infiltration is a crucial step in the manufacturing 
process as it needs to ensure that most of the active material exposed to 
the pores is wetted with the liquid electrolyte. This is important to 
ensure proper lithium-ion exchange between the positive and negative 
electrodes in the cell. The performance of this electrolyte infiltration 
process strongly depends on the electrolyte properties including 
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viscosity, density and contact angle with the electrodes and the sepa
rator [5,6]. It also depends on the electrode microstructural properties, 
characterized by the overall porosity, pore size distribution and pore 
network characteristics [7]. This makes the optimization of this process 
step very difficult and therefore time consuming and potentially ineffi
cient. Few experimental studies have been focused on understanding 
this process, which can be understood in view of the difficulty to char
acterize the infiltration in an in operando way [8–11]. For this reason, 
computational modeling has emerged as a powerful tool to understand 
this process with some degree of detail. The Lattice Boltzmann Method 
(LBM) has proven itself to be a suitable tool to simulate the infiltration 
process in view of its mesoscopic character, where fluids are described in 
a discrete manner (through particles) [12,13]. In 2021 we reported for 
the first time a LBM model able to simulate in three dimensions how 
electrolyte infiltrates in electrode microstructures arising from 
manufacturing mechanistic simulations and from tomography charac
terizations [14]. In this work we investigated in particular the influence 
of the electrode microstructure on the wettability performance (rate of 
pores saturation by the electrolyte and spatial location of unwetted 
volumes) and the resulting electrochemical performance. Later works 
[15] have extended our work by attempting to consider electrolyte flow 
through the binder, but with contact angle parameters for which it is 
difficult to determine their experimental validity. Recently, we have 
used our LBM model to explore the influence of different electrode ar
chitectures on the facility to wet entire cell sandwiches, showing that 
electrode heterogeneities along the electrode thickness (e.g. porosity 
gradients) can be beneficial for better electrolyte infiltration [16]. 
Furthermore, we have reported a surrogate model derived from machine 
learning (ML) applied to the data generated by our LBM model, able to 
predict the dynamic path of the electrolyte and the saturation curves in 
electrode microstructures in a question of seconds instead of days for the 
case of LBM [17]. In this work we mentioned that this approach was 
paving the way towards the computational screening of electro
lyte/electrode pairs to find the conditions that will maximize the elec
trode wettability by the electrolyte. Indeed, ML’s powerful capabilities 
have the potential to revolutionize the design of experiments and the 
material discovery process in batteries [18,31,32]. 

In the present article we present an innovative ML-based computa
tional workflow able to optimize the electrolyte infiltration conditions, 
such as electrolyte properties and filling conditions (pressure). Such a 
workflow contributes to the general computational framework we are 
developing in the ARTISTIC project comprising a collection of sequen
tially coupled mechanistic, data-driven and hybrid-basedmodels to 
simulate each step of the manufacturing process [19,20,35]. In the 
following we start by formulating the wettability problem and recalling 
the LBM modeling framework for its solution. After identifying the 
pertinent design parameters, we present the surrogate modeling 
framework, based on simple ML techniques. The results section contains 
all the details of the study, beginning with exploratory data analysis and 
leading to the specific regression and classification methods used for the 
ML. Finally, we conclude and indicate our perspectives for continuing 
this work. 

2. Methods 

In the following, we describe our computational workflow designed 
to optimize the wettability of NMC111-based LIB electrodes. Such a 
workflow is constituted of several components, starting with a LBM 
model capable of predicting the impact of electrolyte properties (vis
cosity, density, contact angle), the electrolyte filling conditions (pres
sure) and the electrode properties (uncalendered vs. calendered) on the 
infiltration dynamics of the electrolyte in the porous electrode. The LBM 
can also model and predict the final saturation, defined as the ratio of 
volume occupied by the electrolyte divided by the volume of pores. Then 
ML models are set up to use the LBM-generated wettability data to 
perform supervised and unsupervised learning of the relations between 

carefully selected input parameters and pertinent output parameters 
[26]. Details of the LBM formulation can be found in our previous 
publication [14]. The ML approach is based on methods of [21,22] and 
constitutes a pillar of the more general concept of digital twins [23,36]. 

2.1. Electrode microstructures for LBM simulations 

The first step for performing LBM simulations is to construct the 
porous electrodes. 3D micro X-ray tomography of an uncalendered and 
of a calendered electrode were used. This is because the calendering of 
the electrodes has a significant impact on the electrochemical perfor
mance of the LIB cells. For more details of this topic please see our 
previous publication [19]. The geometries are imported into the FIJI 
software for slicing and segmentation, then into the Geodict software 
[33] to extract pores using the watershed algorithm. The complete setup 
used is reported in detail in our previous publication [14]. We opted for 
a volume of 50 × 50 × 50μm3 for the different electrode microstructures 
used in this study, to have a good compromise between representa
tiveness of the electrode geometry and reasonable LBM simulation time. 
Average LBM simulation time is 1 h per condition, on an Intel® Core™ 
i7-12700 with a 32 GB of RAM. The porosity and the tortuosity factor of 
the uncalendered and the calendered electrodes are reported in Table 1. 
The porosity was calculated by using the Geodict software [33] and the 
tortuosity factor by using the TauFactor software [34]. 

The major difficulty of the electrolyte infiltration process is how to 
choose a set of design parameters that will produce an optimal wetting, 
as measured by the saturation, or some function of the saturation. The 
parameter design space has too many dimensions for exhaustive 
exploration, given the computational cost of a LBM simulation and the 
convergence difficulties for certain parameter combinations. This is the 
motivation for seeking a surrogate model, as described later. 

2.2. Design parameters 

The objective of our ML approach is to evaluate the influence of four 
LBM critical design parameters on the filling of a LIB electrode. It is 
important to point out here that the LBM model only accounts for 
dimensionless values. Therefore, the descriptions below contain not only 
the physical value, but the dimensionless value as well. The conversion 
between the physical value and the dimensionless value is done through 
the conversion factor. The four LBM parameters are:  

1. Kinematic viscosity of the electrolyte, ν, of which the dimensionless 
value is defined as, 

ν= c2
s (1 /ω − 1 / 2), (1)  

where ω = 1/τ with τ the relaxation time that cs is the speed of sound in 
the lattice.  

2. Contact angle, θ, which is defined in the LBM model by assigning the 
values of Gads,σ , and Gads,σ∗ , 

θ = arccos

⎛

⎜
⎝

Gads,σ − Gads,σ∗
Gint(ρe − ρdis)

2

⎞

⎟
⎠ (2)  

where Gads,σ and Gads,σ∗ are respectively the interparticle strength be

Table 1 
Porosities and tortuosity factors of the two electrodes used as inputs in the LBM 
model.  

Electrode microstructure Porosity Tortuosity factor 

Uncalendered 48% 2.16 
Calendered 27% 7.04  
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tween the nonwetting fluid and solid and the interparticle strength be
tween the wetting fluid and solid. Gint represents the fluid-fluid inter
action, ρe is the density of the electrolyte, and ρdis is the dissolved density 
of the nonwetting fluid in the wetting fluid.  

3. Pressure, p, force applied on the inlet of the electrode sample. We 
assume that the electrolyte penetrates through the x-axis, of the cube 
(electrode sample) and is stabilized when the density distribution 
function meets the convergence criteria.  

4. Electrolyte/air density ratio, ρ, given by 

ρ= ρe/ρa (3)  

where ρe denotes the electrolyte density and ρa is the air density. It is 
important to point out here that due to the stability issue, the real 
density ratio between the electrolyte density and air cannot be imple
mented in the LBM model. For instance, the highest density ratio ρ that 
we can simulate is 9. In the present study, we chose a fixed value for the 
electrolyte density. 

To summarize, the authorized ranges of values for these design 
variables are listed in Table 2, along with our chosen conversion factors. 
These ranges have been chosen to be in adequacy with experimental 
electrolytes [5]. 

2.3. Assessed features 

To learn a data-driven model, training data is needed. This data can 
be obtained from experimental observations, or model-based simula
tions, or some combination of the two. Here we use the data produced by 
the LBM simulations as in our previous work [17]. 

For any supervised machine learning method, we first need to define 
a response variable (a function in this case) that is an unknown function 
of the input parameters. In our case, once an LBM simulation has been 
carried out, we can calculate wettability descriptors. To construct the 
response, calculations are based on two types of descriptors: the pore 
saturation  

si(t)=
Vli (t)

Vi
∀i ∈ [1, n] (4)  

where n is the number of pores, i the pore index, t time step, Vi volume of 
pore i and Vli (t) volume of the electrolyte in pore i, and the overall 
saturation 

s
(
tj
)
=

Vl
(
tj
)

VTot
tj ∈

[
0, Tf

]
, (5)  

where Tf is the LBM simulation final time (corresponding to the time 
where electrolyte dynamics stops), VTot =

∑n
i=1Vi is the total pore vol

ume and Vl
(
tj
)
=

∑n
i=1Vli

(
tj
)

is the total volume of electrolyte (see 
Fig. 1). All the LBM-simulated saturation curves are shown in Fig. 2. 

When defining the output parameters for the ML, extreme care needs 
to be taken to extract reliable information describing adequately the 
electrolyte wetting rate, the speed of the electrode filling thus providing 

a solid basis for all the ML models employed. We choose three response 
variables, Sf , Tf and κ defined as it follows:  

1. Tf : the time to reach the final saturation.  
2. Sf : the final saturation of the electrode, defined as: 

Sf = s
(
Tf
)
=

Vl
(
Tf
)

VTot
. (6)    

3. κ: the proportion of filled pores in the electrode, 

κ =
nf

n
(7)  

where nf is the number of filled pores in the electrode microstructure. we 
suppose that a pore i has a good filling when it is final saturation reaches 
0.8 or higher (ie: κ ≥ 0.8). 

The first two variables are depicted in Fig. S1 in the supplementary 
materials. 

Predicting these variables allow us to describe and predict the speed 
and the completion of the electrode infiltration based on different values 
of the four design variables in Table 2. 

2.4. Data generation 

The design of parameter samples used in this work was carefully 
generated using a maximum projection Latin Hypercube Sampling 
method (MaxProj LHS) with the Lagun online design of experiments 
generator [24]. 

This technique allows us to have a space-filling parameter range with 
good projection properties. The LHS method is a generalization to higher 
dimensions of the Latin square which is an n × n array filled with n 
different symbols, each occurring exactly once in each row and exactly 
once in each column. 

Assuming a three-dimensional parameter space and ns the number of 
samples of each parameter, then each sample is the only one in each 
axis-aligned hyperplane containing it. On the other hand, LHS method 
uses maximin criterion that is a commonly used approach seeking to 
maximize the minimum distance between any two points. This results in 
a well-dispersed design across all dimensions and projections. Hence, 
our training set is well-balanced, containing a wide range of saturation 
behaviors, as seen in Fig. 2 B), which will ensure the best possible 
training for the ML models. 

3. Results and discussion 

3.1. Exploratory data analysis 

In order to identify useful preliminary information about the data 
and investigate the relationships between the features and the response 
variables, an exploratory data analysis should always be performed, 
before attempting any surrogate modeling. Furthermore, this study can 

Table 2 
LBM input parameters ranges used in the generation of the ML training and testing data sets. These ranges are used as input for the Lagun [24] Latin Hypercube 
Sampling (LHS) generator.  

Conversion factors Length 1 ×10− 6 m/lu 
Density ρa (kg/m3)/lu 
Time 1 ×10− 6 s/lu  

Parameter Lattice value range Physical value range 

Electrolyte/Air density ratio 5 ≤ ρ ≤ 9, ρaLBM
= 1 , 5≤ ρeLBM

≤ 9 ρdis = 0.06) 5 ≤ ρ ≤ 9, 144 ≤ ρa ≤ 260
(
kg/m3) , ρe = 1300(kg /m3)

Kinematic viscosity 0.0098 ≤ νLBM ≤ 0.39 (with 0.6 ≤ ω ≤ 1.89) 0.0098× 10− 6 ≤ ν ≤ 0.39× 10− 6(m2 /s)
Contact angle Gads,σ = − Gads,σ∗ where : − 0.4 ≤ Gads,σ∗ ≤ 0.4 70∘ ≤ θ ≤ 108∘ 

Pressure 0 ≤ pLBM ≤ 0.015 0 ≤ p ≤ 3.9× 106(kg m /s2)
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help to detect the interactions among different variables in each of the 
electrode microstructures, helping us to understand the importance of 
the effect of calendering on the electrode wettability. 

3.1.1. Scatter plots 
The first step of the analysis is to display scatter plots. Fig. 3 shows a 

strong non-linear negative association between ν and Sf and between ν 
and κ, highlighting the significant impact of the electrolyte kinematic 

viscosity on the wetting degree (saturation) and the wetting rate (the 
proportion of filled pores). From one electrode microstructure to 
another, we observe a different order of significance, where the co
efficients of correlation are respectively − 0.7961 and − 0.8622 for the 
uncalendered microstructure, versus − 0.5371 and − 0.587 for the 
calendered microstructure. Additionally, kinematic viscosity has a pos
itive relationship with wetting time that decreases with low ν. A 
moderately strong correlation is furthermore noticed for both 

Fig. 1. a) A battery cell with a zoom into an electrode microstructure describing the electrolyte (blue) filling the porous medium initially filled with air (orange) and 
the D3Q19 discrete velocity lattice used in the Lattice Boltzmann Method; b) Our proposed workflow for optimal material design, demonstrated in this article in the 
context of electrolyte impregnation of Lithium Ion Battery Electrodes (EDA: Exploratory Data Analysis, RF: Random Forest, NN: Neural Networks, SVM: Support 
Vector Machine). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 2. A) A summary of the post processing used to extract the three output parameters. B) Overall saturation curves resulting from the complete data set used for 
training and testing our ML models for calendered(left), uncalendared(right) structures. The x-axis represents normalized time, the y-axis is the saturation, S(t), and 
each curve results from a unique LBM parameter combination. 
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microstructures between p and Sf , Tf , κ revealing an interesting influ
ence of high applied pressure on reducing the electrolyte infiltration 
time and completing the saturation. However, the applied pressure is of 
more importance in a reduced pore size volume, which is the case for the 
compressed microstructure, and explains the improvement of the cor
relation coefficients in comparison with the uncalendered electrode. 

An additional correlation must not be neglected. Namely, the contact 
angles that have a non-substantial impact on the saturation time but 
have an influence on the wetting rate and degree for the uncompressed 
volume. 

On the other hand, the analysis reveals an almost zero correlation 
between ρ and the responses for the calendered case, as well as for the 
uncalendered one. 

Therefore, it is straightforward to conclude that the most influential 
parameter on the completion of the saturation is the electrolyte kine
matic viscosity. Thus, the lower the viscosity is, the more we expect high 
values of saturation and the more the pores are filled. This is in addition 
to the crucial impact of the applied pressure on speeding up the wetting. 

It is always recommended to inspect the partial correlations as well, 
so as to ensure the nonexistence of nuisance information in the database 
due to a confounding variable, which is a variable that influences both 
the dependent and independent variable causing then a spurious asso
ciation as is discussed in the next paragraph. 

3.1.2. Partial correlations 
The aim of a partial correlation study is to measure the correlation 

between two variables, while removing the effect of the remaining 
controlling variables. This can provide better evidence of causality [26]. 
For three variables, the first order coefficient of X and Y controlling for 
Z, i.e. excluding the influence of Z, are calculated using the formula 

ryx|z =
(
ryx −

(
ryz
)
(rxz)

)
/ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − r2
yz

̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − r2
xz

√√

(8)  

where ryx, ryz , rxz are the zero-order coefficients of correlation between 
all the possible pairs (Y,X), (Y,Z), (X,Z). Assuming n variables, equation 
(8) is used to calculate the nth-order coefficient which is based on 
calculating the (n − 1)th-order coefficients. Afterwards, comparing the 
zero-order correlation to the nth-order coefficient allows us to investi
gate if the association between variables is direct, spurious or inter
vening. Fig. S10 presents the partial correlation matrices for the two 

structures. The most striking observation to emerge from the compari
son of correlation and partial correlation coefficients is the remarkable 
increase of this second, more precisely in the calendered electrode 
microstructure where it was first seen a nearly null association between 
the contact angle and all three responses, evincing then the existence of 
one or more suppressor variables. 

Hence, θ has a significant impact on the electrode saturation 
behavior, a result that was confirmed in the uncalendered microstruc
ture, Fig. S10, that reveals a spurious relation between θ and Sf and 
between θ and κ, on top of the improvement of the θ, Tf coefficient. 
Consequently, it seems that contact angle is of importance in acceler
ating and completing the electrolyte filling into both microstructures 
and with stronger interest for the calendered one. It is worth high
lighting that the inversion of signs of the partial correlations can contrast 
physical interpretation in the contact angle observations (namely θ, Sf 

and Tf ). It is well known that partial correlations, in spite of their ca
pacity for detecting causal relations, can sometimes be misleading, and 
non-physical. The same warning is valid for viscosity and pressure re
lations to Sf , Tf and κ. 

The correlation study has led us to deduce the most influential pa
rameters on saturation descriptors and to see the apparent difference of 
correlation between the dependent and independent variables when 
changing the porosity percentage and pore structure. This is summarized 
in Fig. S11, where the partial correlation coefficients have, in addition, 
been hierarchically clustered to form a dendrogram, or classification 
tree. The exploratory analysis provides some preliminary information on 
the most influential parameters on wettability. The aim of this study is to 
feed the machine learning model with the physical intuition, in order to 
define the best wettability descriptors. 

3.2. Regression models 

Having collected the data and performed the Exploratory Data 
Analysis (EDA), we can then choose the ML methods that learn the 
complex relationships between the input and output data. Recall that 
there are two major categories of learning: supervised and unsupervised. 
In the former we have input-output data pairs, in the latter we do not 
have output variables, but we seek patterns or clusters in the input data. 
We use the two in tandem, since each can produce insights of its own. 
Within supervised learning, we differentiate between regression for 
numerical values and classification for qualitative groupings. Note that 

Fig. 3. Scatterplots, histograms and correlation matrix of LBM input and output data from data sets used in the training and testing of the ML models for the 
uncalendered (left) the calendered (right) structure. The red stars refer to the significance of the correlation coefficients. (For interpretation of the references to color 
in this figure legend, the reader is referred to the Web version of this article.) 
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most regression methods can also deal with discrete, categorical data. 
Here, regression models are first fitted, followed by clustering and 

classification methods. Note that each approach can feed the other, since 
they produce complementary information. Both, used together, are 
needed for optimal material design. 

3.3. Random forest method 

Random forests are supervised learning models for classification and 
regression made out of decision trees and consist of creating a bootstrap 
data set with the same size as the original. A bootstrapping method in
cludes all the tests and metrics that use random sampling with 
replacement and the remaining observations, the out-of-bootstrap data 
set, are called out-of-bag observations. The second stage involves the 
creation of decision trees from the bootstrapped data set using only a 
random subset of the explanatory variables at each step. From our 
bootstrapping data set, we select two or more random variables, and we 
choose the best variable that separates the samples. This sampling is 
repeated in each node with the remaining variables. 

For a regression problem as in our case, the variable selection on 
each node is based on minimizing the mean squared error, 

MSE =
1
n
∑n

i=1
(yi − ŷi)

2 (9)  

where n is the number of observations, yi is the observed value and ŷi is 
the predicted value. 

These two methods—bootstrapping and creating a tree—are 
repeated until we obtain a variety of trees. 

To assess the ability of the trained model to predict the three outputs, 
we use a cross-validation approach that consists of taking one subset for 
test data, and then training the model over the remaining subsets. The 
data set is split into 6 folds randomly and repeated 10 times for the Sf , 8 
folds and 10 repeats for κ models and 15 folds and 20 repeats for the Tf 

model. 
Fig. 4 shows the actual values versus the predicted values, 

respectively for Sf , Tf and κ. These fittings have relatively good R2 and 
RMSE values, as seen in Table 3 for the three variables for the calendered 
case and for both Sf and κ predictions in the uncalendared one, contrary 
to Tf whose accuracy is slightly lower and for which there is certainly 
room for improvement. 

Interestingly, random forests can provide additional information 
about the importance of the features in predicting the response variable 
based on Breiman’s permutations [25]. The main idea of this method 
consists of permuting randomly the observations of the tested feature in 
the out-of-bag observations for each tree. An important increase of the 
out-of-bag MSE implies the importance of the corresponding variable. 

It is apparent from Supplementary Fig. S3 and Fig. S4 that the 
electrolyte kinematic viscosity, ν, and pressure, p, are the most influ
ential parameters on the predictions of the three responses with different 
orders of importance depending on the structure and the response var
iable. Indeed, taking for instance the results of Fig. S4, the importance 
index VI for a given value of ν is VI ≃ 3.6 for Sf , VI ≃ 0.69 for Tf and 
VI ≃ 6.5 for κ. These values, and the rest of the VI values, are consistent 
with the correlation and partial correlation analysis results. 

3.4. Feed-forward neural networks 

The second approach we used for regression is neural networks [28]. 
In this work, the adopted NN architecture is a simplified, neater network 
with a single hidden layer. Additional tests were performed by us with 

Fig. 4. Actual (x-axis) vs. predicted (y-axis) values of random forest models showing the accuracy achieved by the RF models when predicting Sf, Tf, κ (from left to 
right), for the (a) uncalendered (b) calendered structure. 

Table 3 
Residuals table values representing the R-squared and the Root Mean Squared 
errors of the random forest models for Sf, Tf, κ. For the uncalendered and the 
calendered structure.  

Model Uncalendered Calendered Uncalendered Calendered 

R2 R2 RMSE RMSE 

Sf 0.89 0.88 0.06 0.08 
Tf 0.74 0.87 0.13 0.08 
κ 0.89 0.88 0.08 0.12  
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two and three hidden layers, but no increase of the accuracy was 
observed. A one-layer neural network is sufficient and computationally 
efficient. Together with cross-validation, the model clearly provided 
very good prediction accuracies, as shown in Table 4 and has improved 
the random forest outcomes in terms of R2 for Tf in the calendered 
structure. However, the random forest produces much better predictions 
for the final saturation, Sf , in terms of the MSE. This is clearly observed 
when comparing the scatter plots, Fig. 4 a) (Sf ) with Supplementary 
Fig. S5 (Sf ), and also Fig. 4 b) (Sf ) with Supplementary Fig. S6 (Sf ). Note 
that the R2 value measures the explanatory power of the model—how 
much of the variance is captured—whereas the MSE is a measure of the 
confidence in the model, since it can be used to compute confidence 
intervals. This example shows that R2 is not always a reliable estimate of 
the goodness-of-fit for a model and should be used with precaution. 

The evidence from this part of the study suggests two different, rapid 
and reliable approaches to predict well-chosen electrode wettability 
descriptors and to assess the filling speed, homogeneity and completion 
by changing together the four electrolyte variables. Comparing the re
sults of Table 3 for RF, with those of Table 4 for the NN model, and 
examining Fig. 4, Supplementary Fig. S5 and Fig. S6, we can make the 
following observations.  

1. Overall, both models provide good accuracy, as measured by R2.

However, the random forest has smaller RSMEs and hence better 
predictive power for unseen test data. This is clear, in particular, 
when comparing the actual vs. predicted plots for Sf , where in spite 
of a good R2, the neural network does not have good predictive 
power especially for lower range values.  

2. The random forest model provides overall lower mean-squared 
errors.  

3. The overall, best performance is obtained by the neural network 
model for Tf in the uncalendered case.  

4. For both models, the performance is equally good for the calendered 
and uncalendered structures. 

In the next section, a clustering and a classification model are pre
sented in order to allow, just as for the regression models presented 
above, better decision-making on the choice of electrolyte parameters 
and their optimization by identifying clusters. 

3.5. Classification and clustering models 

In this section, two different models were evaluated in order to 
categorize the data considering the values of their saturation, time of 
saturation and the completion of the saturation. First, an unsupervised 
clustering model was fitted, providing an accurate partition of the data 
set without any labels. The k-means algorithm used here, found patterns, 
and assigned successfully the observations to the corresponding cate
gory by taking into account both the completion and the speed of the 
saturation. Afterwards, we used a support vector machine (SVM) tech
nique, a supervised classification machine leaning model that takes 
target variables inspired by the k-means outcomes and uncovers the 
relationships between the electrolyte variables and the targetsthat are 
the wettability descriptors classes. 

3.5.1. Unsupervised learning (k-means) 
The unsupervised, k-means analysis aims to identify k groups in the 

data set by optimizing the distances between each point and the data 
with similarities and maximizing cluster separations using the metrics 
defined below. The Within-cluster Sum of Squares is defined as, 

WSS=
∑N

i=1

∑

x∈Ci

d(x, xCi )
2
, (10)  

where Ci refers to the ith cluster, N the size of the cluster and xCi is the 
cluster centroid. The compactness of the clustering is measured using the 
formula 

I =BSS/TSS. (11)  

Here, BSS is the Between-cluster Sum of Squares, defined as 

BSS=
∑N

i=1

⃒
⃒Ci

⃒
⃒d(xCi , x)2

, (12)  

where x is the cluster mean and TSS stands for Total Sum of Squares. A 
good partition is supposed to minimize the distances between the points 
belonging to the same cluster and maximize the separation between the 
clusters. Consequently, a high I index proves a high compactness of the 
clustering. 

An initial model was adjusted assuming an arbitrary number of 
clusters (three clusters) and the compactness obtained was I = 89% and 
I = 85.6% for the uncalendared and calendered microstructure respec
tively. Details can be found in Table 5. 

A scree plot of the WSS as a function of the number of groups shows 
an additional decrease of the WSS when the number of groups increases 
from 3 to 4, before flattening out, as can be seen in Fig. S7. Using this 
observation, we improved the clustering to I = 93.9% and I = 91.4% 
respectively for the uncalendered and the calendered structures, 
considering k = 4 clusters—see Table 6 for details. 

Furthermore, in an attempt to verify not only the compactness of the 
classification within the same group and the goodness of the separation 
of all the clusters as reported by the I index, but also to investigate in 
detail how each observation is similar to the others in the same group 
and to compare the different clusters, we performed a silhouette analysis 
which is based on a metric called the silhouette width defined as follows. 

For the jth observation, 

s(j)=
b(j) − a(j)

max(a(j), b(j))
, (13)  

where a(j) is the within cluster mean distance of the point j to all other 
points in the cluster, 

a(j)=
1

|Ci| − 1
∑

k∈Ci ,j∕=k

d(j, k) (14)  

and b(j) is the closest neighbor distance calculating the minimal mean 
distance of the point j to all the points in the other remaining clusters. 

This distance is defined for a cluster Ci∗ ∕= Ci and for a point j ∈ Ci as 

b(j)=mini∗∕=i
1

|Ci∗ |

∑

k∈Ci∗

d(j, k). (15) 

The silhouette width provides a score between − 1 and 1, with values 
closer to 1 indicating a well-matched sample to a cluster, 0 for an 
observation on the border of two groups and − 1 for a sample that better 
fits in a neighboring cluster. 

This test revealed a good classification with an average silhouette 
width of 0.56 for the uncalendered structure and 0.61 for the calendered 
structure. Moreover, the silhouette width values are positive for the 
whole data set for both calendered and uncalendered microstructures, as 
seen in Fig. S8, thus supporting the previous k-means compactness 

Table 4 
Residuals table values for neural networks models for Sf, Tf, κ, for the unca
lendered and the calendered structure.   

Uncalendered Calendered Uncalendered Calendered 

R2 R2 RMSE RMSE 

Sf 0.90 0.83 0.12 0.15 
Tf 0.70 0.93 0.14 0.05 
κ 0.81 0.76 0.11 0.16  
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results. 
To better understand the structure of the clusters, and their practical 

performance, a parallel coordinate plot is used. This plot provides a 
global view of how the variables’ values change from one group to 
another, thus confirming that data separates well the points based on 
their response variable values. Closer inspection of the values of the 
output variables provides a global idea of the most suitable data for 
experimental studies. The parallel coordinate plot Fig. 5 represents each 
observation with a line that connects the standardized values taken in 
each variable with colors distinguishing the different clusters. In fact, in 
the uncalendered case of Fig. 5, group 3 (cyan) and group 2 contain 
electrolyte variables that generate high values of saturation, lower 
filling time and remarkable percentage of filled pores. Groups 1 and 4 
also present some interesting behaviors of saturation, yet with lower 
filling speed. The examination of Fig. 5 for the calendered microstruc
ture, also provides some information of the most interesting groups of 
parameters for experimental studies, namely group 2 (green) that con
tains high saturation values, the lowest filling time and a high propor
tion of filled pores. 

The above results of the unsupervised learning provide suggestions 
for the choice of parameter intervals giving good wettability behaviors 
and pave the way for the SVM method presented in the next section. In 
order to maximize the classification accuracy, we trained several models 
with different numbers of clusters and compared the results obtained. 

3.5.2. Supervised classification (Support vector machine) 
In this part, we use the Support Vector Machine (SVM) method for a 

supervised classification task. 
Great care was taken both for the choice of input parameters and for 

data scaling. We created one set of models using all four LBM input 
parameters, and a second set using only the two important parameters 
observed in the exploratory data analysis and random forest data 
importance plots, namely ν and p. The three response variables were 
divided into k equal-length classes, or sub-intervals, with k = 2,3, 4 and 
the class lengths are defined by 

Lk =
Ymax − Ymin

K
, (16)  

where Y ∈
{

Sf ,Tf , κ
}
. That is, for K = 2, we classify the range of the 

response into 2 equal parts for each value of Y, etc. 
We used SVM with a radial kernel and tuning on its parameters, 

together with cross-validation. In Table 8, we present the accuracy ob
tained for a reduced-order model, depending on only the viscosity ν and 
the pressure p. Additional detailed results can be found in Table 7, where 
we summarize the accuracies obtained for the uncalendered micro
structure with a full model, and in Table 9 and Table 10 for the calen
dered microstructure. In the uncalendered case we compare unscaled 
and scaled variables, whereas in the calendered case, results are only 
presented for the scaled case. We use a standardization scaling to pre
serve the central value and deviations around it. Taken as a whole, our 
SVM models classified the data extremely well, with a considerable 
improvement when scaled, with few exceptions. This can be interpreted 
by removal of information by the scaling that is not a part of the noise. 

The results obtained with SVM are highly accurate and have further 
strengthened the previous classification and broadened the compre
hension of the importance of the choice of electrolyte variables’ in 
enhancing the classification and facilitating optimal experimental de
cision-making. 

Table 5 
Clusters means, sizes and WSS resulting from k-means clustering with k = 3 clusters for the uncalendared and the calendered structure.  

Uncalendered 

Cluster Means Size WSS 

θ ν ρ p Sf Tf κ   

1 89.14 0.099 6.82 0.010 0.95 1752 0.94 65 4754944 
2 88.61 0.21 6.50 0.005 0.75 3953 0.54 14 3504887 
3 90.91 0.14 6.90 0.004 0.74 2745 0.61 50 3010435  

Calendered 

Cluster Means Size WSS 

θ ν ρ p S f Tf κ 

1 90.25 0.097 6.87 0.009 0.87 844 0.78 86 9279600 
2 92.46 0.16 7.41 0.002 0.47 4385 0.33 12 4197186 
3 92.81 0.14 6.83 0.005 0.67 2418 0.55 21 5549244  

Table 6 
Clusters means, sizes and WSS resulting from k-means clustering with k = 4 clusters for the uncalendared and the calendered structure.  

Uncalendered 

Cluster Means Size WSS 

θ ν ρ p S f Tf κ 

1 90.13 0.15 7.64 0.003 0.50 4643 0.36 9 1752227 
2 90.11 0.10 6.86 0.01 0.87 721 0.78 68 4142408 
3 93.16 0.14 6.72 0.004 0.62 844 0.51 16 2743939 
4 91.96 0.11 6.93 0.006 0.81 1470 0.70 26 2032903  

Calendered 

Cluster Means Size WSS 

θ ν ρ p S f Tf κ 

1 89.41 0.11 6.64 0.006 0.87 2195 0.84 31 899748 
2 89.23 0.09 6.95 0.011 0.97 1601 0.97 45 1224068 
3 91.09 0.14 6.92 0.003 0.71 2847 0.57 39 1095903 
4 88.61 0.21 6.50 0.005 0.75 3953 0.54 14 3504887  
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Fig. 5. Cluster plots from the k-means clustering for the uncalendared (above) and calendered(below) structure. The plots include all the clusters detected in the 
data set. 

Table 7 
Classification accuracy representing the proportion of observations in the test set 
that was classified correctly for SVM models taking all the four features in the 
classification, Y ~ ν+ρ+p+θ, where Y ∈ {Sf, Tf, κ}, for the uncalendered 
structure.  

Response 
variables 

2 Classes 3 Classes 4 Classes 

Unscaled Scaled Unscaled Scaled Unscaled Scaled 

Sf 1 1 0.91 1 0.86 0.91 
Tf 0.78 0.82 0.91 0.78 0.69 0.73 
Κ 0.86 0.91 0.95 0.95 0.82 0.78  

Table 8 
Classification accuracy representing the proportion of observations in the test set 
that was classified correctly for SVM models taking only ν and p in the classi
fication, Y ~ ν + p, where Y ∈ {Sf, Tf, κ}, for the uncalendered structure.  

Response 
variables 

2 Classes 3 Classes 4 Classes 

Unscaled Scaled Unscaled Scaled Unscaled Scaled 

Sf 1 1 1 1 0.95 0.91 
Tf 0.86 0.91 0.73 0.86 0.60 0.78 
κ 0.95 1 0.95 0.91 0.82 0.86  
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We notice as well for the calendered microstructure, a good classi
fication accuracy that was improved by reducing the number of features 
to two. 

From the results reported above, we can make the following 
observations.  

1. The two-variable model provides much better accuracy than the 
complete, four-variable model. 

2. In general, the fewer the number of classes, the better the classifi
cation obtained. However, we then obtain a broader clustering. For 
example, the top 50 % for k = 2. A good compromise would be k = 3, 
where we have a finer grain, but still retain good accuracy.  

3. Scaling, in general, increases the accuracy, though there are some 
exceptions. It is thus advisable to adjust also for the unscaled case.  

4. We have equally good performance for calendered and uncalendered 
electrode microstructures. 

4. Conclusion 

Electrode wetting by liquid electrolytes is a critical step in the LIB 
manufacturing process. This step is recognized by LIB R&D laboratories, 
prototyping lines and manufacturers to be one of the most time 
consuming and costly steps. Indeed, the injection of electrolyte in the 
electrodes’ porosities requires the application of pressure-vacuum 
pumping strategies without warranty that the full porosity will be 
fully occupied with electrolyte at the end of this process step. The 
electrode wettability strongly depends on the angle of contact between 
the electrolyte and the electrode, the electrode microstructure charac
terized by its porosity, pore network and tortuosity factor, the electro
lyte viscosity and density. This is therefore a complex parameter space 
that needs to be optimized in order to ensure proper electrode wetta
bility. However, this is carried out by using trial-and-error approaches 
which are inherently inefficient. The use of physics-informed ML tech
niques can provide physics-informed surrogate models for the optimi
zation of this multi-parameter process step that depends on both 
chemical and physical properties. In the present article, we proposed a 
novel general workflow for realizing this objective and provided 
detailed computational simulation-based experiments. These physics- 
informed surrogate models pave the way to tractable solutions of 
parameter identification and material design optimization problems, as 
we already demonstrated in other battery manufacturing-related prob
lems [29,30]. 

The different ML techniques reported in this article provide, in 

addition to good prediction capability, the mapping of the in
terdependencies between the four input parameters and the electrode 
saturation completion and speed. 

Exploratory data analysis (EDA) of the training samples provided 
important information, where we observed separately the most influ
ential electrolyte parameters on the saturation descriptors. Thereby, 
kinetic viscosity, the inlet applied pressure and the contact angle play a 
significant role in increasing the wetting rate and speed of the saturation 
for both uncalendered and calendered microstructures with different 
degrees of significance. 

In fact, the lower the kinematic viscosity is, the higher wetting de
gree and wetting rate are, the higher inlet applied pressure reduces the 
electrolyte filling time for both microstructures. In addition, some extra 
effects are noticed differently from one microstructure to another, such 
as the impact of the kinematic viscosity on the wetting time and the 
pressure on the wetting rate and degree. In addition, the contact angle 
has influence on the wetting rate, wetting degree and filling time, which 
are more important in the calendered case, as revealed by the correla
tion and partial correlation analyses. 

Thanks to the EDA, we obtained a general idea on the way the 
electrolyte kinematic viscosity, the inlet applied pressure and the con
tact angle are influencing the electrode saturation behavior. In order to 
find the best parameter combination for experimental use, the ML 
models implemented in this study provide a good prediction and clas
sification of the saturation rate and degree and the electrolyte filling 
time, even for data that are not used for the training. 

Fig. S2 shows a typical example of the impact of the electrolyte pa
rameters to generate either a perfect filling (set 1) or a bad one (set 2). 
The values are reported in Table 11. We notice that with a slight vari
ation of θ and ρ and a significant change of ν and p, we obtain 
remarkable differences in the responses. These minor variations in the 
choice of the electrolyte parameters make a significant impact on the 
wettability completion, therefore, simple hand decision-making cannot 
be accurate in all cases. 

The approach described in this paper proposes a universal workflow 
for data analysis and surrogate modeling of the electrolyte infiltration 
parameter by optimizing design choices. This workflow can also be 
applied to almost any material design problem, in particular for batte
ries. It suffices to replace our data by other data, our underlying model 
by a suitable model, and then follow the steps of the workflow. Last but 
not least, we provide in the following some general comments that can 
be taken as advice for the successful implementation of our workflow. 

First, once the data is collected, the EDA is essential for:  

1. Familiarization with the data and choice of response variables;  
2. Elimination of any unusual, or erroneous data points; 
3. Preliminary identification of the most influential features, or pa

rameters, and the relations—or lack of relations—between the fea
tures themselves, and between the features and the response 
variables;  

4. Reduction of the complexity by identification of co-linear variables, 
and confounding variables. 

The next steps are regression and classification. Note that classifi
cation, especially unsupervised clustering, can be considered as being a 
part of EDA, since it can help in determining response variables. In our 

Table 9 
Classification accuracy representing the proportion of observations in the test set 
that was classified correctly for SVM models taking all four features in the 
classification, Y ~ ν+ρ+p+θ, where Y ∈ {Sf, Tf, κ}, for the calendered structure.  

Response variables 2 Classes 3 Classes 4 Classes 

Scaled Scaled Scaled 

Sf 0.92 0.88 0.96 
Tf 0.76 0.72 0.68 
κ 0.96 0.88 0.96  

Table 10 
Classification accuracy representing the proportion of observations in the test set 
that was classified correctly for SVM models taking only ν and p in the classi
fication, Y ~ ν + p, where Y ∈ {Sf, Tf, κ}, for the calendered structure.  

Response variables 2 Classes 3 Classes 4 Classes 

Scaled Scaled Scaled 

Sf 0.96 0.92 0.80 
Tf 0.84 0.80 0.88 
κ 1 0.92 0.88  

Table 11 
Table of parameter design corresponding to the optimal and incomplete 
wettability in Fig. S2.  

Features Responses 

Set ν ρ p θ Sf Tf κ 

1 0.0256 6.2307 0.0075 89.88 1 1733s 1 
2 0.2152 6.8974 0.0021 90.33 0.229 2675s 0  
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analysis, we have purposefully selected simple approaches because of 
their broad applicability, ease of computation and facility of inter
pretation—no black boxes here. We chose, and recommend, for 
regression:  

1. Random forests, because of their established robustness and their 
capacity to rank explanatory variables by their importance;  

2. Neural networks, for their extreme versatility and their universal 
approximation properties. 

We chose, and recommend, for clustering and classification:  

1. k-means for initial unsupervised clustering and identification of 
groups of properties;  

2. SVM for refined, supervised clustering that provides a surrogate 
model. 

The models implemented in this work were tested on unseen data to 
validate the process and have provided accurate results - see section 2.7 
in the supplementary material for more details on the machine learning 
models details. In the final step, which of course will be context- 
dependent, we can exploit all the surrogate models found above for 
optimal manufacturing process design and manufacturing process 
planning. 

This study has provided valuable insights into wettability optimiza
tion. Future work could expand on these findings by addressing this 
problem through Bayesian optimization. 
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