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We propose a simple numerical procedure to approach the symbol of a self-adjoint linear operator A by using trace estimates with numerical data. The Symbol Approximation Method (SAM) is based on an adaptation of the matrix trace estimator to successive distinct numerical spectral bands in order to build a piece-wise constant function as an approximation of the symbol σ of A. The decomposition of the spectral interval into band of frequencies is proposed with several approaches, from the formal spectral to the multi-grid one. We apply the new method to different operators when discretized in finite differences or in finite elements. The SAM is also proposed as a tool for the modeling of waves equations, and is presented a means to capture an additional linear damping term in hydrodynamics models such as Korteweig-de Vries or Benjamin Ono equations.

Introduction

The knowledge of the the symbol of an operator is an important and practical question which arises in different applications, e.g., when finding a missing (linear) term in a PDE to take into account a phenomena and then to enrich the model ; it can be also related to preconditioning techniques for differential operators (find a simple operator to approach a given one in order to build a simple preconditioner).

Indeed, in a number of situations, a physical model has to be corrected (or enriched) by taking into account phenomena that have been ignored at first. For instance, in hydrodynamics, the damping of waves is observed experimentally, and a still challenging question is its mathematical representation, see, e.g. [START_REF] Chehab | Numerical Study of a family of dissipative KdV equations[END_REF][START_REF] Chehab | On Damping Rates of dissipative KdV equations[END_REF][START_REF] Dumont | Numerical investigation of asymptotical properties of solutions to models for water waves with non local viscosity[END_REF][START_REF] Dumont | Numerical analysis of a water wave model with a nonlocal viscous dispersive term using the diffusive approach[END_REF][START_REF] Dutykh | Viscous-potential free-surface flows and long wave modeling[END_REF][START_REF] Ott | Nonlinear theory of ion acoustic wave with Landau damping[END_REF][START_REF] Ott | Damping of solitary waves[END_REF]. The most common approach is to try to express the damping force with a linear monotone self-adjoint operator A; in particular cases it can be obtained by a formal derivation, but it can give rise to tricky expressions difficult to be handled and implemented numercially [START_REF] Dutykh | Derivation of a Viscous Serre-Green-Naghdi Equation : An Impasse ?[END_REF][START_REF] Meur | Derivation of a viscous Boussinesq system for surface water waves[END_REF]. Another approach on which we concentrate here consists in approaching A by using experimental or numerical samples.

However, approximating the eigenvalues of A is not sufficient to approach the symbol σ of A since σ relies the frequency number to the eigenvalues. Also σ is intrinsic to the operator. Practically, we propose to extract information on the symbol of the operator through sequences of linear systems

AW (k) = R (k) , k = 1, , N,
where A is a n × n discretization matrix of A; W (k) and R (k) are given; (λ k A ) n k=1 and (σ A (k) k k=1 ) denote respectively the eigenvalues and the symbol of A. Computing the coefficients of A is of course too costly, it is also to strongly related to the discretization scheme, and notably its dimension. We propose to approach σ by a piece-wise constant function on successive band of frequencies. This necessitates to produce an approximation of a mean value of the symbol in a given band of frequencies.To this end we apply trace estimates techniques based on sample vectors and scalar product (see also [START_REF] Ubaru | Applications of trace estimation techniques[END_REF]):

T race(A) = N k=1 λ k A ≈ n N k=1 < AW (k) , W (k) > N k=1
< W (k) , W (k) > , giving directly the mean value µ of the eigenvalues as

µ = N k=1 λ k A n = N k=1 σ A (k) n ≈ N k=1 < AW (k) , W (k) > N k=1 < W (k) , W (k) > .
The approximation of the symbol on band of frequencies is proposed considering the decomposition of the numerical frequencies interval I = [1, n] of A into m sub-intervals as

I = m-1 j=0 I j = m-1 j=0 [k j + 1, k j+1 ].
If we have at our disposal linear filters Π j which allow to extract the eigen-components of a vector associated to eigenvalues belonging in I j , then we can consider the local mean value estimates

µ j ≈ N k=1 < AΠ j W (k) , Π j W (k) > N k=1 < Π j W (k) , Π j W (k) > , j = 1, • • • , m.
The number µ j is then proposed as a estimate of the mean value of eigenvalues of A in I j , and we can build the piecewise constant function

σ m (x) = m j=1 µ j χ I j (x),
as and approximation of k → σ(k), where χ I j (x) denotes the characteristic function of the interval I j , j = 1, • • • m. The separation of band of frequencies (exact or approached) can be done with different techniques: spectral methods, multilevel methods (including multi-grid and hierarchical methods).

The article is organized as follows. In Section 2 we first recall basic and useful results on the estimate of the trace of a matrix using samples that we relay to a mean value estimate of the eigenvalues. Then, we can the define Symbol Approximation Method by first considering the spectral decomposition, applying the mean value estimates of to eigenvalues to successive band of frequencies. In Section 3 we adapt SAM to finite differences or finite elements discretization by using sequences of discretization (such as multi-grid techniques) to produce numerical filter band of frequency. We give illustrations of the multi-grid SAM (MSAM) when applied to different self-adjoint operators, their symbol is captured in a satisfactory way. In Section 4 we consider applications of multilevel SAM to time dependent problems. We first present the way the multilevel SAM can be applied to approach the symbol of a damping differential operator. We apply the method on damped dispersive models as Korteweig-de Vries (KdV) and Benjamin Ono (BO) equations. The numerical computations have been done using Matlab R and Freefem++ [25].

2 Numerical Approximation of the symbol: the spectral case 2.1 Approximation of a matrix and of its trace using samples

Approximation of matrix coefficients

Let A be a matrix in M n (R). We would like to compute the coefficients of A using a sequence of linear systems

AW (k) = R (k) , k = 1, • • • , N, (1) 
where (W (k) ) N k=1 and (R (k) ) N k=1 are two given sequences of vectors of R n , related by [START_REF] Abdelouhab | Nonlocal models for nonlinear dispersive waves[END_REF]. This problem is related to the the least square problem min

A∈Mn(R) N k=1 AW (k) -R (k) 2 .
(

The functional Φ(A) = N k=1 AW (k) -R (k) 2 is convex and coercive, the minimum values are reached at the critical points satisfying

N k=1 (AW (k) -R (k) )W T k = 0, or A N k=1 (W (k) (W (k) ) T ) = N k=1 (R (k) (W (k) ) T ), which is equivalent to (2) iff W = [W (1) W (2) • • • W (N )
] is full rank.

We begin with the following simple but useful result:

Proposition 2.1 Let (W (k)
) N k=1 and (R (k) ) N k=1 be two given sequence of vectors of R n There exists a unique matrix A ∈ M n (R) such that

AW (k) = R (k) , k = 1, • • • , N if and only if the matrix [W (1) W (2) • • • W (N )
]. is full rank. In such a case, A is given by A = T S -1 where

S = N k=1 W (k) (W (k) ) T and T = N k=1 R (k) (W (k) ) T Proof. The proof is classical.
Of course, as examples of sequence W k we can consider the case S = W W T = γId, where γ ∈ R * + .This occurs trivially when W K = e k , the k-th element of the canonical basis of R n , it is obviously too costly in practice to consider the whole collection of vector e k . To reduce the computational cost of the problem, it is natural to consider the approximations (A j ) j≥1 of A using the truncated sum

A j S j = T j , j = 1, • • • , N, where S j = [W (1) W (2) • • • W (j) ][W (1) W (2) • • • W (j) ] T and T j = [R (1) R (2) • • • R (j) ][W (1) W (2) • • • W (j) ] T .
Note that W (k) can be a rectangular matrix n × s matrix.

Another strategy consists in choosing (W (k) ) N k=1 as a Bernoulli test vector (or matrix) or a Hadamard matrix (for which W (k) (W (k) ) T = nId). We recall the following two choices of samples of interest:

• Bernouilli test vector or matrices (also as i.i.d Rademacher random variables). They are defined by (P r((W

(k) i = ±1) = 1/2).
• Hadamard Matrices. Following the Sylvester construction, we start from the partitioned matrix

H H H -H .
Starting from H 1 = [1] it generates the sequences of 2n × 2n matrices In Figure [START_REF] Abdelouhab | Nonlocal models for nonlinear dispersive waves[END_REF], we give an illustration of the approximation of the coefficient of the laplacian matrix when using both Hadamard and Bernouilli samples; we observe that the convergence is slow in both the cases.

H 2 k = H 2 k-1 H 2 k-1 H 2 k-1 -H 2 k-1 = H 2 ⊗ H 2 k-1 , k ≥ 1.

Approximation of the trace of a matrix using samples

Let A ∈ M n (R). Consider the problem min D∈Mn(R),D Diagonal A -D 2 F , (3) 
which solution is D = diag(A). Here . F denotes the Frobenius norm. We consider the simplest case when D = αId so we look to

min α∈R A -αId 2 F . (4) 
This last problem solves easily: we set φ(α) = A -αId 2 F , we find that the minimum is reached for

α = < A, Id > F < Id, Id > F = trace(A) n = n k=1 λ k n .
If A is only known trough a sequence of matrix-vector products (1), α will be approached numerically such as minimizing

N k=1 AW (k) -αW (k) 2 .
We find

α opt = N k=1 < AW (k) , W (k) > N k=1 < W (k) , W (k) >
. We then obtain the following approximation of the trace

T race(A) n N k=1 < AW (k) , W (k) > N k=1 < W (k) , W (k) > .
From the previous relation, taking (W (k) ) i = ±1 with equiprobability, 1 2 , we find

T race(A) 1 N N k=1 < AW (k) , W (k) >,
and we recover the method given proposed in [START_REF] Hutchinson | A stochastic estimator of the trace of the influence matrix for Laplacian smoothing splines[END_REF], then studied and applied, e.g. in [START_REF] Avron | Ramdorized algorithms for Estimating the Trace of an implicit symmetric Positive Semi-Definite Matrix[END_REF][START_REF] Bai | Some large-scale matrix computation problems[END_REF][START_REF] Ubaru | Applications of trace estimation techniques[END_REF]; more generally, let (W (k) ) N k=1 can be a sequence matrices of size n × s and we have

T race(A) ≈ 1 N s N k=1 < (AW (k) ), W (k) > F . (5) 
We now recall the result from [START_REF] Avron | Ramdorized algorithms for Estimating the Trace of an implicit symmetric Positive Semi-Definite Matrix[END_REF][START_REF] Hutchinson | A stochastic estimator of the trace of the influence matrix for Laplacian smoothing splines[END_REF] which gives a justification of the above formula:

Lemma 2.2 Let A be an n × n symmetric matrix with trace(A) = 0. Let z be a random vector whose entries are i.i.d Rademacher random variables (P r(zi = ±1) = 1/2). z T Az is an unbiased estimator of trace(A) i.e., E(zT Az) = trace(A), and

V ar(z T Az) = 2 A 2 F - n i=1 A 2 ii .
As an illustration, we display in Figure [START_REF] Avron | Ramdorized algorithms for Estimating the Trace of an implicit symmetric Positive Semi-Definite Matrix[END_REF], the approximation of the trace of the laplacian matrix when using both Hadamard and Bernouilli samples ; we observe that the the convergence is fast in both the cases. Relativ error We make now a simple but important remark regarding the applications we look to: when the matrix A is known only through matrix-vector products AW k = R k the trace estimation (5) writes as

Computation of trace(A) using Hadamard and Bernouilli samples

T race(A) N N k=1 < R (k) , W (k) > m k=1 < W (k) , W (k) > . ( 6 
)
and particularly when (W (k) ) i = ±1 with equiprobability, 1 2 , we obtain

T race(A) 1 N N k=1 < R (k) , W (k) >.

Estimates of spectral mean values on band of frequencies

Let A be a symmetric matrix of M n (R). We introduce the following notation:

• σ A (k) is the value of the numerical symbol of the matrix A for the frequency number A

• σ is the symbol of the operator A.

Before presenting the method, we make the following remark: the eigenvalues λ k A of A coincide with the values of σ A , however, the numbers σ A (k), k = 1, • • • , n are numbering in the increasing order of the frequency number k. Hence

n k=1 λ k A = n k=1 σ A (k).
We first consider the so-called spectral approach. Let A be a symmetric matrix. A being diagonalizable. We decompose the numerical frequency interval I = [1, n] as

I = ∪ m-1 j=0 I j ,
where

I j = [k j + 1, k j+1 ], k 0 = 0, k m = n, k j < k j+1 .
Let (w j ) n j=1 be the eigenvectors of A defined by the relations Aw j = σ A (j)w j , j = 1, • • • , n. We insist on the fact that

{λ k A , k = 1, • • • , n} = {σ A (k) k = 1, • • • , n}
, however the eigenvalues of A are not necessarily numbered in the increasing order of the numerical frequencies. We denote by

L j = span(w k j +1 ..w k j+1 )
and by P j the (k j+1 -k j ) × n-matrix P j = [w k j +1 ..w k j+1 ] T . The orthogonal projector onto L j is then

Π j = P T j P j . For any u ∈ R n , we can write u = n i=1 ûi w i , so Π j (u) = k j+1 i=k j +1
ûi w i and, since A and Π j commute, and Π 2 j = Π j , j = 1, • • • , m, we have

< AΠ j u, Π j u > < Π j u, Π j u > = < AP j u, P j u > < P j u, P j u > = k j+1 i=k j +1 û2 i σ A (i) k j+1 i=k j +1 û2 i . Now, for a sequence of vectors u ( ) ∈ R n , = 1, • • • , N , we define µ j = N =1
< AP j u ( ) , P j u ( ) > N =1 < P j u ( ) , P j u ( ) > .

We have then

µ j = k j+1 i=k j +1 N =1 ( û 
( ) i ) 2 σ A (i) k j+1 i=k j +1 N =1 ( û 
( ) i ) 2
, so

µ j = k j+1 i=k j +1 γ i σ A (i), with γ i = N =1 ( û 
( ) i ) 2 k j+1 i=k j +1 N =1 ( û 
( ) i ) 2 ∈ [0, 1], k j+1 i=k j +1 γ i = 1.
R j is then a convex combination of λ i and is proposed as an estimator of

k j+1 =k j +1 σ A k j+1 -k j
, the mean value of the partial symbol in the numerical frequency number interval [k j + 1, k j+1 ]. Indeed, we have

µ j = N =1 < (P T j AP j )u ( ) , u ( ) > N =1 < P T j P j u ( ) , u ( ) > .
When u is a random vector whose entries are i.i.d Rademacher random variables, we have

µ j = N =1 < (P T j AP j )u ( ) , u ( ) > N (k j+1 -k j ) .
At this point, we observe that, when u is a random vector whose entries are i.i.d Rademacher random variables, we obtain, applying Lemma 2.2,

E(u T A j u) = trace(P T j AP j ) = k j+1 =k j +1 σ A ( ), j = 1, • • • , m,
where

A j = P T j AP j , j = 1, • • • , m. Therefore µ j = k j+1 =k j +1 σ A ( ) k j+1 -k j .
Remark 2.3 This approach applies to the approximation of matrices expressed as B -1 A, which is related to generalized eigenvalues problems Au = λBu. This situation arises when considering finite elements discretization, as we will see later on. The ration µ j is then replaced by

µ j = N =1 < (P T j AP j )u ( ) , u ( ) > N =1 < P j Bu ( ) , P T j u ( ) >
As pointed out above, when the matrix A is known only through matrix-vector products A(P j u ( ) ) = v ( ) j the trace estimation writes as

µ j = m =1 < v ( ) , (P j u ( ) ) > m =1 < (P j u ( ) ), B(P j u ( ) ) > . ( 7 
)
We resume as follows the spectral Symbol Approximation Method (SAM) to approach the spectrum of the generalized eigenvalue problem Algorithm 1 : Spectral SAM 1: Given the projectors

P j , j = 1, • • • , m and a sequence of samples (u ( ) ) N =1 and (v ( ) ) N =1 ∈ R n satisfying the relations Bu ( ) = v ( ) , 2: for = 1, • • • , N do 3: for j = 1, • • • m, do 4: Compute v ( ) j = A(P j u ( ) ) 5: Set N j = N j + < v ( ) , (P j u ( ) ) > 6:
Set D j = D j + < (P j u ( ) ), (P j u ( ) ) >

7:

end for 8: end for 9:

for j = 1, • • • m, do 10: Set µ j = N j D j 11: end for 12: Set σ m (x) = m j=1 µ j χ I j (x)
At this point we give the following result:

Proposition 2.4 Let A ∈ M n (R) be a symmetric matrix with symbol σ A . Decompose the numerical frequency interval I = [1, n] as I = ∪ m-1 j=0 [k j + 1, k j+1 ] where I j = [k j + 1, k j+1 ], k 0 = 0, k m = n, k j < k j+1 .
Then, the numbers µ j , j = 1, • • • , m defined by Algorithm (1) satisfy

σ A j ≤ µ j ≤ σAj , j = 0, • • • , m.
where σ A j = min p∈I j σ A (p) and σAj = max p∈I j σ A (p)

Proof. Let (w k ) n k=1 be the orthonormal eigenvectors of A, with the numbering

Aw k = σ(k)w k , k = 1, • • • , n. Let now j ∈ 0, 1, • • • , m be fixed. We have Π j u ( ) = k j+1 p=k j +1 û( ) p w p and (AΠ j u ( ) ) = k j+1 p=k j +1 λ p û( ) p w p . Therefore σ A j N =1 k j+1 p=k j +1 (û ( ) p ) 2 ≤ N =1 < A(Π j u ( ) ), Π j u ( ) > = N =1 k j+1 p=k j +1 σ(p)(û ( ) p ) 2 ≤ σAj N =1 k j+1 p=k j +1 (û ( ) p ) 2 .
We have then

σ A j ≤ µ j = N =1 < A(P j u ( ) ), P j u ( ) > N =1 < (P j u ( ) ), (P j u ( ) ) > = k j+1 p=k j +1 σ(p)(û ( ) j,p ) 2 ≤ σAj 2.

Illustrations

Finite differences discretization

We first consider A as the discretization matrix of the laplacian on [0, 1] with periodic boundary conditions. We take n = 256 and a bandwidth m = 4 (the length of each band-with is then 32). In The coefficient of x 2 is 9.48 π 2 , which is rather good and fits very well with the laplacian's symbol leading term . The large values of the other coefficients are attribuable to the size of the bandwidth. The sample vectors are of Bernoulli type.

In space dimension 2, the symbol defines a surface that we fit with a polynomial of the two variables x and y. The computed symbol of the operator is σm (x, y) = 1.0e + 04 (6.702518213669119 -4.960659057862875x -5.612707457168954y) +1.0e + 04 0.672528694583729(

x 2 + y 2 ) ,
which is a correct result allowing to propose the laplacian as the operator A, see Figure (4).

Finite Elements discretization

We represented in Figure [START_REF] Bona | Singularity formation in the generalized Benjamin-Ono equations[END_REF] the approximation of the symbol of A = -∆ in a square domain with holes.

The SAM method allows to capture in a very satisfactory way σ. 3 The Multigrid Symbol Approximation Method (MSAM)

Derivation of the method

In the practical cases, the matrix A will be the discretization of a (local or nonlocal) differential operator which symbol can be assumed as a function defined on the spectral domain of -∆. Hence, the eigenvalues of A are related to the natural frequencies of the domain, says to the eigenvalues λ i of -∆. Computing these numbers can be costly, and a way to select a band of frequencies is to use numerical filters that will replace the projectors P j . A classical procedure to realize numerically a separation of band of frequencies is to use grids or meshes of different characteristic mesh-size: this consists in handling different level of discretization (and associated spaces of approximation), from the coarsest to the finest, each one with a limited capability to capture a set of frequencies (by Nyquist's frequency sampling theorem). The coarse spaces allow to represent only signals supported by low frequencies while the fine ones cover a large band. Consider the solution of the linear system

Ax = b,
Here A corresponds to the discretization matrix of an operator A but its coefficients are not known, A is only known through matrix-vector products; this e.g. is the case when A is a Schur complement. In such a situation the use of Krylov methods is recommended and the numerical resolution is of course more efficient with the use of a pre-conditioner. The problem here is then to build a pre-conditioner of A without using the coefficient of A. A way to overcome this difficulty is then to approach the symbol σ of A by a simple polynomial (or rational function) σm . The pre-conditioner of A is then built as a discretization matrix of the operator of symbol σ m .

To this end, we can of course apply the SAM method as presented above.

We first introduce here a simple variant of SAM when a sequence of matrices A is known, say when we have at our disposal discretization of A with different d.o.f. Let A 1 and A 2 be two discretization matrices of A of size n 1 × n 1 and n 2 × n 2 , respectively, with n 2 > n 1 . On the one hand the trace approximation coming from the consistency of the discretization gives:

trace(A 1 ) n 1 i=1 σ(k), trace(A 2 ) n 1 i=1 σ(k) + n 2 i=n 1 +1 σ(k),
where k → σ(k) is the symbol of A.

On the other hand, the trace estimation of the SAM gives

σ1 = trace(A 1 ) n 1 N =1 < A 1 W ( ) 1 , W ( ) 1 > N i=1 < W ( ) 1 , W ( ) 1 > , σ2 = trace(A 2 ) n 2 N =1 < A 2 W ( ) 2 , W ( ) 2 > N i=1 < W ( ) 2 , W ( ) 2 > 
.

Here W ( )

1 ∈ R n 1 and W ( ) 2 ∈ R n 2 , = 1, • • • , N , are two sequences of sample vectors.
Now, applying the trace estimation, we deduce directly from above

µ 1 = σ1 , (8) 
µ 2 = 1 n 2 -n 1 (n 2 σ2 -n 1 σ1 ) (9) 
More generally let n j , j = 1, • • • , m be integers labelled in the increasing order. We consider the m matrices A j of sizes n j × n j . We denote by λ k , k ≥ 1 the eigenvalues of A and λ

(j) k , k = 1, • • • , n j the ones of A j .
The trace approximation results gives:

Algorithm 2 : MSAM method 1: Compute σj = N =1 < A j W ( ) j , W ( ) j > N i=1 < W ( ) j , W ( ) j > 1 n j trace(A n j ) , j = 1, • • • , m 2: Initialization µ 1 = σ1 3: for j = 2, • • • m, do 4: Set µ j = 1 n j -n j-1
(n j σj -n j-1 σj-1 )

5: end for

6: Set σ m (x) = m j=1 µ j χ [n j-1 +1,n j ] (x)
Here W ( )

j ∈ R n j , = 1, • • • , N
, are the sequences of sample vectors.

Remark 3.1 The expression giving µ j from σj and σj-1 in Algorithm ( 4) is nothing else but a (simple) extrapolation formula; more general extrapolations techniques could be considered to improve the predictive formula, we refer to [START_REF] Brezinski | Convergence acceleration during the 20th century[END_REF][START_REF] Brezinski | Extrapolation Methods. Theory and Practice[END_REF], e.g., for general techniques and surveys.

Proposition 3.2 Let A be a self-adjoint positive definite operator and A n j a sequence of n j × n j discretization SPD matrices of A. We note by σ(k) > 0 the symbol values of A and σ A j (k) those of A n j . We introduce the error e (k,j) = σ(k) -σ A j (k).

We have the relations:

i.

µ j - 1 n j -n j-1 n j k=n j +1 σ(k) = 1 n j -n j-1 n j k=1 e (k,j) - n j-1 k=1 e (k,j-1)
ii.

1 - 1 n p σAp ≤ np j=1 n j -n j-1 n p µ j ≤ σAp , p = 2, • • • , m.
Proof. The proof is established by direct computations.

Applications in spectral Fourier discretization

As a first illustration, we look to the performance of the MSAM method for approaching the symbol of a band-limited filter which symbol is θ(k) = 1 if 50 < k < 100, 0 else, say, a characteristic function in Fourier space. We display the comparison between the initial symbol and its approximation in Figure [START_REF] Brezinski | Convergence acceleration during the 20th century[END_REF].

The result is quite satisfactory, the symbol being difficult to approach; FFT are used to build the matrix vector product with θ in the physical space. 

Applications in finite differences

As a first illustration, we compare in Figure [START_REF] Brezinski | Extrapolation Methods. Theory and Practice[END_REF] the capability of the MSAM method to approximate the symbol of the laplacian matrix, when using spatial discretization schemes of order 2, 4 and 6, the two last ones being built with compact schemes. In all the cases, we remark that the approached symbol is very closed to the exact symbol for the low frequencies: this is due to the very good approximation of the first eigenvalues by the discretization scheme, the accordance is even better when considering the high accurate compact schemes (order and 6), as expected by formula i. of Proposition 3.2.

We now consider the operator

A = 100(-∂ 2 x )(1000 -∂ 2 x ) -1 which symbol is σ(k) = 100π 2 k 2 1000 + π 2 k 2
, and a sequence of finite differences discretization matrices. We plot in Figure [START_REF] Cabral | Chaos for a damped and forced KdV equation[END_REF] the approximated spectrum, the fitted curve, and the exact symbol. The nonlinear least-square fitting gave

σ m (k) = 8.2614 + 2.0832.π 2 k 2 2.5260 + 0.0208π 2 k 2
The first part of the symbol, which corresponds to the low frequencies, is not as well represented as in the laplacian case (see preceding remarks on Proposition 3.2). However, the result can be considered as relatively satisfactory since only matrix vector product have been used. 

x ) -1 , with 4th order discretization schemes. Nmax=275, N=50, m=6

As a second type of illustration we give application of the MSAM method to approximation of the spectrum of the Schur complement (or Uzawa's discrete operator) of the generalized Stokes problem:

αu - 1 Re ∆u + ∇p = f, in Ω =]0, 1[ 2 (10) divu = 0 in Ω, (11) 
u = 0 ∂Ω, (12) 
here u = (u, v) is the velocity field and the scaler p is the pression. The Uzawa operator is formally

U = div αu -1 Re ∆ -1
∇. When α = 0, U it is closed to the Re Id but for large values of α, U can be approached by a laplacian with Neumann Boundary conditions (see [START_REF] Peyret | Computational Methods for Fluid Flow[END_REF]), and an the Schur complement of the Uzawa-type method needs to be pre-conditionned in this case. The (second order) discretization of the Stokes system on a MAC mesh with finite differences reads as

αU + 1 Re A u .U + B x P = 0, ( 13 
)
αV + 1 Re A v .V + B y P = 0, (14) 
B T x U + B T y V = 0, (15) 
with natural notations. The Schur Complement is

S = B T x (αId + 1 Re A U ) -1 B x + B T y (αId + 1 Re A V ) -1 B y .
The results of the MSAM method are displayed in Figure ( 9) for α = 0. We observe that expect the lowest eigenvalues close to 0, 83 Re most of the other ones are concentrated around Re = 1000; this agrees with [START_REF] Crouzeix | Approximation et méthodes itératives de résolution d'inéquations variationelles et de problèmes non linéaires, I.R.I.A[END_REF][START_REF] Crouzeix | On an operator related to the convergence of Uzawa?s algorithm for the Stokes equation[END_REF] . Now we take α = 1000, so U -∆. In Figure [START_REF] Calgaro | Séparation des échelles et schémas multiniveaux pour les équations d'ondes non-linéaires[END_REF] we display the computed MSAM approximation of the symbol of S, and we compare it with the one of the discrete Laplacian, the eigenvalues being ranged in the increasing order. Then, we use the well-known pre-conditioner given by Cahouet and Chabard [START_REF] Cahouet | Some fast 3d finite element solvers for the generalized Stokes problem[END_REF] as a symmetric pre-conditioner of S build of (incomplete) Cholesky factors of the negative Laplacian matrix (associated to Homogeneous Diirichlet Boundary conditions), and we observe that it is concentrated around the point (1, 0) in the complex plane. 

Applications in Finite Elements

First of all, we must adapt the trace estimation formula. We consider for the sake of simplicity the homogeneous Dirichlet problem on the regular open and bounded domain Ω ⊂ R 2,3 ; the problem is discretized in finite elements on a (regular) triangulation T h on which the finite elements space V h is built. We obtain the linear system

A h u h = M h f h ,
where A h is the stiffness matrix and M h the mass matrix; h is the characteristic mesh-size of the triangulation. The trace estimation formula writes here as

.eps T race(

A h ) n N k=1 < A h W k , W k > N k=1 < M h W k , W k > .
where W k ∈ R n , k = 1, • • • , N are sample vectors representing sample functions of V h . We have set n = dim(V h ). Now, to display the SAM method in a multi-grid like framework, we can consider an embedded sequence of finite element spaces, from the coarsest V h 1 to the finest V hm , with

V h 1 ⊂ V h 2 ⊂ • • • ⊂ V hm ,
but also, in a more general way, increasing dimensional finite elements spaces,

dim(V h 1 ) < dim(V h 2 ) < • • • < dim(V hm ),
not necessarily embedded, and it will be the case for the numerical illustrations we present hereafter. We denote by A h j the associated stiffness and by M h j , the mass matrices j = 1, • • • , m. We set n j = dim(V h j ).

Algorithm 3 : MSAM method in Finite Elements

1: Compute λj N k=1 < A h j W (j) k , W (j) k > N k=1 < M h j W (j) k , W (j) k > 
.

2: Initialisation µ 1 = λ1 3: for j = 2, • • • m, do 4: Set µ j = 1 n j -n j-1 n j λj -n j-1 λj-1 5: end for 6: Set σ m (x) = m j=1 µ j χ [n j-1 +1,n j ] (x)
Remark 3.3 It is not necessary in practice to have embedded finite elements spaces to apply the MSAM method, say T h j ⊂ T h j+1 , j = 1, • • • , m -1, as illustrated below.

The reader will find in [START_REF] Kuttler | Eigenvalues of the laplacian in two dimensions[END_REF] a extensive description of the eigenvalues and the eigenfunctions of the laplacian in space dimension two, for a number of domain shapes. Identitykit Spectrum Exact Operator Spectrum 

Hierarchical methods

Another way to decompose a signal into a set of components, each one attached to a band of frequencies is the hierarchical approach. The separation of the components (or filtering) is realized considering several levels of discretization, as in the multi-grid methods in finite differences or finite elements. The leading idea is based on a numerical filtering of the solution; this principle can however be applied to other discretization such as wavelets [START_REF] Mallat | A Wavelet Tour of Signal Processing[END_REF], or spectral methods [START_REF] Costa | Time marching techniques for the nonlinear Galerkin method[END_REF]. We recall here briefly hereafter the hierarchy process in finite differences. We first consider for simplicity 2 levels of grid in the 1D case. The use of different levels of discretization allows to decompose a signal (or values of a function at given grid points) into mean part and oscillatory (fluctuent) part. As in multi-grid frameworks we consider two levels of discretization: given h = 1 2n , the coarse grid

G 2h = {x i = 2hi, i = 0, • • • n -1} and the fine grid G h = {x i = ih, i = 0, • • • 2n -1}.
The filtering consists in computing proper local average of the function u at the grid points of G h ⊂ G 2h and to leave unchanged the values of u at the grid points of G 2h ; the resulting vector ū carries low frequencies components of u the high ones are smoothed by the average procedure; the resulting signal z = u -ū is a high modes correction of ū to u. The local average is based on a interpolation scheme and that the separation is more efficient when a high order compact scheme is applied, see [START_REF] Chehab | Stabilization and Numerical Filtering for the Modeling and the Simulation of time dependent PDEs[END_REF][START_REF] Chehab | Incremental Unknowns Method and Compact Schemes[END_REF] and the references therein.

We can resume the process with the two following steps:

• Step1 (Hierarchization): rewrite the vector of unknown as u = (y,

u f ) t ; y ∈ G 2h , u f ∈ G h \ G 2h • Step 2 (linear change of variable) replace u f by z = u f -R(Y ), where R : G 2h → G h \ G 2h
is a p-th order linear interpolation scheme; we have then z = O(h p ) for regular signals, the simplest one being the mid-point interpolation:

z 2i+1 = u 2i+1 -1 2 (u 2i + u 2i+2 ) = O(h 2
). Higher interpolation schemes can be implemented using compact schemes.

As an illustration we represent hereafter by a crux × the grid points belonging to G 2h and those of G h \ G 2h by a circle o , and by . the points at the boundaries: 

× o × o × o × o . . . . . . . . . . o o o o o o o . . o × o × o × o . . o o o o o o o . . o × o × o × o . . o o o o o o o . . o × o × o × o . . o o o o o o o . . . . . . . . . .
G 2 d h ), G 2 d h ⊂ • • • G 2h ⊂ G h ,
we can rely the original (nodal) components to the new ones as

     y u f 1 . . . u f d      = S      y z 1 . . . z d     
, with obvious notations. Matrix S is called the transfer matrix. A a general construction in space dimension 2 and 3 is presented in [START_REF] Chehab | Incremental Unknowns Method and Compact Schemes[END_REF].

We give hereafter as an illustration in Figures [START_REF] Chehab | On Damping Rates of dissipative KdV equations[END_REF] and ( 15) the decomposition of approximation of u(x) = sin(100x(1 -x)) at the fine grid points of G h into several levels of oscillatory components, when second and fourth order interpolation formula are used respectively for the change of variable S. We observe that the fine grid corrections are smaller when using a higher order interpolation scheme. To apply the SAM method, we must handle vectors of the same dimensions. We write

u =      y u f 1 . . . u f d      = S           y 0 . . . 0      +      0 z f 1 . . . 0      + • • • +      0 0 . . . z f d           = ũ1 + • • • ũm (16) 
We can now present the method as follows:

Algorithm 4 : Hierarchical SAM (HSAM)

1: Initialization: S 1,j = S 2,j = 0, j = 1, • • • , m 2: for k = 1, • • • N do 3: Decompose W k as W k = W (1) k + • • • + W (m)
k following formula [START_REF] Chen | Decay of solutions to a water wave model with nonlocal viscous dispersive term[END_REF] 4:

for j = 1, • • • m do 5: Compute S 1,j = S 1,j + < A W (j) k , W (j) k > 6: Set S 2,j = S 2,j + < W (j) k , W (j) k > 7: 
end for 8: end for 9:

for j = 1, • • • m do 10: Compute µ j = S1 j S2 j 11: end for 12: Set σ m (x) = m j=1 µ j χ [n j-1 +1,n j ] (x)
We give hereafter in Figures [START_REF] Chen | Decay of solutions to a water wave model with nonlocal viscous dispersive term[END_REF] and ( 17) the approximation of the spectrum of the negative laplacian matrix in space dimensions 1 and 2 respectively. 

Sample mean Spectrum mean data1

Figure 17: Finite differences discretization. HSAM for the 2D Laplacian n = 127 2 , A is n × n-2d order discretization scheme (column 1), 4th order discretization scheme (column 2). Second order Filter (2d order interpolation scheme).

On the influence of the accuracy of the discretization schemes

We here give a description of the error of the SAM method. Let A n ∈ M n (R) be a symmetric matrix, obtained by a consistent discretization of the operator A. We note by σ An the numerical symbol of A n and by σ A the one of A. We consider the decomposition of the numerical frequency interval [1, n] as

[1, n] = ∪ m-1 j=0 [k j + 1, k j+1 ].
For a given sequence of sample vectors (W (k) ) N k=1 ∈ R n , the error of the SAM method satisfies the estimate:

|σ A (k) - N =1 < AW ( ) j , W ( ) j > N i=1 < W ( ) j , W ( ) j > | ≤ |σ An (k) -σ A (k)| + |σ An (k) - N =1 < AW ( ) j , W ( ) j > N i=1 < W ( ) j , W ( ) j > |, k j + 1 ≤ k ≤ k j+1 , ∀j = 1, • • • , m.
This is a simple consequence of the triangular inequality. It allows to decompose the error

E = E 1 + E 2 into E 1 = σ An (k) -σ A (k)
which depends only on the discretization scheme (and its accuracy), and

E 2 = N =1 < AW ( ) j , W ( ) j > N i=1 < W ( ) j , W ( ) j >
-σ An (k), which depends on the "quality" of the sample vectors and of the capability of the numerical filtering to separate group of frequencies. We now can give the following result:

Proposition 3.4 Let A n ∈ M n (
R) be a symmetric matrix, obtain by a consistent discretization of the operator A. We note by σ An the numerical symbol of A n and by σ A the one of A. We consider the decomposition of the numerical frequency interval [1, n] 

as [1, n] = ∪ m-1 j=0 [k j +1, k j+1 ].
For a given sequence of sample vectors (W (k) ) N k=1 ∈ R n , the error of the SAM method satisfies the estimate: If we assume in addition that for any fixed M ∈ N * , we have:

lim n→+∞ max 1≤k≤M |σ An (k) -σ A (k)| = 0, then, if n is large enough, |σ A (k) - N =1 < AW ( ) j , W ( ) j > N i=1 < W ( ) j , W ( ) j > | ≤ 2|σ An (k) - N =1 < AW ( ) j , W ( ) j > N i=1 < W ( ) j , W ( ) j > |, ∀k ≤ M.
Proof. The inequality shows that the more accurate is the discretization scheme, the smaller is the error term E 1 so, for n large enough and for a fixed M , we obtain the result.

We now give an illustration of this result by considering the approximation of the symbol of A = -∆ on ]0, 1[ associated to Homogeneous Dirichlet Boundary conditions. We consider the discretization of A by 2d, 4th and 6th order discretization schemes, the two last ones being obtain by using compact scheme, [START_REF] Lele | Compact Difference Schemes with Spectral Like resolution[END_REF], we used N = 50 sample Rademacher vectors. Figure [START_REF] Crouzeix | Approximation et méthodes itératives de résolution d'inéquations variationelles et de problèmes non linéaires, I.R.I.A[END_REF] gives an illustration of Proposition 3.4: we observe that passing to the 4th and 6th order discretization schemes of -∆, MSAM gives a very satisfactory approximation σ. Also, in this context, the multi-grid filtering is effective. Symbol of - 

SAM for time dependent problems

In a number of situations, a physical model has to be corrected (or enriched) by taking into account phenomena that have been ignored at first. For instance, in hydrodynamics, the damping of waves is observed experimentally, and a still challenging question is its mathematical representation, see, e.g. [START_REF] Chehab | Numerical Study of a family of dissipative KdV equations[END_REF][START_REF] Chehab | On Damping Rates of dissipative KdV equations[END_REF][START_REF] Dumont | Numerical investigation of asymptotical properties of solutions to models for water waves with non local viscosity[END_REF][START_REF] Dumont | Numerical analysis of a water wave model with a nonlocal viscous dispersive term using the diffusive approach[END_REF][START_REF] Dutykh | Viscous-potential free-surface flows and long wave modeling[END_REF][START_REF] Ott | Nonlinear theory of ion acoustic wave with Landau damping[END_REF][START_REF] Ott | Damping of solitary waves[END_REF]. The most common approach is to try to express the damping force with a linear operator B; in particular cases it can be obtained by a formal derivation, but it can give rise to tricky expressions difficult to be handled and implemented numercially [START_REF] Dutykh | Derivation of a Viscous Serre-Green-Naghdi Equation : An Impasse ?[END_REF][START_REF] Meur | Derivation of a viscous Boussinesq system for surface water waves[END_REF]. Another approach on which we concentrate here consists in approaching B by using experimental or numerical samples.

Derivation of the method

We adapt here the numerical approximation to the symbol developed above. Consider the evolution system

∂u ∂t + Au + F (u) = 0, t ∈)0, T ), (17) 
which is valid in absence of damping phenomena. We would like to identify a damping operator by fitting a set of experimental data with the enhanced model

∂u ∂t + Au + F (u) + Bu = 0, (18) 
where B represents the (unknown) damping operator; B is assumed to be time independent, auto-adjoint and positive definite. When discretizing in space the last system we get

du dt + Au + F (u) + Bu = 0, t ∈ [0, T ]. ( 19 
)
Assume that we have at our disposal measured physical data W (t) at discrete times t k ∈ [0, T ]; It is important to precise that the dimension of the differential system is supposed to be fixed, e.g. limited in practice by the size of exprimental mesures W (t). We would like to compute B in such a way to fit with W . To this end we consider a stable time marching scheme, e.g.

W (k+1) -W (k) ∆t + AW (k+1) + F (W (k+1) ) + BW (k+1) = 0,
or, equivalently,

BW (k+1) = - W (k+1) -W (k) ∆t -AW (k+1) -F (W (k+1) ) = R (k+1) , k = 0, • • • , N -1, (20) 
with N ∆t = T . We propose to apply the multilevel SAM as follows:

• The sequence W (k) is supposed to be known, in practice it can be given by experimental measures.

• Compute R (k+1) , k = 0, • • • , N -1 by formula (20),

• Decompose each W (k+1) and R (k+1) using frequency filters Π j , j = 1, • • • , m (spectral, multi-grid or so) into

W (k) j = Π j W (k) and R (k) j = Π j R (k) , j = 1, • • • , m, • Compute S (k) j =< R (k+1) j , W (k) j > and T (k) j =< W (k+1) j , W (k) j >, j = 1, • • • , m,
• Set

µ j = N -1 k=0 S (k) j N -1 k=0 T (k) j , j = 1, • • • , m.

Application to the Korteweg-de Vries equation

We consider the Korteweg-de-Vries model (KdV), which is obtained from Euler's equations by selecting a particular physical regime: small amplitude elevation, large wavelength, unidirectional propagation, see [START_REF] Miranville | Mathematical Modeling in Continuum Mechanics[END_REF]; it addresses then to low frequency regimes. The long time behavior of dissipative asymptotic models is still an important issue: the capture of damping rates in several norms, the measure of regularization effects, the evidence of complex asymptotic dynamics, just to name but a few, are important questions to be considered when trying understand natural phenomena. Mostly, several of these questions are still open and the numerical simulation is a way to capture some properties, to select pertinent models and to develop theoretical as well as practical strategies.

We here focus on KdV equations on the torus T = T(0, L); other dispersive models such as BBM (Bona-Benjamin-Mahony) or BO (Benjamin-Ono) equations could also studied following a similar approach. Damped Korteweg-de Vries equations appear in different physical situations, they can be expressed in a large generality as

u t + B(u) + u xxx + uu x = 0, x ∈ T, t > 0, (21) 
where B is a linear operator, defined on a Hilbert space V , subspace of L 2 with values in L 2 , and satisfying

L 0 B(v)vdx ≥ 0, (22) 
for all function v ∈ V , regular enough, in such a way the L 2 -norm of the solution is decreasing in time as 1 2

d|u| 2 L 2 dt + L 0 B(u)udx = 0. ( 23 
)
We find in the literature different choices for L, depending on the physical situations, see [START_REF] Cabral | Chaos for a damped and forced KdV equation[END_REF][START_REF] Chehab | Numerical Study of a family of dissipative KdV equations[END_REF][START_REF] Chehab | On Damping Rates of dissipative KdV equations[END_REF][START_REF] Chehab | Long-time behavior of solutions of a BBM equation with generalized damping[END_REF][START_REF] Chen | Decay of solutions to a water wave model with nonlocal viscous dispersive term[END_REF][START_REF] Dias | Viscous potentiel free-surface flows in a fluid layer of finite depth[END_REF][START_REF] Dumont | Numerical investigation of asymptotical properties of solutions to models for water waves with non local viscosity[END_REF][START_REF] Dumont | Numerical analysis of a water wave model with a nonlocal viscous dispersive term using the diffusive approach[END_REF][START_REF] Dutykh | Viscous-potential free-surface flows and long wave modeling[END_REF][START_REF] Ott | Nonlinear theory of ion acoustic wave with Landau damping[END_REF][START_REF] Ott | Damping of solitary waves[END_REF] and [START_REF] Jäger | Experiments on KdV Solitons[END_REF] for physical experiments.

A sampling we consider the solution generated by the damped KdV model, starting from a soliton initial datum. The initial datum is

u 0 (x, 0) = α sec 2 (β(x -x0) -C.t), with = 1, L = 100, x 0 = L/2, α = 0.8, C = 2α/6, β = 1 2 √ C .
In Figure [START_REF] Crouzeix | On an operator related to the convergence of Uzawa?s algorithm for the Stokes equation[END_REF], we represent the energy spectrum of u 0 ; we observe that the bandwidth is relatively important. We first display the results when approaching the symbol of the damping operator by local spectral means. The results show a very good agreement and the symbol of the damping operator is very correctly captured. This is also observed for operator like Id, √ -∆.

The results of SAM when using spectral Fourier space discretization are reported in Figure [START_REF] Dias | Viscous potentiel free-surface flows in a fluid layer of finite depth[END_REF]: the

symbols of B = νId, B = -ν ∂ 2 ∂x 2 , B = ν -∂ 2 ∂x 2 and B = ν(Id -∂ 2 ∂x 2
) -1 are very correctly approached by the method. BO equation is rewritten into its conservative form:

u t -∂ x H(u x ) + 1 p + 1 u p+1 = 0 x ∈ R, t > 0, u(x, 0) = u 0 (x) x ∈ R. (25) 
When p = 1, BO possess an infinity of invariants, see [START_REF] Abdelouhab | Nonlocal models for nonlinear dispersive waves[END_REF], from which

I -1 (u) = udx, I 0 (u) = u 2 dx, I 1 (u) = 1 3 u 3 dx -uHu x dx, I 2 (u) = 1 4 u 4 dx - 3 2 u 2 Hu x , dx + 2 u 2 x dx.
When p ≥ 2, they are only 3 invariants:

I -1 (u) = udx, I 0 (u) = u 2 dx, I 1 (u) = 2 (p + 1)(p + 2)
u p+2 dx -uHu x dx, see [START_REF] Bona | Singularity formation in the generalized Benjamin-Ono equations[END_REF] .

We displayed a Sanz-Serna Scheme to simulate the equation and computed approximation to the symbol of the damping operator. We use both the spectral approach and the multi-grid one in finite differences. In Figure [START_REF] Dumont | Numerical analysis of a water wave model with a nonlocal viscous dispersive term using the diffusive approach[END_REF],we represent the estimate of the damping operator B = √ -∆ when spectral Fourier discretization and spectral SAM methods are applied. We observe that the symbol is correctly approached only for low modes: this is due to the spectral profile of the soliton (build only low frequencies). In Figure [START_REF] Dutykh | Viscous-potential free-surface flows and long wave modeling[END_REF], we have represented HSAM applied to finite differences discretization and hierarchical filtering. We observe as above, that the symbol is only well approached for very low frequencies. This is not surprising since the soliton is to poor in frequencies, the approximation of the symbol in the Fourier spectral case is also very limited to the low frequencies, as showed in Figure [START_REF] Dumont | Numerical analysis of a water wave model with a nonlocal viscous dispersive term using the diffusive approach[END_REF]. The numerical procedures proposed in the present work (SAM, MSAM and HSAM) allow to produce a simple, fast and satisfactory approximation of the symbol of dissipative and damping operators, using different technique of discretization (Spectral Fourier, Finite Differences and Finite Elements). Of course natural extensions to orthogonal polynomials of wavelet discretization are possible since they allow to produce a separation of set of frequencies for a given data.

It appears (Proposition 3.4 and illustrations) that the three important ingredients from which depends the efficiency of the approach are:

• The discretization scheme

• The choice of the filtering procedure (Multi-grid or so)

• The choice of the sample (Rademacher, experimental data) Working with samples data that cover an important band of frequencies seems essential to capture the part of the symbol associated to high frequency numbers. This was pointed out when considering KdV then BO equations.

As further developments, we can consider more models in hydrodynamics (such as from Boussinesq's family), and also the application of extrapolation formula to improve the SAM method, as pointed in Remark 3.1.

We can also consider the case in which the damping operator B is time dependent and derive corresponding SAM approximation:

du dt + Au + F (u) + B(t)u = 0, t ∈ [0, T ]. (26) 
The object here to be approached is the "spectrogram" of B. We decompose the time interval [0, T ] as [0, T ] = ∪ q-1 p=0 [t p , t p+1 ] with t 0 < t 1 < • • • < t P = T, Let ∆t > 0 be given, we consider for simplicity the case t p+1 -t p = cst = r∆t for a given integer r. The sequence w (k) satisfies

B k W (k+1) = - W (k+1) -W (k) ∆t -AW (k+1) -F (W (k+1) ) = R (k+1) , k = 0, • • • , N = qr.
We propose to apply the identikit spectral method as follows: let p ∈ 1, • • • , q be fixed • Compute the sequence R (k+1) = -W k+1 -W (k) ∆t -AW (k+1) -F (W (k+1) ), k = (p -1)r + 1...pr

• We decompose W (k+1) ) and R (k+1) using frequency filters Π j , j = 1, • • • , m (spectral, multigrid or so)

• We compute S (k,p) j =< Π j R (k+1) , Π j W k > and T k j =< Π j W (k+1) , Π j W (k) >, k = (p -1)r + 1...pr 
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 1 Figure 1: Matrix estimation with Hadamard and Bernoulli samples n × s, random matrix n × n, n = 4096, s = 16
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 2 Figure 2: Trace estimation with Hadamard and Bernoulli samples n × s, random matrix n × n, n = 4096, s = 16
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 33 Figure 3: Symbol Identikit and its polynomial fitting : the 1D case n = 127, A is n × n
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 45 Figure 4: Spectral Identikit and its polynomial fitting : the 2D case n = 64, A is n 2 × n 2

Figure 6 :

 6 Figure 6: Approximation of the symbol of band-limited filter Nmax=290, N=30, m=15
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 78 Figure 7: Approximation of the Spectrum of the 1D Finite differences laplacian matrix, with 2d and 4th order discretization schemes. Nmax=256, N=20, m=6
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 9 Figure 9: Stokes Problem with α = 0. Spectrum Identikit of the Schur Complement. Re = 1000, m = 12, dof=3025, N=50. The approach symbol is σ m (x, y) = 932.79382.1243 x + 2.1243 y -0.0278(x 2 + y 2 )
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 10 Figure 10: Stokes Problem with α = 1000. Line 1: Spectrum Identikit of the Schur Complement in 2D (left) and 1D (right); Line 2 SAM estimate of the symbol of the preconditioned Uzawa Matrix in the complex plane. Re = 1000, m = 12 , n d.o.f.=3025, N=50. The approach symbol is σ m (x, y) = 8.1173 -0.2429 x -0.2429 y + 0.0111(x 2 + y 2 )
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 11 Figure 11: Top : the successive meshes. Bottom: Homogeneous Dirichlet Problem on Ω =]0, 1[ 2 . Comparison of Identikit Spectrum of the stiffness matrix and of the exact symbol of the negative laplacian. P 1 elements, n.d.o.f = 3721
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 12 Figure 12: Top : the successive meshes. Bottom: Homogeneous Dirichlet Problem on the unit Disk. Comparison of SAM of the stiffness matrix and of the exact symbol of the negative laplacian. P 1 elements, n.d.o.f = 348
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 13 Figure 13: Two levels hierarchical decompositions on the interval with periodic B.C. (left) and on the unit square with Dirichlet BC (right)
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 1415 Figure 14: Multilevel Decomposition of the signal u(x) = sin(100x(1 -x)), N = 127. Second order interpolation
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 16 Figure 16: Finite differences discretization. HSAM for the 1D Laplacian, n = 511, A is n × n-4th order discretization scheme
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 18 Figure 18: Comparisons of the SMA method when using 2d, 4th and 6th order discretization schemes. N = 50, n = 127
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 19 Figure 19: KdV equation-Spectral Fourier discretization in space. Energy spectrum of the initial soliton datum. ν = 1, ∆t = 0.001, L = 100, n = 128 ; Line 1 γId (left) and ∆ (right), Line 2 √ -∆ (left), (1 -∆) -1 (right)
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 20 Figure 20: KdV equation. Approximation of the symbol of the damping operators by spectral local means. ν = 1, ∆t = 0.001, L = 100, N = 128 ; Line 1 γId (left) and ∆ (right), Line 2 √ -∆ (left), (1 -∆) -1 (right)
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 22 Figure 22: Benjamin Ono equation. Approximation of the symbol of the damping operator √ -∆ by spectral local means (left), Spectrum energy of the initial datum (right) n = 64.
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 23 Figure 23: Benjamin Ono equation. Approximation of the symbol of the damping operator √ -∆ by spectral local means. HSMA and 4th order finite differences discretization. n = 64

  p) j , j = 1, • • • , m.

We now consider the multi-grid case in 1D, base on a 4th order interpolation. The discretization is realized with 4th order compact finite differences schemes, we proceed as in see [START_REF] Calgaro | Séparation des échelles et schémas multiniveaux pour les équations d'ondes non-linéaires[END_REF]. 

, the symbol is only well approach for the lower and the higher frequencies, however it appears to be a low-pass filter.

Application to the Benjamin-Ono equation

The Benjamin-Ono equation (BO) describes one-dimensional internal waves in deep water, see [START_REF] Benjamin | Internal waves of permanent form in fluids of great depth[END_REF][START_REF] Ono | Algebraic solitary waves in stratified fluids[END_REF]. It reads as

with p ≥ 1; here H is the Hilbert transform:

The spectrum of B in the interval [t p , t p+1 ] will be approached by the piece-wise constant function based in the sequence λ (p) j , j = 1, • • • , m.