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There is a variety of electrochemical methods to determine the transport properties of electrolytes. There are also different
underlying hypotheses to derive transport equations that are used in these methods. In this work, we examine how the values of the
transport properties determined with some of these methods are affected depending on whether convection is neglected in the
Onsager-Stefan-Maxwell transport equations. In particular, we show that the values of the diffusion coefficient and the cation
transference number that are determined from analyses of experimental data that ignore convection deviate from those that account
for it. We exemplify our point using simulations. This work emphasizes that transport properties from the literature can be used in a
mathematical model providing the underlying assumptions of the model are compatible with those used for their determination.
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List of Symbols

A Cell area, m2

A1 Coefficient in Eq. 37, mol/m3

c Salt concentration, mol/m3

cbottom Salt concentration adjacent to the bottom electrode,
mol/m3

ci Concentration of species i, mol/m3

cT Sum of species concentrations, mol/m3

ctop Salt concentration adjacent to the top electrode, mol/m3

c∞ Initial salt concentration, mol/m3

D Fickian salt diffusion coefficient in the molal scale,
m2/s

D′ Fickian salt diffusion coefficient in the molar scale,
m2/s

 Thermodynamic salt diffusion coefficient, m2/s
F Faraday’s constant, 96,487 C mol−1

f± Mean molar activity coefficient of the salt
i ⃗ Ionic current density, A/m2

iss⃗ Current density at steady state, A/m2

i0⃗ Initial current density, A/m2

iapp Applied current density, A/m2

L Thickness of the electrolyte layer, m
m Salt molality, mol/kg
M Salt molar weight, kg/mol
Mi Molar weight of species i, kg/mol
n Number of electrons exchanged or number of moles of

salt, mol
ni Number of moles of species i, mol
Ne Newman number, as defined in Ref. 18
Ni⃗ Flux density of species i, mol/m2-s
Q Coefficient, as defined in Ref. 6
R Ideal gas constant, J/K-mol
si Stoichiometric coefficient of species i in a reaction
T Temperature, K
t Time, s
ti

j Transference number of species i with respect to
species j

ti
j ′ Transport number of species i with respect to species j

Vī Partial molar volume of species i, m3/mol
vi⃗ Velocity of species i, m/s
v ⃗□ Volume-averaged velocity of the electrolyte, m/s
vbottom⃗ Velocity of the bottom electrode interface, m/s

vtop⃗ Velocity of the top electrode interface, m/s
zi Charge number of species i
Greek
α Thermodynamic factor of the electrolyte in the molal

scale
α′ Thermodynamic factor of the electrolyte in the molar

scale
Φ Electric potential, V

ssΦ Electric potential at steady state, V
0Φ Electric potential at initial time, V

γ± Mean molal activity coefficient of the salt
κ Conductivity, S/m

iμ Electrochemical potential of species i, J/mol
ν Total number of moles of ions into which a mole of salt

dissociates
iν Number of moles of ionic species i into which a mole of

salt dissociates
ρ Density, kg/m3

Subscripts
e Parameter that relates to the salt
0 Parameter that relates to the solvent
+ Parameter that relates to the cation
− Parameter that relates to the anion

In the recent years, physics-based continuum models of batteries
have become increasingly popular, both at academic and industrial
scale, such that numerous simulation codes emerged (either pro-
prietary or open-source). Among the different physics-based models
these codes rely upon,1 the pseudo-2 dimensional model by Doyle,
Fuller, and Newman (DFN) from the mid-90’s has been the most
popular.2–4 In this model, the transport of species in the electrolyte is
modeled using the concentrated solution theory (Onsager-Stefan-
Maxwell -OSM- equations), and the electrolyte is treated as binary
(i.e., a mixture of a salt and a single solvent) although battery
electrolyte formulation can be somewhat complex (e.g., mixtures of
a number of solvents, a salt and/or additives). Flux-explicit equations
are derived using the solvent as the reference species in the
expressions of the cation and anion flux densities. The solvent
velocity is assumed to be zero, regardless of whether an ion-
conducting polymer2 or a liquid electrolyte3,4 is considered. Later
on, Dees et al. reported a battery model in which electrolyte
transport equations are based on the volume-averaged velocity of the
electrolyte.5 This model, built upon the seminal work by Newman
and Chapman,6 was used to simulate impedance spectroscopy.
Although Dees et al. would not mention it explicitly, and unlike
the DFN battery model, the convection due to the buildup of azE-mail: Charles.delacourt@u-picardie.fr
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density gradient across electrodes and separator is properly ad-
dressed with the set of transport equations they use in their model.
Compared to those of the DFN model, these equations require two
additional parameters, namely the partial molar volumes of salt Vē

and solvent V0̄ of the electrolyte. Nyman et al. used a slightly
different approach to analyze the relaxation potential of a Li-Li
symmetric cell and arrived at electrolyte transport equations
equivalent to those of Dees et al.7 Liu and Monroe published a
comprehensive work, shedding light on the effects of volume
redistribution induced by density gradients (denoted as excluded-
volume effects) and faradaic convection due to the moving elec-
trode/electrolyte boundaries during electrochemical reactions at the
interfaces.8,9 They conclude from this study that both of these effects
are relevant when modeling nonaqueous electrolytes such as those
used in Li-ion batteries.

When modeling experimental battery data, it is common practice
to rely on electrolyte properties from the literature or from online
databases.10,11 This raises the question of whether the intended
application is compatible with the model formulation used to
determine the selected model parameters. This issue is extensively
discussed in the literature when it comes to the differences between
parameters determined using the concentrated or dilute solution
theories.12 There has also been some works comparing parameter
values used in OSM and (Poisson-)Nernst-Planck theoretical
frameworks.13,14 In this work, we rather focus on the influence of
accounting for density-gradient-driven convection phenomena on
the determination of the transport properties, within the OSM theory
framework, building upon the detailed theoretical work by Liu and
Monroe.8,9 The importance of accounting for convection due to local
changes in density has been recently re-stated in a recent review on
physics-based model parametrization, because it may skew the
values of salt diffusion coefficient and cation transference
numbers.11 In the present work, we carefully examine two analytical
methods that allow the determination of the salt diffusion coefficient
and the cation transference number, namely the restricted diffusion
method6,15–17 and the steady-state polarization method,12,18 respec-
tively. Through a careful derivation of the transport equations, we
demonstrate that the restricted diffusion method provides us with
different diffusion coefficients, the nature of which depends on the
underlying model assumptions. On the contrary, the steady-state
polarization method is invariant with the underlying assumption of
ignoring convection or not. Nevertheless, a spurious transference
number is obtained if the input diffusion coefficient is misleadingly
selected a priori. These theoretical results are illustrated by applying
these two methods to simulations used as surrogate data.

Transport Equations for the Concentrated Binary Electrolyte

A binary electrolyte is considered here, wherein a multivalent salt
M Xz z( ) ( )ν ν

+ −
+ − dissolves into a solvent “0”. The flux densities of the

cation and the anion are expressed as (Eqs. 12.8 and 12.9 of Ref. 19)

N c v
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c
c

i t

z F
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e
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where the solvent velocity is used as the reference. Notations are
similar to those in Ref. 19 and are listed in the list of symbols.

If another reference velocity is used, then the flux density
expressions would need reworking. For instance, if the volume-
average velocity is used (Eq. 13 from Ref. 6), then flux densities
read:

N c v
c V

RT
c

i t

z F
cv , 3T

e
0
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□

N c v
c V

RT
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cv , 4T

e
0

0ν
ν

μ ν⃗ = ⃗ = −
¯
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⃗

+ ⃗ [ ]− − −
− −

−
−

□

in which Q from original equations in Ref. 6 is conveniently set to
zero, and the volume-average velocity is defined as6

v c V v cV t v t v . 5e0 0 0
0 0⃗ = ¯ ⃗ + ¯ ( ⃗ + ⃗ ) [ ]□
− + + −

The electric potential is introduced by means of an arbitrary
electrochemical reaction that is defined as

s X s M s M s M ne , 6z z
k0 0

species in the solid phase

∑+ + + ⇌ [ ]−
−

+
+ −

in which neutral species in the solid phase of the electrode may be
involved. The ionic current density is expressed by using the
MacInnes equation (Eq. 12.27 of Ref. 19)

i
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s c

nc
. 7e
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At this stage, it is convenient to introduce a so-called Fickian salt
diffusion coefficient D that relates to a salt concentration gradient c∇
in the flux expressions (Eqs. 3 and 4) instead of the thermodynamic
diffusion coefficient  that relates to a gradient of the salt chemical
potential .eμ∇ This is done following Eq. 12.13 of Ref. 19

c V

RT
c D c. 8T

e
0

ν
μ

¯
∇ = ∇ [ ]

From a thermodynamic derivation of eμ∇ =

RT RT1 1 ,
d f

d c

c

c

d

d m c V

c

c

ln

ln

ln

ln

1

0 0( ) ( )ν ν+ = + γ∇
¯

∇± ± the Fickian diffusion

coefficient is expressed as (Eq. 12.12 of Ref. 19)
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γ

= + = ¯ + [ ]± ±

which we denote as the diffusion coefficient in the molal scale in this
work.

The symmetric cell.—Let us consider a symmetric cell that relies
on the above arbitrary reaction 6 at both electrodes. In this cell, the
electrodes are considered planar, so that the problem is treated along
a single dimension (1D) across the cell. The reaction occurs
cathodically at one electrode and anodically at the other, so that
the electrolyte composition remains unchanged in average. Although
the problem is 1D, for the sake of simplicity in notations, we keep
them general in the following, except for the boundary conditions.
To model the cell operation, the set of governing equations includes
a mass balance on, e.g., the anion of the salt

c

t
N , 10ν ∂

∂
= −∇⋅ ⃗ [ ]− −

the MacInnes Eq. 7, an equation of state

c V cV 1, 11e0 0̄ + ¯ = [ ]

a mass balance on the solvent

c

t
N c v , 120

0 0 0
∂
∂

= −∇⋅ ⃗ = −∇⋅( ⃗ ) [ ]

and a current balance

i 0. 13∇⋅ ⃗ = [ ]
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After the anion flux is replaced by its expression 2 in mass balance
10, and the current density is replaced by its expression 7 in current
balance 13, the remaining variables to solve for are the electric
potential, the salt and solvent concentrations, and the solvent
velocity.

The cell is such that the bottom electrode is immobile, whereas
the top electrode is mobile (Fig. 1).

The boundary conditions are such that Faraday equations for, e.
g., anion, apply at the boundary between the immobile electrode and
the electrolyte

N cv
s

nF
i 14bottomν⃗ − ⃗ = − ⃗ [ ]− −

−

Another boundary condition specifies the solvent velocity

N c v c v v
s

nF
i 15bottom bottom0 0 0 0

0⃗ − ⃗ = ( ⃗ − ⃗ ) = − ⃗ [ ]

In the above two equations, vbottom⃗ denotes the velocity of the
boundary of the immobile electrode, which is due to the deposition/
stripping of solid species, and it relates to the current density
according to8

v
s V

nF
i 16bottom

k kspecies in the solid phase
∑

⃗ = −
¯

⃗ [ ]

At the mobile electrode, the velocity of the boundary is such that

v v
dL

dt
e , 17top bottom x⃗ = ⃗ + ⃗ [ ]

with L the thickness of the electrolyte layer that is expressed as

L
A

V dn
A

V dn
1 1

, 18e 0 0∫ ∫= ¯ + ¯ [ ]

where A is the cross-section area of the cell that is taken as a
constant, i.e. any volume change of the electrolyte results into a
change of the interelectrode thickness. It is customary to assume that
partial molar volumes of solvent and salt are not composition
dependent. With this assumption, the electrolyte density varies
linearly with the salt concentration according to

M
M V

V
c

M

V
, 19e0

0

0

0
⎜ ⎟
⎛
⎝

⎞
⎠

ρ = −
¯

¯ + ¯ [ ]

in agreement with experimental data for a number of electrolytes (e.
g., in Ref. 20). With constant partial molar volumes, it results from
Eq. 18 that the electrolyte thickness L is invariant, and from Eq. 17,
it results that boundaries of immobile and mobile electrodes move at
the same velocity v .bottom⃗ Under these conditions, the solution of the
problem is not affected by the moving boundaries, as discussed by
Liu and Monroe.8 Therefore, the movement of the boundary due to
the possible formation/consumption of solid products/reactants at the
electrode surface is ignored in the following, or in other words,
positions and velocities are defined in a referential that is immobile
with respect to the boundaries for simplicity. Hence, boundary
conditions 14 and 15 simplify to

N
s

nF
i , 20⃗ = − ⃗ [ ]−

−

and

N
s

nF
i , 210

0⃗ = − ⃗ [ ]

respectively. Finally, a boundary condition requires that the potential
is set to zero at a boundary (reference point for potential). and

another condition either specifies the current density or the electric
potential of the electrolyte at the other boundary.

Now, if using the framework based on volume-average velocity,
the mass balance Eq. 10 on anion reads

c

t
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z F
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that on cation reads
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∂
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+ +

□

and that on solvent reads

c

t
D c c v 240

0 0
∂
∂

= −∇⋅(− ∇ + ⃗ ) [ ]□

Multiplying Eq. 23 by Vē and Eq. 24 by V ,0̄ summing, and using the
equation of state Eq. 11 to simplify (reminding that partial molar
volumes are assumed constant), it comes

V
i t

z F
v 0, 25e

0
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which requires that

v V
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z F
cst, 26e

0

ν
⃗ = − ¯

⃗
+ [ ]□ +

+ +

The integration constant cst is determined from the boundary
conditions on v ⃗□ at the immobile electrode (obtained by using
Faraday’s equations and Eq. 5 and rearranging)

v
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which holds true throughout the cell. The integration constant reads
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. 28e
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Figure 1. Schematics of the symmetric cell.
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The mass balance on anion, after the volume-average velocity is
replaced by its expression (Eq. 27) becomes

D c t c V c cV1 ,

29
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V s
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The boundary condition on anion flux (Eq. 20) states that
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Substitution of the right hand side term of Eq. 27 for the volume-
average velocity in Eq. 30 yields
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It can be shown that an equivalent expression as Eq. 31 is derived if
the boundary condition on the cation flux is used instead.

In case reaction (6) is M M z ez
solid− + ⇄+

+
− (i.e., s s 0,0 = =−

s 1,= −+ and n z= +), mass balance Eq. 29 simplifies to
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and the boundary condition Eq. 31 becomes
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Transport Equations When Solvent Velocity is Set to Zero

In the literature, the solvent is often taken as the reference species
in flux expressions, instead of the convenient derivation using the
volume-averaged velocity by Newman and Chapman. In this
situation, it is customary to simplify the treatment of transport by
assuming v0 is small enough for the convection term to be zero in
Eqs. 1 and 2.2–4 The symmetric cell problem laid out above is
simplified because there is no longer the need to solve for the mass
balance on solvent (Eq. 12). After inserting the flux expression
(Eq. 2), the mass balance on the anion (Eq. 10), becomes
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At this stage, notice that Eq. 32 (which is suitable when the
electrochemical reaction includes neither the solvent nor the anion)
differs from Eq. 34 (that has no condition on either s0 or s−). The

difference is there as long as 1
c V

d c

d c
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ln0 0

0= −¯ differs from one. In

this work, we introduce a so-called salt diffusion coefficient in the
molar scale as
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Likewise, an anion transference number t 0 ′− is defined such that

t t c V 360 0
0 0′ = ¯ [ ]− −

Nyman et al. refer to this anion transference number as a
transference number with respect to room.7 This has been scrutinized

more recently by Hou and Monroe, who denote it as an anion
transport number t− instead of the notation here.21

Restricted Diffusion Method to Determine the Diffusion
Coefficient

The full problem (with convection included).—Harned and French
carried out an analysis of the relaxation of the concentration profile in a
cell of length L over time, based on the dilute solution theory.15 Based
on appropriate boundary conditions, similar to what was laid out above,
with an additional condition on current density across the cell to be zero,
Newman and Chapman demonstrated that (at sufficiently long relaxa-
tion time) the time dependence of the concentration difference across
the cell cΔ is described by the following equation6,16
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with A1 a coefficient that depends on the initial concentration profile
across the cell.16 A potential difference can be measured between the
working terminal electrodes used to form the concentration profile,
from which the concentration difference c∆ is inferred from the Mac
Innes Eq. 7 after the current is set to zero17
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At long relaxation time, once electrolyte composition is nearly
uniform across the cell (and as a consequence, electrolyte thermo-
dynamic and transport properties), an integration of the potential
across the cell reads

39
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A plot of f tln− ΔΦ = ( ) at long relaxation time is nearly linear, and

has a slope of .D

L

2

2
π Note that the diffusion coefficient that is derived

from the slope relates to the thermodynamic one according to Eq. 9,
hence it is in the molal scale.

The simplified problem (with convection ignored).—When
using a model in which convection is ignored, mass balance 34 is
used instead of mass balance 32, and the concentration difference
now reads

c c c A
D t

L
2 exp , 40top bottom 1

2

2
⎜ ⎟
⎛
⎝

⎞
⎠

πΔ = − ≈ − ′ [ ]

and a plot of f tln− ΔΦ = ( ) at long relaxation time is linear and has

a slope of ,D

L

2

2
π ′ where D′ is in the molar scale.

Determination of the Transference Number with the Steady-
State Polarization Method

The full problem (with convection included).—From an equili-
brium state, a potentiostatic step (or a galvanostatic pulse) is applied
until the system is at steady state. The potentiostatic step consists in
applying a constant potential bias to the cell whereas the galvano-
static pulse consists in applying a constant current to the cell. Under
these conditions, and considering a situation where s s 0,0 = =− the
anion flux

N
c V

RT
c
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z F
c V 41T

e
0

0

0 0
ν
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∇ −
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is zero across the cell, implying that
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⃗
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From MacInnes Eq. 7, the gradient of chemical potential of the salt
is eliminated in Eq. 42 so that

i N1 , 43ss e ssκ⃗ ( + ) = − ∇Φ [ ]
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Note that with s 1,= −+ which implies z n,=+ Ne simplifies to
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which is equivalent to the equation in Balsara and Newman.18 Using
Eq. 9, it may be convenient to introduce a Fickian diffusion
coefficient in Ne
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Just after the potentiostatic step (or the galvanostatic pulse) is
applied, MacInnes Eq. 7 boils down to

i 470 0κ⃗ = − ∇Φ [ ]

If a potentiostatic step is applied, then

i
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e0
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If a galvanostatic pulse is applied, then
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0ΔΦ
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The simplified problem (with convection ignored).—In this
situation, the anion flux N− is given by Eq. 2 after the convection
term is taken out. Just like in the case with convection, N− is zero
across the cell, leading to
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However, the assumption of ignoring convection in this method is
not necessary because the steady state condition requires that v 0,0⃗ =
thereby cancelling the convection term anyway. An immediate
consequence is that the above equation is identical to that obtained
for the full problem, with convection included (Eq. 42). When
convection is ignored, the measured diffusion coefficient using the

restricted diffusion method is the salt diffusion in the molar scale
and is given by Eq. 35. Therefore, except for Eq. 46, one eventually
arrives at the same equations as those laid out above for the case
with convection. It follows that

N
RT

F z
t

D c

1
. 51e

d f

d c

2 2
0 2

ln

ln( )κ ν
ν

=
( )

( )
+

′
[ ]

+ +
−

±

Balsara and Newman arrive at an expression of Ne that follows
Eq. 46, which implies that their analysis of diffusion coefficient and
transference number accounts for convection effects.18 In their
analysis, Doyle and Newman expressed Ne using Eq. 51, rather than
Eq. 46. Although not clearly laid out by the authors, it implies that
they rely on a diffusion coefficient in the molar scale, i.e.,
determined from a formulation where convection is neglected.12

On a final note, in the limit of c V 1,0 0̄ → or in other words when

0,d c

d c

ln

ln
0 → it comes that 1 1

d

d m
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ln

ln

ln
+ ≈ +γ± ± and D D .≈ ′

However, this limit is questionable for concentrated solutions such
as battery electrolytes, as further discussed in the next section.

Deviation On Diffusion Coefficient and Transference Number

The relative deviation between the diffusion coefficient in the
molal and molar scales is expressed as

D
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Because the determination of the transference number with the
steady-state polarization method relies on that of the diffusion
coefficient, the relative deviation of transference number is derived
from that of diffusion coefficient
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Examples of calculated deviations between D and D′ at c = 1
mol/L are reported in Table I for a couple of electrolytes by relying
on published datasets. Results indicate that the deviations are not
negligible, in particular for electrolytes for which cVē substantially
differ from zero. The error on transference number calculated with
Eq. 53 (resulting from the use of a diffusion coefficient in the molal
scale in Eq. 51 or a diffusion coefficient in the molar scale in Eq. 46
is reported in the same table and has values higher than 10% for all
selected electrolytes.

Analysis of Simulations with and Without Convection Using the
Restricted Diffusion Method and the Steady-State Polarization

Method

In this part, we generate surrogate data from a mathematical model
of a Li-Li symmetric cell that undergoes a current pulse of 10 h,
followed by a 10 h relaxation. The set of governing equations and
corresponding boundary conditions that are used in the model are
provided in Table II, which also shows how equations are modified
whether convection is accounted for or not. Input parameters are
typical of those determined for a 1 M LiPF6 in ethylene carbonate/

Table I. Relative deviations of diffusion coefficients in molal and molar scales and relative errors on transference numbers determined from the
steady-state polarization method.

Vē (10−6 m3/mol) t 0
+

D

D

Δ (%)
t

t

0

0
Δ +

+
(%) References

LiPF6 in EC:DEC (1:1 wt.) (T = 25 °C) 61.2 0.176 6.5% 15.3% 22
LiPF6 in EC:DEC (1:1 wt.) (T = 25 °C) 56.8 0.165 6.0% 15.2% 20
LiPF6 in PC (T = 25 °C) 58.86 0.22 6.3% 11.1% 21
LiTFSI in PEO-5K (T = 90 °C) 134.5 0.35 15.5% 12.7% 23
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diethyl carbonate (1:1 in weight) electrolyte, and are provided in
Table III along with literature sources they are selected from. Note that
lithium-metal working electrodes are assumed ideally polarizable, i.e.,
there is no kinetic limitation for charge transfer. Experimentally, a way
to get closer to the simulated cell potential may consist in placing
lithium reference electrodes (by means of e.g., luggin capillaries) to
sense the electrolyte potential just outside of the double layer of each
working electrode. The potential measured between the two reference
electrodes is free of any polarization at the working electrodes.

Simulations are run with Dumbat program,24 based on a control-
volume formulation for the discretization of the set of equations, and
Crank-Nicholson method is used to evaluate time derivatives. There
are 100 nodes across the electrolyte layer and there is an adaptive
time stepping between 0.1 and 500 s.

Simulated cell potential from the model that accounts for
convection is represented as a blue line in Fig. 2, whereas that
from the model that ignores convection is represented as a red line.
Voltage traces in (a) show poorly noticeable differences between the

Table II. Set of governing equations and boundary conditions used for the galvanostatic simulation. It is appropriate for a univalent electrolyte
( z z 1ν ν= = = − =+ − + − ), along with s 1= −+ and s s 00= =− for the electrochemical reaction (Eq. 6) that is used to define the electric potential.

Li foil/electrolyte boundary Electrolyte domain Li foil/electrolyte boundary
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t
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F e
0app= − ∇ − ( − ¯ )( − )− + for the case with convection included and N D c t c t1 1

i

F

D

cV

i

F
0

1
0app

e

app= − ′∇ − ( − ) = − ∇ − ( − )− + − ¯ + for the case
with convection ignored.

Figure 2. Simulated cell voltage for a Li-Li symmetric cell with parameters typical of a LiPF6 in EC:DEC (1:1 in weight) electrolyte (Table III), for a 10 h
galvanostatic pulse at i 0.1 mA cm ,app

2= − followed by an OCV period. Simulation either accounts for convection (blue line) or not (red line). (a) linear plot, (b)
semilog plot. Bold lines are linear fits of cell voltage at long relaxation time, used to determine the diffusion coefficient.
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two case studies, suggesting that ignoring convection only has a little
effect, given the set of input parameters and operating conditions.

In Fig. 2b, a small difference is visible during the cell voltage rise
under current and the voltage decrease at medium time of the
relaxation, showing a faster dynamics for the case in which convection
is ignored. However, as discussed in the theory part of this work, there
is no influence of neglecting convection both at initial time and when a
steady state is reached during the pulse. Therefore, the transference
number determined using the steady-state polarization method is
unchanged whether or not convection is neglected.

When representing cell potential in a log scale (Fig. 2b), a marked
difference is now visible on the potential decay at long relaxation time.
The slope of the linear variation that is seen in the semilog plot is
larger in absolute value for the model without convection (red line),
which translates to a larger value of the diffusion coefficient derived
from the slope, as displayed in Table IV.

An examination of the results in Table IV confirms the theoretical
development laid out in the theoretical section:

• D′ (diffusion coefficient in the molar scale) is determined from
the slope of f tln− ΔΦ = ( ) when convection is ignored (Eq. 40).
Hence, it is the formulation by Doyle and Newman that is
appropriate to derive the cation transference number from the
steady-state polarization method (Eq. 51).

• D (diffusion coefficient in the molal scale) is determined from
the slope of f tln− ΔΦ = ( ) when convection is accounted for
(Eq. 37). Using the steady-state polarization method, the proper
cation transference number is obtained from the formulation by
Balsara and Newman (Eq. 46).

Conclusions

In this work, a careful derivation of Onsager-Stefan-Maxwell
transport equations for a concentrated binary electrolyte is carried
out, with an emphasis on convection due to electrolyte density
gradients. Electrolyte transport equations used in the regular DFN

battery model discards convection phenomena, whereas some other
battery modeling works do account for it. When convection is
discarded, anion and cation flux-explicit transport equations derived
from the OSM theory rely on a so-called diffusion coefficient in the
molar scale, denoted as D′ herein. On the contrary, when accounting
for convection due to density gradients, the OSM flux equations rely
on diffusion in the molal scale which is denoted as . These two
diffusion coefficients relate to each other through Eq. 35.

Experimental methods to measure the diffusion coefficient such
as the restricted diffusion method, which is quite popular for battery
electrolytes, yield a different result depending on whether convec-
tion is accounted for or not. Such differences may be substantial;
they are in the order of 5% to 15% in the example electrolytes we
selected in Table I.

Because the diffusion coefficient is used to derive other transport
properties, such as the cation transference number, this transference
number itself will vary as well depending on whether convection is
accounted for or not. With the steady-state polarization method,
differences on yielded values of cation transference numbers amount
to 10%–15% for the electrolytes selected as examples in Table I of
this work.

As a concluding statement of the above results, it is brought to the
reader’s attention that model parameters reported in the literature need to
be handled carefully. In particular, it must be ensured that an input
transport parameter is used in a model that relies on the same hypotheses
as those used in the work it is pulled from. It is clearly outlined by the
analysis of simulated data from the previous section in order to re-derive
diffusion coefficient and cation transference numbers thanks to the
restricted diffusion method and the steady-state polarization method,
respectively. Along with this conclusion, this work emphasizes the need
for tying underlying assumptions to model parameters, in particular when
reporting parameters in the form of a database.10,11

Modelers may have to re-compute parameter values so that they
are compatible with the model formulation into which these
parameters are intended to be used, following the methodology
outlined in the previous section.

Table III. List of model parameters.

Parameter Symbol Value Source

Electrolyte concentration (mol m−3) c 1,000 set
Solvent concentration (mol m−3) c cV

V0
1 e

0
= − ¯

¯
10,584 calculated

Thickness of the plain electrolyte layer (m) L 0.003 set

Partial molar volume of the solvent (m3 mol−1) V0̄ 8.87 10−5 22
Partial molar volume of the salt (m3 mol−1) Vē 6.12 10−5 22

Diffusion coefficient (molal scale) (m2 s−1) D 2.49 10−10 22
Diffusion coefficient (molar scale) (m2 s−1) D D

c V

D

cV1 e0 0
′ = =¯ − ¯

2.65 10−10 calculated

Conductivity (S m−1) κ 0.789 20
Cation transference number with respect to the solvent t 0

+ 0.183 22

Thermodynamic factor (molal scale) 1
d

d c

ln

ln
α = + γ± 1.548 22

Thermodynamic factor (molar scale) 1
d f

d c c V

ln

ln 0 0
α′ = + = α

¯
± 1.649 calculated

Table IV. Values of diffusion coefficient and cation transference number derived from surrogate data (numerical simulations of Fig. 2) using a
linear fit of the logarithm of voltage relaxation at long time and the steady-state polarization method, respectively.

Convection ignored Convection

Diffusion coefficient from slope of f tln− ΔΦ = ( ) in m2 s−1 D’ = 2.66 10−10 D = 2.49 10−10

Cation transference number from the steady-state polarization method
−using Balsara equation (Eq. 46) 0.156 0.183
−using Doyle equation (Eq. 51) 0.183 0.208
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