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Microclimate research gained renewed interest over the last decade and its importance for many 74 

ecological processes is increasingly being recognized. Consequently, the call for high-resolution 75 

microclimatic temperature grids across broad spatial extents is becoming more pressing to improve 76 

ecological models. Here, we provide a new set of open-access bioclimatic variables for microclimate 77 

temperatures of European forests at 25 x 25 m resolution. 78 

1 | ON THE IMPORTANCE OF MICROCLIMATE 79 

Bioclimatic variables are used in a wide range of disciplines, from biogeography over 80 

community ecology to the study of ecosystem functioning, to better represent climate conditions 81 

relevant for ecological processes. Especially within the field of species distribution modelling, these 82 

variables take up a prominent place as they allow us to assess, for example, the effects of climate 83 

change on species habitat suitability. To infer a species’ climatic niche, species distribution models 84 

often use a standard set of bioclimatic variables, mostly available at a coarse spatial resolution of 30 85 

arcseconds (c. 1 km), such as CHELSA (Karger et al., 2017) or WorldClim (Fick & Hijmans, 2017). 86 

However, a substantial part of life on Earth (e.g., tree seedlings, forest floor herbs, pteridophytes, 87 

bryophytes, ground invertebrates and fungi) as well as many key ecological processes (e.g., litter 88 

decomposition) respond to climate at much finer scales below tree canopies. Bioclimatic variables 89 

currently lack the ability to capture this high spatial variability in microclimatic conditions. For 90 

instance, high spatial heterogeneity in vegetation cover, canopy structure and terrain complexity is 91 

strongly connected with high temperature variability, up to 6 °C within a single 1-km² pixel of mean 92 

annual temperature (Lenoir et al., 2013). Consequently, high-resolution climate data is urgently 93 

needed to increase ecological model performance (Ashcroft et al., 2008) and, additionally, should be 94 

matched to the biological scale of the organism under study (Potter, Woods, & Pincebourde, 2013). 95 

Many studies already downscaled the existing climatic grids using both mechanistic (i.e., physics-96 

based) and correlative (i.e., statistics-based) approaches (Lembrechts, Nijs, & Lenoir, 2018). However, 97 

applying these methods on a broad spatial extent is computationally intensive, which has been limiting 98 

the development of such microclimate grids up until now. 99 

Another key issue arising with long-term climatologies as used in most species distribution 100 

models is the fact that climate data are derived from standardized meteorological stations, which 101 

poorly capture climate-forcing factors operating near the ground by measuring temperature at 2 102 

meters height above short vegetation. In this traditional set-up, the influence of local vegetation or 103 

topography is minimized, although it is well-known that these can substantially alter temperature 104 

conditions relevant for most species (Geiger, 1950). First, vegetation characteristics (e.g., vegetation 105 

height, density or composition) are key drivers in shaping microclimates within the landscape matrix. 106 

Especially forests alter the conditions underneath their canopy significantly by means of shading and 107 
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evapotranspirative cooling. Additionally, forest structure substantially affects wind patterns leading 108 

to less turbulent mixing of the air. Second, topographic factors (e.g., aspect or inclination) modulate 109 

many physical processes such as air flow and incoming solar radiation, which additionally increases 110 

the heterogeneity in temperature conditions within and between habitats composing the landscape. 111 

This is especially important for cold-adapted species in the face of climate change, as they might be 112 

able to find stable cool spots in the landscape. In these so-called microrefugia, they are able to persist 113 

for a longer time as these places can be buffered from contemporary macroclimate warming (Lenoir, 114 

Hattab, & Pierre, 2017). 115 

It is thus clear that accounting for sub-canopy temperature differences and increasing the 116 

spatial resolution of conventional bioclimatic variables to capture fine-scale microclimate variability 117 

would be a major step forward for global change biology. Solving this mismatch between the climate 118 

data currently available for ecological modelling and the climate experienced by organisms should be 119 

seen as a crucial step towards better ecological models and predictions. 120 

2 | FORESTCLIM 121 

Here, we present a set of high-resolution bioclimatic variables of forest microclimate temperature 122 

variables based upon the model presented in Haesen et al. (2021), where we provided the proof of 123 

concept for the derivation of monthly mean temperature offset (∆T) values (difference between 124 

macro- and microclimate in forest understories) at a spatial resolution of 25 m × 25 m across Europe. 125 

Additionally, we used these offset values to calculate mean annual temperature (ForestClim1). We 126 

now derived analogous maps of monthly minimum and maximum temperature offset values and 127 

calculated the remaining ForestClim variables (ForestClim2 – ForestClim11; Figure 1). In short, we 128 

relied on the SoilTemp database, which provided 1,273 temperature time series from 1,197 distinct 129 

logger locations spread across European forests (Lembrechts et al., 2020). We first calculated daily 130 

minimum and maximum temperature offsets as the difference between the daily minimum/maximum 131 

microclimate temperature, as measured by the sensors, and the corresponding daily 132 

minimum/maximum macroclimate air temperature value for exactly the same day, month, year and 133 

grid cell from spatially downscaled E-OBS data at 1 km × 1 km (Moreno & Hasenauer, 2016; Pucher & 134 

Neumann, 2022). Note that, prior to calculating the daily offsets, we performed an altitudinal 135 

temperature correction using CHELSA v2.1 lapse rates for the corresponding grid cell (Karger et al., 136 

2017; personal communication). Finally, the daily minimum and maximum temperature offset values 137 

were aggregated into monthly averages. Second, we used boosted regression trees (BRTs) in order to 138 

relate ∆T to explanatory variables describing topography, vegetation characteristics and macroclimate 139 

conditions. The model was used to estimate the difference between microclimate (temperature 140 

loggers placed within forests) and macroclimate (weather stations outside forests) across European 141 
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forests and across seasons. For more information regarding the different covariates and the 142 

ForestTemp model itself, we refer to Haesen et al. (2021). 143 

Finally, the resulting maps of the monthly offsets between mean, minimum and maximum 144 

sub-canopy and free-air temperature were used to calculate bioclimatic variables following the 145 

definition used in WorldClim (Fick & Hijmans, 2017). First, we calculated monthly mean, maximum 146 

and minimum sub-canopy temperature by adding monthly temperature offsets to the respective 147 

monthly mean, maximum and minimum temperature from TerraClimate (spatial resolution c. 4 km x 148 

4 km; Abatzoglou et al., 2018). Next, we used these sub-canopy temperature layers to compute sub-149 

canopy bioclimatic temperature layers, representative of the 2000-2020 period. Wettest and driest 150 

quarters were identified for each pixel based on TerraClimate’s monthly values. However, note that 151 

all temperature offset layers are freely-available meaning that the end-users are able to convert 152 

macroclimatic data themselves. All calculations were performed in R version 4.1.1 (R Core Team, 153 

2021). 154 

We found considerable differences between ForestClim (forest microclimate) and 155 

TerraClimate (macroclimate) bioclimatic variables, owing to biome and local forest stand 156 

characteristics (e.g., canopy density). As expected, the minimum temperature of the coldest month 157 

was higher within forests (ForestClim6; mean = -3.8°C) in comparison to TerraClimate (mean = -4.4°C). 158 

Surprisingly, the maximum temperature of the warmest month was, overall, slightly higher in forests 159 

(ForestClim5; mean = 24.6°C) compared to its TerraClimate counterpart (mean = 24.3°C). However, 160 

ForestClim covers a wide range of different biomes (i.e., boreal, temperate and Mediterranean) and 161 

microclimatic conditions in each of them are governed by different processes (De Frenne et al., 2021). 162 

Indeed, when we further explored regional patterns in each of these biomes, ForestClim did follow 163 

expected patterns with maximum temperatures being, on average, 0.9°C lower in temperate forests, 164 

1.6°C higher in Mediterranean forests and 0.7°C higher in boreal forests. On the other hand, minimum 165 

temperatures were consistently warmer in temperate (0.6°C), Mediterranean (0.5°C) and boreal 166 

(0.4°C) forests, respectively. Furthermore, canopy density plays a crucial role in terms of shading and 167 

evapotranspiration and a certain turn-over point in canopy density has been put forward where the 168 

buffering effect of forests is converted to an amplifying effect (Gril et al., 2023; von Arx et al., 2013). 169 

Indeed, when we only considered forests with a closed canopy (> 90%) in these three biomes, 170 

expected patterns were confirmed. Forest maximum temperatures were consistently cooler in 171 

temperate (-2.2°C), Mediterranean (-2.1°C) and boreal (-0.9°C) forests and minimum temperatures 172 

consistently warmer in temperate (0.5°C), Mediterranean (0.2°C) and boreal (3.5°C) forests. Our 173 

results thus underpin an important role for canopy density, with potentially important implications 174 

for forest management.  175 
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3 | FUTURE PERSPECTIVES 176 

Our European, high-resolution ForestClim bioclimatic temperature products will open a new avenue 177 

for future research within a wide range of disciplines. For high-latitudinal and high-elevational regions, 178 

it is however important to note that the ForestTemp model is extrapolating beyond the range of the 179 

training data and therefore we advise users to cautiously explore the associated extrapolation map. 180 

Furthermore, forests are dynamic systems, regularly subjected to natural and anthropogenic 181 

disturbances (e.g., pest outbreaks, windstorms, fires and logging). ForestClim is based on the 2015 182 

forest type map of the Copernicus project and is thus not valid for pixels that experienced significant 183 

forest cover change since then. It is especially this dynamic character of certain variables (e.g., canopy 184 

cover) which currently hampers the development of similar products for future scenarios under 185 

different shared socioeconomic pathways (De Lombaerde et al., 2022).186 
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 187 

Figure 1: forest bioclimatic variables below tree canopies at 15 cm above ground in European forests with a 188 
spatial resolution of 25 m, representative of the 2000-2020 period. Bioclimatic variables include: mean annual 189 
temperature (ForestClim1; °C); mean diurnal range (ForestClim2; °C); isothermality (ForestClim3; x 100); 190 
temperature seasonality (ForestClim4; °C x 100); maximum temperature of the warmest month (ForestClim5; 191 
°C); minimum temperature of the coldest month (ForestClim6; °C); temperature annual range (ForestClim7; °C); 192 
mean temperature of the wettest quarter (ForestClim8; °C); mean temperature of the driest quarter (ForestClim9; 193 
°C); mean temperature of the warmest quarter (ForestClim10; °C); and mean temperature of the coldest quarter 194 
(ForestClim11; °C). Note that isothermality is a unitless variable.  195 
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