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This work presents a new upper bounding approach, based on Dantzig-Wolfe decomposition and column generation, for a relatively novel problem of designing simple assembly lines to maximize their stability radius under uncertainty in task processing times. The problem considers task precedence constraints, a fixed cycle time, and a fixed number of workstations. This NP-hard optimization problem aims to assign a given set of assembly tasks to workstations in order to find the most robust feasible line configuration. The robustness of the configuration is measured by the stability radius with respect to its feasibility, i.e., the maximum increase in task processing times, for which the cycle time constraint remains satisfied. The reformulation resulting from the Dantzig-Wolfe decomposition is enhanced with valid inequalities and tight assignment intervals are used to reduce the solution space of pricing sub-problems. In addition, a bisection method is proposed as a pre-processing technique to improve the initial upper bound on the stability radius, which is an input for the pricing sub-problem. Computational experiments show that the proposed approach can significantly improve the upper bound on the stability radius for the most challenging instances.

Introduction

Simple assembly lines are manufacturing systems consisting of sequentially ordered workstations connected by a transport mechanism (or conveyor belt). These lines are usually designed for large-scale production of a single type of product. The workstations operate simultaneously and process different tasks sequentially.

All tasks assigned to a workstation must be completed within a certain time C, called cycle time, in order to maintain the production rate. No buffer stocks are allowed. In other words, every C units of time, an item of raw product is fed into the first workstation and then transferred from one workstation to another at the same rate. In this way, one item of finished product is obtained at the end of the line every C time units (see [START_REF] Scholl | Balancing and Sequencing of Assembly Lines, 2nd Edition[END_REF]. Note that a workstation can only process one product item during a cycle time, and each product item can only be processed by one workstation at a time.

In addition, any task has to be fully processed by a single workstation, and precedence constraints should be satisfied. For example, if task i is supposed to be completed before starting task j for some manufacturing reason, then task j can only be assigned to the same workstation as i, or to a downstream workstation.

Equivalently, this precedence constraint forbids the assignment of task j to a workstation upstream of i. Such precedence constraints are often modeled by a directed acyclic graph whose nodes represent tasks, and arcs such as (i, j) indicate that task i needs to be completed before task j starts.

In the literature, two optimization problems, called balancing problems, are generally studied for simple assembly lines (see [START_REF] Scholl | State-of-the-art exact and heuristic solution procedures for simple assembly line balancing[END_REF][START_REF] Battaïa | A taxonomy of line balancing problems and their solution approaches[END_REF]. The first one, denoted as SALBP-1, aims at assigning a given set of assembly tasks to a minimal number of workstations while satisfying the precedence and cycle time constraints. The second problem, referred to as SALBP-2, seeks to minimize the cycle time for a fixed number of workstations. For other related problems, we refer the reader to the surveys: [START_REF] Scholl | State-of-the-art exact and heuristic solution procedures for simple assembly line balancing[END_REF][START_REF] Battaïa | A taxonomy of line balancing problems and their solution approaches[END_REF] and most recently [START_REF] Boysen | Assembly line balancing: What happened in the last fifteen years?[END_REF].

The balancing problem is related to the early stages of the assembly line design process. Therefore, task processing times are often based on estimates or nominal values, as mentioned in [START_REF] Battaïa | A taxonomy of line balancing problems and their solution approaches[END_REF].

These initial values can change during line operation, and deviation from them can deteriorate assembly line throughput if the cycle time is overrun. This can result in significant economic losses. Among the main factors that can lead to deviations in task processing times are: productivity, skill level, operators' fatigue and motivation; changes in product specifications and in workstation characteristics; and general delays in task execution. In this sense, it is desirable to achieve a task assignment to workstations that protects the corresponding line configuration and its throughput as much as possible from the uncertainty of task processing times. In this paper, in order to measure the aforementioned uncertainty, we use the concept of stability radius and address the balancing problem of a simple assembly line with a fixed cycle time and a fixed number of workstations.

The stability radius in the field of assembly line balancing was first introduced by [START_REF] Sotskov | Stability of optimal line balance with given station set[END_REF][START_REF] Sotskov | Stability analysis of an optimal balance for an assembly line with fixed cycle time[END_REF] for SALBP-2 and SALBP-1, respectively. In these papers, the authors assume that an optimal line configuration is already known and calculate its stability radius as the largest magnitude of deviation of the processing times from their nominal values, for which the optimality of the configuration is preserved. They also show that the stability radius can serve as an appropriate robustness measure. However, [START_REF] Sotskov | Stability of optimal line balance with given station set[END_REF][START_REF] Sotskov | Stability analysis of an optimal balance for an assembly line with fixed cycle time[END_REF] pointed out that computing the stability radius with respect to configuration optimality is a very difficult problem, which was confirmed in their later works [START_REF] Sotskov | Enumerations and stability analysis of feasible and optimal line balances for simple assembly lines[END_REF][START_REF] Lai | Stability radii of optimal assembly line balances with a fixed workstation set[END_REF][START_REF] Lai | The stability radius of an optimal line balance with maximum efficiency for a simple assembly line[END_REF], where some efficient full enumeration procedures were developed. Fortunately, in [START_REF] Sotskov | Stability analysis of an optimal balance for an assembly line with fixed cycle time[END_REF], it was proven that computing the stability radius with respect to configuration feasibility only is a polynomially solvable problem for any feasible configuration of SALBP-1. These positive outcomes have inspired several other studies. Thus, in [START_REF] Gurevsky | Balancing of simple assembly lines under variations of task processing times[END_REF], the results obtained for SALBP-1 and SALBP-2 were extended to the SALBP-E problem, whose objective is to minimize the product of the cycle time and the number of workstations used. Then, Gurevsky et al. (2013) adapted the results of SALBP-1, obtained in [START_REF] Sotskov | Stability analysis of an optimal balance for an assembly line with fixed cycle time[END_REF], for the transfer line balancing problem aiming to minimize the equipment cost, where tasks are executed simultaneously by blocks, activated sequentially in the workstations. Finally, [START_REF] Schepler | Solving robust bin-packing problems with a branchand-price approach[END_REF] proposed a branch-and-price method for the bin-packing problem with items of uncertain size. In this last paper, the authors seek a solution with the smallest number of bins, such that the bins with at least one uncertain item have a predefined level of local stability radius.

Instead of computing the stability radius for a given line configuration, a completely new idea was proposed in [START_REF] Rossi | Maximizing the robustness for simple assembly lines with fixed cycle time and limited number of workstations[END_REF] for simple assembly lines, and later in [START_REF] Pirogov | Robust balancing of transfer lines with blocks of uncertain parallel tasks under fixed cycle time and space restrictions[END_REF] for transfer lines. Considering a simple assembly line with a fixed cycle time and a fixed number of workstations, the authors focused on seeking a line configuration with the greatest stability radius with respect to its feasibility. Named SALBP-S, this problem was proven to be NP-hard in the strong sense in [START_REF] Rossi | Maximizing the robustness for simple assembly lines with fixed cycle time and limited number of workstations[END_REF], where the authors proposed a compact mixed-integer linear programming (MILP) formulation to handle it, i.e., a formulation with a polynomial number of constraints and variables. Based on some combinatorial aspects of SALBP-S and aiming to solve it efficiently, Rossi et al. also provided tight upper bounds for small-size instances, but optimality gaps remained significant for the larger ones.

To further reduce these gaps, the present paper proposes a new upper-bounding procedure, based on the Dantzig-Wolfe decomposition for SALBP-S. The MILP model, described in [START_REF] Rossi | Maximizing the robustness for simple assembly lines with fixed cycle time and limited number of workstations[END_REF], is reformulated and strong valid inequalities are introduced to reinforce it. New upper bounds are obtained while solving the model's linear relaxation by column generation. A particularity is that the corresponding pricing sub-problem depends on an existing upper bound. Moreover, solving such a sub-problem can be too time-consuming. These characteristics motivated the use of pre-processing techniques for computing tight task assignment intervals (Section 3) and efficient initial upper bounds (Section 4). As far as the latter is concerned, we propose a bisection method based on destructive improvement bounds (Klein and Scholl, 1999;[START_REF] Scholl | State-of-the-art exact and heuristic solution procedures for simple assembly line balancing[END_REF][START_REF] Pereira | Empirical evaluation of lower bounding methods for the simple assembly line balancing problem[END_REF].

The assignment intervals are computed considering the solution of a single-machine scheduling problem, as in [START_REF] Scholl | State-of-the-art exact and heuristic solution procedures for simple assembly line balancing[END_REF]. Usually referred to as LB4, this strategy is also applied to compute lower bounds for SALBP-1 [START_REF] Scholl | Balancing and Sequencing of Assembly Lines, 2nd Edition[END_REF][START_REF] Scholl | State-of-the-art exact and heuristic solution procedures for simple assembly line balancing[END_REF]. Indeed, [START_REF] Pereira | Empirical evaluation of lower bounding methods for the simple assembly line balancing problem[END_REF] provided an empirical evaluation of lower bounds for the SALBP-1 and concluded that considering precedence relations in the calculation of bounds, as in LB4, is worthwhile. Likewise, such a strategy can produce tighter assignment intervals than the method presented by [START_REF] Patterson | Assembly-line balancing: Zero-one programming with Fibonacci search[END_REF], also applied in the literature (see, for example, [START_REF] Peeters | An linear programming based lower bound for the simple assembly line balancing problem[END_REF][START_REF] Morrison | An application of the branch, bound, and remember algorithm to a new simple assembly line balancing dataset[END_REF]. According to the results, the availability of tighter intervals has a positive impact on the performance of the column generation algorithm.

There are two main reasons for focusing on developing algorithms that return an upper bound on the stability radius. On the one hand, finding good upper bounds informs the decision maker on what can be expected in terms of robustness for a particular problem instance. More generally, it is common to search for lower bounds in the case of minimization problems, as in [START_REF] Arkhipov | An efficient pseudo-polynomial algorithm for finding a lower bound on the makespan for the resource constrained project scheduling problem[END_REF]. On the other hand, the MILP formulation of SALBP-S requires the availability of an upper bound on the objective function value (see constraint (3) in Section 5). The big-M form of this constraint naturally stresses the need for the tightest possible upper bound to achieve good performances. To the best of our knowledge, [START_REF] Rossi | Maximizing the robustness for simple assembly lines with fixed cycle time and limited number of workstations[END_REF] is the only work presenting a method to compute upper bounds for the SALBP-S, and numerical experiments show that the method discussed in Section 4 can improve these bounds at a low computational effort.

A few other works applying Dantzig-Wolfe decomposition can be found in the literature, but for related problems. In the present case, the decomposition allowed the identification of specific valid inequalities that significantly improve the upper bound quality. [START_REF] Peeters | An linear programming based lower bound for the simple assembly line balancing problem[END_REF] study a Dantzig-Wolfe decomposition for the SALBP-1, where the relaxation of the precedence constraints is proposed. Following the same idea, [START_REF] Bautista | Procedures for the time and space constrained assembly line balancing problems[END_REF] adapted the former approach for the case of SALBP-1 with time and space restrictions. In these works, the authors suggested relaxing the precedence constraints in order to reduce the size of the master problem, enhancing performances in terms of computational time. Here, we consider a different type of precedence constraints, which according to [START_REF] Ritt | Improved integer programming models for simple assembly line balancing and related problems[END_REF] dominate the ones used in the aforementioned papers. We present a comparison between different versions of the Dantzig-Wolfe decomposition approach to check if previous strategies proposed in the literature are valid for addressing SALBP-S even with the stronger precedence constraints.

The numerical experiments were conducted on benchmark instances of [START_REF] Otto | Systematic data generation and test design for solution algorithms on the example of SALBPGen for assembly line balancing[END_REF], with 100 tasks.

For the very large instances of 1000 tasks, the linear programming-based approaches tested in this work cannot be applied because of the very large size of the linear programs, indicating that a different strategy may be adopted in those cases. Nevertheless, the bisection method is still able to improve upper bounds for 1000-task instances in a few seconds of computational time.

Other approaches dealing with the uncertainty of task processing times can also be found in the literature.

However, they strongly depend on the availability of extra information related to the uncertainty, which contrasts with the approach considered here. Among the most popular methods, we can distinguish a stochastic method, known as chance-constrained method, which considers task processing times as independent random variables with known probability distributions (see, e.g., [START_REF] Agpak | A chance-constrained approach to stochastic line balancing problem[END_REF][START_REF] Özcan | Balancing stochastic parallel assembly lines[END_REF]. It consists in assigning tasks in such a way that, for each workstation, the probability of satisfying the cycle time is greater than a given value, called confidence level. In the later-mentioned papers, the authors use a MILP formulation of the corresponding problem that incorporates the probabilistic cycle time constraint. From the information expressing the task processing times, they introduce new additional variables using various linearization techniques in order to obtain again a MILP formulation, this time deterministic and equivalent to the probabilistic problem studied. Fuzzy approaches have also been applied, viewing the task processing time values as fuzzy sets, with a known membership function. As in the stochastic case, to assign tasks to workstations, it is necessary to control the cycle time constraint. To do so, an adapted fuzzy arithmetic and an appropriate method dedicated to the comparison of fuzzy sets have to be introduced. Applications of tasks with fuzzy times are presented in [START_REF] Tsujimura | Solving fuzzy assembly-line balancing problem with genetic algorithms[END_REF][START_REF] Gen | Fuzzy assembly line balancing using genetic algorithms[END_REF] for SALBP-1, in Hop (2006) for a mixed-model line balancing, and in [START_REF] Zacharia | A meta-heuristic algorithm for the fuzzy assembly line balancing type-E problem[END_REF], for a bi-objective variant of SALBP-2. Finally, robust approaches can also be found in the literature. This last method assumes that a set of possible scenarios are known a priori and seeks a solution that remains feasible for all scenarios while offering the best possible quality in the worst case. Following this strategy, (Gurevsky et al., 2013a;[START_REF] Pereira | An exact approach for the robust assembly line balancing problem[END_REF] studied the SALBP-1 with intervals of task processing times. Both papers focus on Bertsimas and Sim's robustness, which assumes that at most Γ tasks can take the largest processing time of their intervals at the same time, and the remaining tasks can be considered with the smallest value of their intervals. For this robustness criterion, both papers developed branch-and-bound procedures with different branching strategies and lower-bound processing techniques. The same robustness approach was studied in [START_REF] Hazır | Assembly line balancing under uncertainty: Robust optimization models and exact solution methods[END_REF], but for the SALBP-2 problem, where the authors developed an exact solution procedure similar to Benders decomposition. Finally, a min-max robustness approach was applied in [START_REF] Dolgui | Scenario based robust line balancing: Computational complexity[END_REF] for SALBP-2, but with a discrete set of scenarios. In the latter work, the computational complexity of seeking a robust solution was presented for different types of precedence constraints.

The next section introduces basic definitions, properties, and notations. In the following, Sections 3 and 4 outline the pre-processing techniques, i.e., the computation of assignment intervals, and the bisection method, respectively. The compact MILP formulation of [START_REF] Rossi | Maximizing the robustness for simple assembly lines with fixed cycle time and limited number of workstations[END_REF] is revisited in Section 5, followed by the Dantzig-Wolfe decomposition and the column generation approach, both presented in Section 6. Section 7 provides computational experiments, where we also discuss managerial insights and how to obtain heuristic solutions using the generated columns. Finally, a conclusion is made in Section 8.

Basic definitions and properties

We now define notations used in further statements. Let V = {1, 2, . . . , n} be the set of required assembly tasks and W = {1, 2, . . . , m} be the set of available workstations. It is assumed that two sets of uncertain tasks exist: a set V 1 ⊆ V of a priori uncertain tasks, whose processing time may deviate from its nominal value without any additional information, and a set V 2 ⊆ V of a posteriori uncertain tasks whose uncertainty is caused by a set W ⊆ W of uncertain workstations. These workstations are such that any task allocated to them becomes uncertain (even if it belongs to V \ V 1 ). Hereinafter, the set of all uncertain tasks is denoted as V = V 1 ∪ V 2 , and any workstation from W \ W is called certain. The presence of certain and/or uncertain workstations can be explained by the existence of assembly lines having simultaneously two types of workstations: the ones with automatic tasks, executed by robots or machines, and workstations where tasks are operated manually. Supplementary notations related to the studied problem are given in Table 1.

The stability radius of a feasible solution s ∈ F (t) can be defined as follows (see [START_REF] Sotskov | Stability analysis of an optimal balance for an assembly line with fixed cycle time[END_REF]):

ρ(s, t) = max{ ≥ 0 | ∀ξ ∈ B( ) (s ∈ F (t + ξ))}, where B( ) = {ξ ∈ Ξ | ξ ≤ }.
In other words, ρ(s, t) is defined as the value of the radius of the greatest closed ball B(•), called stability ball.

Any element ξ of B(•) is evaluated based on a given norm • . In [START_REF] Rossi | Maximizing the robustness for simple assembly lines with fixed cycle time and limited number of workstations[END_REF], two norms l 1 ( • 1 ) and l ∞ ( • ∞ ) were used for the stability radius, the latter being the one considered in this work.

By definition, ξ 1 = j∈ V ξ j and ξ ∞ = max j∈ V ξ j . The notation ρ ∞ denotes the stability radius in the l ∞ norm. According to Theorem 2 of [START_REF] Rossi | Maximizing the robustness for simple assembly lines with fixed cycle time and limited number of workstations[END_REF], ρ ∞ is calculated as the minimum value, over all the uncertain workstations, of the idle time divided by the number of assigned uncertain tasks. It can be easily G is a directed acyclic graph (V, A) representing the precedence constraints, where A is the set of arcs; t j is a non-negative nominal processing time of the task j; t is a vector expressing the nominal task processing times, i.e., (t 1 , t 2 , . . . , t n ); F (t) is the set of all feasible solutions with respect to a given vector t;

Ξ is the set of vectors, where each of which presents possible non-negative processing time deviations for the uncertain tasks, i.e., {ξ ∈ R n ≥0 | ξ j = 0, j ∈ V \ V }; C is the cycle time;

V k is the set of all tasks that can potentially be assigned to workstation k;

V k is the set of all uncertain tasks that can potentially be assigned to workstation k,

i.e., V k = V k ∩ V 1 , if k ∈ W \ W and V k = V k otherwise; P j
is the set of all direct predecessors of j in G; P j is the set of all direct and indirect predecessors of j in G; S j is the set of all direct successors of j in G; S j is the set of all direct and indirect successors of j in G;

Q j is the interval [l j , u j ] of workstations that can process the task j ∈ V .

Table 1: Supplementary notations computed in O(n) time. Moreover, the following useful property is a direct corollary from the definition of the stability radius.

Property 1. For any solution s ∈ F (t) and ξ ∈ Ξ such that ξ j = ρ ∞ (s, t), j ∈ V , we have s ∈ F (t + ξ).

This comes from the fact that the stability radius in the l ∞ norm represents the largest increase that can occur in the processing time for all uncertain tasks simultaneously, without losing the feasibility of the admissible solution being studied. In that sense, if those processing times are artificially increased by the optimal ρ ∞ value, an optimal solution will still be found. The discussion in the next two sections is essentially based on such a property. We remind that the present work addresses the problem of maximizing the stability radius in terms of solution feasibility. Since a decrease in task processing times cannot compromise solution feasibility, only positive task processing time deviations are considered.

The following two properties show that adding an extra workstation does not necessarily increase the stability radius, but extending the cycle time does. These properties are used in Section 7.6.2 to help the assembly line manager explore options to improve the stability radius value in a practical context.

Let s be an optimal solution to a problem instance of SALBP-S with m workstations and a cycle time

equal to C. Property 2. If ρ ∞ (s, t
) is set by a workstation that contains a unique task that is uncertain, then adding certain or uncertain workstations does not increase the value of the stability radius. Indeed, the stability radius value is bounded from above by C -t j where task j is uncertain, and this upper bound is reached in s. Hence, adding extra workstations does not change this upper bound on the stability radius.

Property 3. If V is nonempty, increasing the cycle time by a strictly positive amount δ always yields a strictly positive increase of the optimal stability radius value. Indeed, by Theorem 2 of [START_REF] Rossi | Maximizing the robustness for simple assembly lines with fixed cycle time and limited number of workstations[END_REF],

ρ ∞ (s, t) = min k∈W 1 | V k | (C -j∈V k t j ).
Increasing C does not compromise the feasibility of s, and for each workstation

k such that V k is nonempty, 1 | V k | (C + δ -j∈V k t j ) > 1 | V k | (C -j∈V k t j )
holds. Since V is nonempty, the minimum of these terms is finite and increases strictly when δ is strictly positive, so the stability radius value also increases strictly.

Assignment intervals

We now discuss the pre-processing technique for defining tasks' assignment intervals. Such intervals are computed based on representing the studied problem as a single-machine scheduling problem, as proposed in [START_REF] Scholl | Balancing and Sequencing of Assembly Lines, 2nd Edition[END_REF][START_REF] Scholl | State-of-the-art exact and heuristic solution procedures for simple assembly line balancing[END_REF]. Furthermore, we consider the addition of new precedence relations as proposed by [START_REF] Fleszar | An enumerative heuristic and reduction methods for the assembly line balancing problem[END_REF] for SALBP-1.

According to [START_REF] Scholl | Balancing and Sequencing of Assembly Lines, 2nd Edition[END_REF], it is possible to associate each task i ∈ V with its earliest starting time τ i and its latest completion time ζ i . The method computes a lower bound on τ i and an upper bound on ζ i , considering the m parallel workstations as a single machine that can process tasks from time 0 to time m • C.

The calculation of τ i requires solving the scheduling problem 1|r j |C max for P i , the set of all direct and indirect predecessors of i. The release date r j for each task j ∈ P i is set to its earliest starting time. The problem [START_REF] Brucker | Scheduling Algorithms[END_REF]. For a set of tasks denoted by J, we first set C max to zero, and then iteratively update C max = max{C max , r j } + t j for each j ∈ J, in non-decreasing order of r j .

1|r j |C max is polynomially solvable in O(n log n) (see
Once τ i is computed, we consider two well-known rounding strategies to improve τ i (see [START_REF] Scholl | State-of-the-art exact and heuristic solution procedures for simple assembly line balancing[END_REF]. The first verifies if τ i > τi C • C. In this case, it implies that l i = 1 + τi C . Indeed, if there exists a solution where no predecessor of i is executed on workstation l i , then task i can start at time τi C • C on workstation l i , which contradicts the hypothesis τ i > τi C • C. Hence, at least one predecessor j ∈ P i is allocated to workstation l i , and task i cannot start before time τi C • C + t j . Consequently,

τ i = max{τ i , τi C • C + min j∈P i t j }.
The second rounding strategy is presented as follows. Let us define q = τi C , so that a task i starting at time τ i is processed by workstation q + 1. If 1 C (τ i + t i ) > q + 1, then task i cannot be allocated to workstation q + 1, since it cannot span over two workstations. In that case, the earliest starting time τ i is improved to (q + 1) • C. On the contrary, τ i remains unchanged.

For all i in V , we compute ζ i using the same process as for τ i , but considering the tasks of V in the reverse topological order with respect to G. Namely, considering τ r i , a lower bound on the earliest starting time of task i in the reverse topological order, one may set

ζ i = m • C -τ r i .
The bounds of assignment intervals can be tightened further by considering the following situation. As proposed by [START_REF] Fleszar | An enumerative heuristic and reduction methods for the assembly line balancing problem[END_REF], considering i ∈ V , if there exists j ∈ V \P i such that τ i + t i > ζ j -t j , then task j, which is not a predecessor of i, must be completed before task i can start. Consequently, arc (j, i) can be added to A without modifying the solutions of SALBP-S. Such an addition of a precedence constraint implies that j is added to P i , which can lead to an increase in τ i when solving the scheduling problem.

Algorithm 1: Overall approach for reducing assignment intervals Input: Precedence graph G = (V, A) and processing time t j for each task j ∈ V .

Output: Reduced assignment interval Q j = [l j , u j ] for each task j ∈ V .

1. Based on the work of [START_REF] Patterson | Assembly-line balancing: Zero-one programming with Fibonacci search[END_REF], initialize τ i ←

ti+ j∈P i tj C -1 • C and τ r i ← ti+ j∈S i tj C -1 • C for each i ∈ V .
In what follows, let us consider the tasks of V in the topological order with respect to G.

For each task

i ∈ V , set τ i ← max{τ i , f (i)}
, where f (i) is the optimal value of the scheduling problem 1|r j |C max on the tasks of P i . Then, try to improve τ i .

For each task

i ∈ V , set τ r i ← max{τ r i , f r (i)}, where f r (i)
is the optimal value of the scheduling problem 1|r j |C max on the tasks of S i . Then, try to improve τ r i . Finally, compute

ζ i ← m • C -τ r i for each i ∈ V .
4. Try to identify additional precedence arcs, as shown above. If at least one arc has been added to A, repeat Step 2, otherwise go to Step 5.

For each

i ∈ V , compute its assignment interval Q i , where l i ← ti+τi C and u i ← ζi C .
Considering the propositions of [START_REF] Scholl | Balancing and Sequencing of Assembly Lines, 2nd Edition[END_REF], [START_REF] Fleszar | An enumerative heuristic and reduction methods for the assembly line balancing problem[END_REF], and [START_REF] Scholl | State-of-the-art exact and heuristic solution procedures for simple assembly line balancing[END_REF], the overall approach to compute the assignment intervals is summarized in Algorithm 1. For all i ∈ V , the final intervals are defined as

l i = t i + τ i C and u i = ζ i C .
Note that, because of Step 1, the obtained assignment intervals are at least as tight as those returned by [START_REF] Patterson | Assembly-line balancing: Zero-one programming with Fibonacci search[END_REF]. Alternatively, one can say that the method by [START_REF] Patterson | Assembly-line balancing: Zero-one programming with Fibonacci search[END_REF] requires to solve 1||C max , which is a relaxation of 1|r 

|A| = O(n 2 ), consequently, the overall running time is in O(n 4 ).
Finally, notice from Property 1 that if a lower bound LB ∞ on the optimal stability radius is available, one can set (t j + LB ∞ ) as the processing time for any uncertain task j ∈ V 1 while computing l j and u j , which may further reduce the assignment intervals. In the present work, an adaptation of the heuristic proposed by [START_REF] Pirogov | Robust balancing of transfer lines with blocks of uncertain parallel tasks under fixed cycle time and space restrictions[END_REF] is used to obtain an initial lower bound.

Upper bound improvement

A second pre-processing procedure is proposed in this section. Indeed, an upper bound U B ∞ on the optimal stability radius is needed as input for the MILP formulation that will be presented in Section 5.

Based on combinatorial arguments, an upper bound on ρ ∞ was proposed by [START_REF] Rossi | Maximizing the robustness for simple assembly lines with fixed cycle time and limited number of workstations[END_REF], while here we propose a bisection method to improve it.

It is assumed that we have

LB ∞ ≤ ρ ∞ ≤ U B ∞
, where LB ∞ is the best-known value for ρ ∞ (obtained, for example, by using dedicated heuristic methods as mentioned in Section 7.1), and U B ∞ is its best known upper bound, provided combinatorially as in [START_REF] Rossi | Maximizing the robustness for simple assembly lines with fixed cycle time and limited number of workstations[END_REF]. The main idea of the procedure is to temporarily increase the processing time of each uncertain task by a certain amount ∆ and to check whether this makes the problem infeasible or not. This procedure is implemented as a bisection method, which sets the value ∆ in the middle of the interval [L, U ], where L and U are initialized to LB ∞ and U B ∞ , respectively. This procedure is also based on the fact that the presence of an empty assignment interval is a sufficient condition for infeasibility. More precisely, if there exists j ∈ V such that l j > u j , then Q j is empty, and task j cannot be allocated to any workstation. When such a situation occurs, it can be concluded that the current increase in processing times, ∆, is too large. Hence, if no empty assignment interval is found with the increased processing times, then L is updated to ∆, otherwise such an increase causes infeasibility and the upper bound

U is updated to ∆.
The procedure is formally described in Algorithm 2. Each iteration of the bisection method consists of computing ∆ to halve the interval [L, U ]. After increasing the processing time of the tasks by ∆, the assignment intervals are updated and checked, verifying if one of them is empty. The bisection method stops when U -L becomes smaller than a given strictly positive parameter .

Algorithm 2: Improvement of U B ∞ 1 Set L ← LB ∞ , U ← U B ∞ and ← 10 -3 . 2 while U -L > do 3
Compute ∆ ← 1 2 (L + U ) and set t j ← t j + ∆ for each task j ∈ V .

4

For each task j ∈ V , calculate its assignment interval Q j (cf. Section 3).

5

If l j ≤ u j for all j ∈ V , then set L ← ∆. Otherwise, set U ← ∆.

6

For each j ∈ V , restore t j ← t j -∆.

7 Update U B ∞ ← U .

Compact MILP formulation

We now present a compact MILP formulation for SALBP-S. The continuous variable ρ ∞ represents the stability radius to be maximized. In addition, x jk is a binary variable equal to one if and only if task j is allocated to workstation k. The continuous nonnegative variable ξ jk denotes the possible deviation of the processing time of task j on workstation k. Constraints (2) ensure that each task j is assigned to exactly one workstation. As stated in constraints (4), the stability radius is bounded by the minimal perturbation, which is not greater than U B ∞ since it is limited by constraints (3). Note that constraints (2) and (3) guarantee that, among all k ∈ Q j , only one value ξ jk is non-zero for any fixed j ∈ V . Constraints (5) enforce that the total load of each workstation does not exceed C, whatever possible processing time deviations within the stability ball. Remind that if the workstation is uncertain (k ∈ W ), then all tasks assignable to that workstation are a posteriori uncertain:

V k = V k . In contrast, if workstation is certain (k ∈ W \ W ), then V k ⊆ V k .
Note in the left-hand-side of constraint (5) that ξ jk has no impact if j / ∈ V k . Finally, inequalities (6) express the precedence constraints, followed by the domains of variables: (7)-( 9).

Maximize ρ ∞ (1)

k∈Qj x jk = 1, ∀j ∈ V (2)
ξ jk ≤ U B ∞ • x jk , ∀j ∈ V, ∀k ∈ Q j (3) ρ ∞ ≤ k∈Qj ξ jk , ∀j ∈ V (4) j∈V k t j • x jk + j∈ V k ξ jk ≤ C, ∀k ∈ W (5) ui q=k x iq ≤ uj q=k x jq , ∀(i, j) ∈ A, ∀k ∈ Q i ∩ Q j (6) ξ jk ≥ 0, ∀j ∈ V, ∀k ∈ Q j (7) x jk ∈ {0, 1}, ∀j ∈ V, ∀k ∈ Q j (8) ρ ∞ ≥ 0 (9)
Since the goal is to maximize the stability radius, in any feasible assignment there will be a critical workstation k * , where the values of ξ jk * will be equal among all tasks j ∈ V k * assigned to k * , and their sum will be equal to the idle time, so that ρ ∞ can reach its maximum. Also, note that the number of constraints depends on the range of the intervals Q j , j ∈ V . Tighter assignment intervals lead to fewer variables and constraints, which stresses the importance of tightening these intervals (see Section 3). A last remark concerns the influence of U B ∞ . Indeed, lower values of U B ∞ can lead to shorter computation times, which justifies the search for better upper bounds.

Dantzig-Wolfe decomposition

This section presents a Dantzig-Wolfe decomposition of the MILP formulation, discussed in Section 5. Let S denote the bounded set of integer points defined by constraints (3), ( 5), (7), and (8). It is not difficult to see that this set can be decomposed by workstation such that S = S 1 × . . . × S m . In addition, since x is binary, S coincides with B, which is the set of extreme points of the convex hull of S, denoted by conv(S) (see, e.g., [START_REF] Wolsey | Integer Programming[END_REF]. Thus, a reformulation is possible based on the convexification of these extreme points.

Note that variables ξ represent, in fact, the local stability radius for each uncertain task with respect to the workstation where it is assigned. Since we are dealing with the l ∞ norm, these values have to be equal for all uncertain tasks assigned to the same workstation. Therefore, given a point r ∈ B, ρ

k can be defined as the local stability radius at workstation k such that

ρ (r) k = j∈ V k ξ(r) jk / j∈ V k x(r) jk ,
where x(r) jk and ξ(r) jk are respectively the values corresponding to variables x jk and ξ jk at the point r ∈ B. Hence, with variable ρ k , representing the local stability radius in the workstation k ∈ W , the equality ρ k • x jk = ξ jk can be enforced for each task j ∈ V and workstation k ∈ W . Such additional constraints are linearized and implicitly included in the pricing sub-problem (cf. Section 6.1), being hereinafter part of the definition of S (and thus S k , k ∈ W , too). In this way, given B k , the set of all extreme points of conv(S k ), for all k ∈ W , SALBP-S is reformulated by ( 10)-( 16). Variable λ (r) k is related to the extreme point r ∈ B k , assuming value 1 if the extreme point r ∈ B k is selected for the workstation k ∈ W , and value 0 otherwise.

Maximize ρ ∞

(10)

r∈B k λ (r) k = 1, ∀k ∈ W (11) k∈Qj r∈B k x(r) jk • λ (r) k = 1, ∀j ∈ V (12) ρ ∞ ≤ k∈Qj r∈B k ξ(r) jk • λ (r) k , ∀j ∈ V (13) ui q=k r∈Bq x(r) iq • λ (r) q ≤ uj q=k r∈Bq x(r) jq • λ (r) q , ∀(i, j) ∈ A, ∀k ∈ Q i ∩ Q j (14) ρ ∞ ≥ 0 (15) λ (r) k ∈ {0, 1}, ∀r ∈ B k , ∀k ∈ W (16)
The model above is called the master problem, and it is denoted by DW in the sequel. Considering ρL the value given by the linear relaxation of the original compact MILP formulation, and ρD the value obtained by relaxing the integrality in DW , it is known from (see, e.g., [START_REF] Geoffrion | Lagrangean relaxation for integer programming[END_REF]) that ρ∞ ≤ ρD ≤ ρL , where ρ∞ is the value of the optimal stability radius. We call DW the linear relaxation of the master problem DW .

Finally, note that each extreme point r ∈ B k defines a set of tasks {j ∈ V k :

x(r) jk = 1} related to the workstation k ∈ W , called pattern, whose local stability radius is ρ (r) k . In the following, we consider each extreme point as a pattern and call uncertain patterns those with at least one uncertain task. Considering

B k ⊆ B k , the subset of uncertain patterns in B k ( B k = B k , if k ∈ W ), the following inequalities are valid for DW : ρ ∞ ≤ r∈ B k (ρ (r) k -U B ∞ ) • λ (r) k + U B ∞ , ∀k ∈ W. ( 17 
)
Since at most one pattern is assigned per workstation, these inequalities require that ρ ∞ is less than or equal to the local stability radius of the uncertain pattern assigned to workstation k. If no uncertain pattern has been assigned, then the inequality becomes loose (ρ ∞ ≤ U B ∞ ). Indeed, Proposition 1 shows that inequalities (17) may improve the upper bound given by DW , i.e., ρD .

Proposition 1. Inequalities (13) do not dominate (17), and (17) do not dominate (13).

Proof. Using a small example, we show that there exist feasible solutions of DW satisfying (13) but not ( 17), and vice-versa. We consider the problem with three uncertain tasks having equal processing time t j = 2, j ∈ {1, 2, 3}, and 2 workstations with cycle time C = 10. The precedence graph has two arcs, (1, 2) and (1, 3).

Considering the formulation ( 10)-( 16), a feasible solution is given by patterns {1}, {2}, {3} in workstation 1, and patterns {1, 2}, {1, 3}, and {2, 3} in workstation 2. The solution is illustrated in Figure 1, where the tasks constituting the patterns are provided in curly braces. The variable values corresponding to each pattern are, respectively,

λ 1 1 = 0.4, λ 2 1 = 0.3, λ 3 1 = 0.3, λ 1 2 = 0.3, λ 2 2 = 0.
3, and λ 3 2 = 0.4. The local stability radii of patterns in workstation 1 are equal to 8, and the local stability radii of patterns in workstation 2 are equal to 3. The objective value ρD of the solution in Figure 1 is 4.5. This solution violates (17) since for workstation 2 we have 0.4 × 3 + 0.3 × 3 + 0.3 × 3 = 3, which is less than 4.5.

1 2 {1, 2} λ 1 2 = 0.3 {1, 3} λ 2 2 = 0.3 {2, 3} λ 3 2 = 0.4 {1} λ 1 1 = 0.4 {2} λ 2 1 = 0.3 {3} λ 3 1 = 0.3
We now consider the formulation provided by ( 10)-( 12) and ( 14)-( 17). A feasible solution is given by the patterns {1} and {2, 3}, in workstations 1 and 2. Figure 2 illustrates this solution. The variable values corresponding to each pattern are all equal to 0.5. The local stability radii of patterns {1} are equal to 8, while the local stability radii of patterns {2, 3} are equal to 3. The objective value ρD of the solution in Figure 2 is 5.5. This solution violates (13) since for tasks 2 and 3 we have 0.5 × 3 + 0.5 × 3 = 3, which is less than 5.5. Note that the optimal solution value of the proposed example is 3, and that both inequalities ( 13) and ( 17) are needed so that DW gives the optimal upper bound.

1 2 {1} λ 1 2 = 0.5 {2, 3} λ 2 2 = 0.5 {1} λ 1 1 = 0.5 {2, 3} λ 2 1 = 0.5

Column generation

A column generation algorithm is proposed to compute ρD . We consider that a known feasible solution is available, producing the initial subset of columns. At each iteration, m pricing sub-problems are solved to generate columns, each corresponding to a pattern and associated with a variable λ (r)

k . The DW model is then re-optimized with this additional set of columns. For each workstation k ∈ W , the objective function of pricing sub-problem P S k depends on the dual variables of DW , defined as follows:

• µ k ∈ R is the dual variable associated with constraints (11) for all k ∈ W ,

• κ j ∈ R is the dual variable associated with constraint ( 12) for all j ∈ V ,

• ω j ≥ 0 is the dual variable associated with constraint (13) for all j ∈ V ,

• π ijk ≥ 0 is the dual variable associated with constraint ( 14) for all (i, j) ∈ A and for all k ∈ [l j , u i ],

• γ k ≥ 0 is the dual variable of DW associated with constraint ( 17) for all k ∈ W .

The reduced cost c(r)

k of variable λ (r)
k in DW is computed as follows:

0 -µ k + (ρ (r) k -U B ∞ ) • γ k - j∈V k x(r) jk • κ j + j∈V k ξ(r) jk • ω j - (i,j)∈A:lj ≤k≤ui k q=lj x(r) ik • π ijq + (i,j)∈A:lj ≤k≤uj min{k,ui} q=lj x(r) jk • π ijq
The above expression leads to a non-linear pricing objective function due to the term ρ (r) k , which is an unknown value (ρ k ) expressed as j∈ V k ξ jk / j∈ V k x jk , ξ and x being in their turn, variable vectors of the pricing sub-problem. Fortunately, a linearization is straightforward since ξ jk = ρ k • x jk , for all j ∈ V k , k ∈ W . Thus, for any k ∈ W , the pricing sub-problem P S k is defined as follows:

Maximize

j∈V k ω j • ξ k j + γ k • ρ k - j∈V k   κ j + i∈V k :(j,i)∈A,li≤k≤uj k q=li π jiq - i∈V k :(i,j)∈A,lj ≤k≤uj min{k,ui} q=lj π ijq   • x k j ξ jk ≤ U B ∞ • x jk , ∀j ∈ V k j∈V k t j • x jk + j∈ V k ξ jk ≤ C ξ jk ≤ ρ k , ∀j ∈ V k ξ jk ≥ ρ k -U B ∞ • (1 -x jk ), ∀j ∈ V k ξ jk ≥ 0, ∀j ∈ V k x jk ∈ {0, 1}, ∀j ∈ V k ρ k ≥ 0
The first two sets of constraints are derived from S k , followed by the linearization constraints and the domains of the variables. Note that the first set of linearization constraints also includes bounds for certain tasks too. Indeed, by modeling, variables ξ are also defined for certain tasks in certain workstations, but they do not impact the local stability radius. In that manner, they can be artificially set to ρ (r)

k to improve the upper bound, which is enforced by these additional bounding constraints.

In [START_REF] Peeters | An linear programming based lower bound for the simple assembly line balancing problem[END_REF], the authors proposed the addition of constraints (18) in the pricing subproblem to reinforce the precedence relations. The effectiveness of such constraints in the present case is investigated in Section 7.3

x ik + x lk -1 ≤ x jk , ∀(i, j) ∈ A, ∀l ∈ S j ∩ V k . ( 18 
)
If P S k has a feasible solution, whose objective value is p k , and if

p k -µ k -U B ∞ • γ k is strictly positive,
then this solution may be included in DW as a new column. If, for all k ∈ W , no column can be included, then the current solution of DW is optimal. At this point, the column generation algorithm terminates, and the upper bound ρD is returned.

We recall that the dual objective value of DW is computed as

k∈W U B ∞ • γ k + k∈W µ k + j∈V κ j .
Then, it is known that for the current feasible set of columns and the corresponding dual point, an upper bound over ρD is obtained by j∈V κ j + k∈W p k (see Wolsey, 1998, for basic theory). This property allows us to obtain an upper bound from DW even if column generation stops before reaching optimality (due to the imposed time or iteration limit). The quality of the upper bound returned by this column generation algorithm is studied through computational experiments in the next section.

Computational experiments

Experimental settings

The computational experiments are conducted on a CentOS Linux machine with 8 GB of RAM and an Intel Xeon CPU E5-2680 v4 processor at 2.40 GHz. All the linear and mixed-integer linear programs are addressed with the state-of-the-art solver IBM CPLEX 12.10, for which a single thread is used. The algorithms are implemented in C++, and CPLEX is called through the Concert Technology. A testbed of 525 benchmark instances1 from Otto et al. ( 2013) is considered, each one having 100 tasks.

The instances are divided into 21 groups based on the probability distribution used for generating task processing times, the structure of the precedence graph, and the order strength (OS). The latter is a density indicator of precedence graphs computed as 2 • |A|/(n • (n -1)). Each group contains 25 instances, and their characteristics are presented in Table 2. Column 'Group' present the label given to each group, followed by the graph structure (column 'Graph Structure'). There are three types of graphs: the ones containing bottleneck tasks, the ones containing at least 40% of tasks in chains, and the mixed ones, containing a bottleneck and chained tasks in a random proportion. Finally, the columns 'OS' and 'Times Distribution' of Table 2 respectively present the graphs' OS and the distribution of probability used to generate task processing times.

A bimodal distribution consists of a combination of two normal distributions with means centered around small and large times. The term 'peak in the bottom' stands for a normal distribution with the mean centered around small times, while 'peak in the middle' refers to normal distributions averaged to 0. The considered instances were originally designed for the problem of minimizing the number of workstations (SALBP-1). Here, the number of workstations is fixed and has been set to the best-known solution value of SALBP-1 [START_REF] Otto | Systematic data generation and test design for solution algorithms on the example of SALBPGen for assembly line balancing[END_REF][START_REF] Morrison | An application of the branch, bound, and remember algorithm to a new simple assembly line balancing dataset[END_REF]. Furthermore, the set of uncertain tasks V 1 (resp. the set of uncertain workstations W ) is built by taking the first

| V 1 | (resp. | W |)
elements of a random permutation of {1, . . . , n} (resp. {1, . . . , m}) associated with each instance. We consider three different levels of uncertainty:

(i) | V 1 | = 0.5n and | W | = 0; (ii) | V 1 | = 0.5n and | W | = 0.5m ; (iii) | V 1 | = n and | W | = 0.
In the next subsections, the average results per group are analyzed. It is worth noting that the computed average values take into account the results for the three different levels of uncertainty. Since the remarks made in the sequel cover the three levels of uncertainty, we choose to present aggregated results to improve readability. The detailed results are available online as mentioned earlier.

First, the tightness of the assignment intervals returned by the method of Patterson and Albracht and the method discussed in this paper are compared in Section 7.2. More specifically, since variable x jk can be set to zero if workstation k is not in the assignment interval Q j of task j, the two methods for computing the assignment intervals are compared on the basis of the average number of such pre-fixed decision variables.

In Section 7.3, we provide a comparison between different versions of the Dantzig-Wolfe approach. The experiments intend to confirm the effectiveness of the proposed valid inequalities ( 17) and to test strategies previously applied in the literature for simple assembly line balancing problems without uncertainty. Notably, we test the effect of removing the precedence constraints from the master problem and adding constraints (18) to the pricing sub-problem, as these strategies have been applied in [START_REF] Peeters | An linear programming based lower bound for the simple assembly line balancing problem[END_REF] for the SALBP-1, providing promising results.

We recall that the main goal of the proposed Dantzig-Wolfe approach is to obtain better upper bounds for the stability radius. In Section 7.4, we investigate the quality of the upper bound provided by the linear relaxation of the proposed extended formulation ( 10)-( 17). For that purpose, two approaches are compared:

the first one, denoted by CF (compact formulation), consists in solving the compact MILP formulation of Section 5 with a time limit of 600 seconds. The second one, denoted by CFCG, is a two-stage approach relying on the compact MILP formulation followed by the Dantzig-Wolfe decomposition introduced in Section 6. In the first stage, the compact MILP formulation of Section 5 is addressed using CPLEX with a time limit of 300 seconds. Then, the resulting upper bound on the stability radius is used as the value for U B ∞ in P S k for every k ∈ W . The second stage of CFCG (named CG) runs the column generation algorithm proposed in Section 6.1 with a time limit of 300 seconds, attempting to reduce the upper bound obtained in the first stage. Note that the best solution found by CPLEX during the first stage (including at pre-solve) is used to produce initial columns for DW . Since CG may benefit from enhanced upper and lower bounds, aiming for a fair comparison, the CF approach is actually restarted at 300 seconds of computational time to take into account the enhanced bounds. This includes updating U B ∞ in inequalities (3) and recomputing assignment values with the enhanced lower bound. As one can expect, the current best solution is used as restarting point.

In Section 7.5, we discuss about the possibility of obtaining an improved feasible solution from the columns generated with the Dantzig-Wolfe approach. Finally, Section 7.6 focuses on managerial insights. We first study the impact of having uncertain workstations grouped at the beginning of the line, in the end, or randomly distributed. We then investigate the effect of increasing the number of workstations and the effect of varying the cycle time on the stability radius value.

Reductions in assignment intervals

The assignment intervals computed according to the classical method, presented in [START_REF] Patterson | Assembly-line balancing: Zero-one programming with Fibonacci search[END_REF] ('PA'), are compared with the assignment intervals returned by the method discussed in Section 3 ('NAI'). The comparison is performed on the number of binary variables x jk (j ∈ V and k ∈ W ) set to zero due to the computed assignment intervals. Note that those variables are present in the compact formulation and in the pricing sub-problem. Hence, we also provide the impact of each method on the performance of the CG algorithm.

The effect of providing an initial lower bound is analyzed too. Indeed, as explained in Section 3, if a feasible solution with a strictly positive stability radius is known, this value can serve as a lower bound to the stability radius. Then, the assignment intervals can be computed after increasing the duration of each uncertain task by this lower bound.

Each row in Table 3 shows the average results for each group of instances. Columns 2 to 5 present the results when using PA, while columns 6 to 10 show the results when using NAI. Columns 'Fixed Vars' correspond to the average number of decision variables set to zero thanks to the assignment intervals computed with each method. These values are given for the case where no initial lower bound is used (columns 'No LB') and for the case where an initial solution is available (columns 'With LB'). Here, the considered initial solution is the one obtained after solving the compact formulation for 300 seconds. Next, columns under 'CG' present the performances of the CG algorithm in terms of upper bounds (columns 'Dev') and computational times in seconds (columns 'Time'). The values in columns 'Dev' correspond to deviations, computed as (U B X -U B * )/U B * × 100, where U B X is the upper bound obtained with each method, and U B * is the best upper bound found with one of them. Finally, column '+Arcs' provides the average number of new precedence arcs that have been added to the precedence graph by Step 4 of Algorithm 1. These last values were obtained using an initial lower bound. In the case where no initial lower bound is available, the addition of arcs was almost never observed.

The computational time of PA and NAI is below 0.1 seconds per instance. However, when assignment intervals are computed repeatedly, as in the bisection method to produce an upper bound on the stability radius (see Section 4), the running time of NAI becomes slightly more significant as can be seen in Section 7.4.1.

The results of Table 3 show that both PA and NAI take advantage of the availability of an initial solution, which confirms that a fast heuristic is beneficial to pre-set some variables without compromising optimality.

As shown in Section 3, the assignment intervals returned by NAI are at least as tight as those of PA, so the number of decision variables that can be pre-fixed to zero is always larger when NAI is used. For MX 2 PB and MX 6 PB, NAI does not improve over PA. Generally, the 'PB' instances (those for which the time distribution is 'peak at the bottom') only marginally benefit from NAI. On the whole instance set, however, the new assignment intervals increase the number of decision variables that can be pre-fixed to zero by 2.2% on average. Moreover, using a lower bound increases the number of pre-fixed variables by 1% without increasing running times significantly. that implementing these inequalities in the pricing sub-problem is a competitive trade-off.

In Table 7, we provide the results of the two most promising versions applying a time limit of one hour.

Since, for this extended time limit, versions DW-1.0.0 and DW-1.1.0 are outperformed by DW-1.0.1 and DW-1.1.1, Table 7 displays the results of the last two versions only. Still, the complete set of results is available online, as previously mentioned. Table 7 also excludes the instances which could be previously solved within a 300-second time limit. The lines present the average results per group indicated in the first column. The last line provides the overall average values for the whole set of considered instances. Followed by the computational times (in seconds), columns 'Dev' present the quality of the upper bound provided by every version for each group of instances. As previously, the quality is measured by deviations computed as are provided for the time limit of 300 seconds (column '300s') and for the time limit of one hour (column '3600s'). Finally, the last column provides the average improvements in the upper bounds obtained with the extra computational time. The improvements are computed as (U B * 3600 -U B * 300 )/U B * 300 × 100, where U B * 300 and U B * 3600 , represent the best upper bound obtained with a time limit of 300 and 3600 seconds respectively. From Table 7, one can observe that for 'peak in the middle' groups, DW-1.1.1 and DW-1.0.1 may converge much earlier than the time limit of 3600 seconds. For those instances, DW-1.1.1 takes 622 seconds and DW-1.0.1 takes 546 seconds on average. Indeed, the extra time is sufficient to close the duality gaps of all 'peak in the middle' instances, which in the best case (MX 2 PM) represents an improvement of 14% on the upper bound.

(U B X -U B * )/U B * × 100,
We remark that duality gaps are also closed for a considerable number of 'bimodal' instances with OS=0.6. However, in this case, computational times are much closer to the time limit, and the improvements in terms of upper bounds remain under 1.98%. For other groups of instances, the results are less significant. In the remaining groups, the duality gap can be closed for 8 to 10 more instances on average. In the worst case, that number decreases to 2. With respect to the upper bounds, the improvements remain under 1.07% on average. Finally, we compare the two DW versions considering the extended time limit. We observe that DW-1.1.1 provides the best upper bounds, but spends more computational time than DW-1.0.1 (about 140 seconds on the overall average). Even though the upper bounds provided by the later version are worse, they remain close to the best ones. Indeed, the deviations of the DW-1.0.1 version reach 1.51% in the worse case (CH 6 BM), but remain under 0.5% in the overall average.

As a conclusion of this study, the only Dantzig-Wolfe version that will be considered in the sequel is DW-1.0.1, since for the considered time limit of 300 seconds it provides the best overall performance. A natural idea to enhance DW-1.0.1 is to add precedence constraints on-the-fly if they are found to be violated. This seventh version has also been tested, but the computational time turns out to be even larger than the one of DW-1.1.1, and the improvements in terms of upper bounds are not significant.

Quality of the upper bounds

We now investigate the quality of the upper bounds returned by the proposed methods. In Section 7.4.1, we first compare the upper bounds obtained by the bisection method (Algorithm 2) with the ones computed as per [START_REF] Rossi | Maximizing the robustness for simple assembly lines with fixed cycle time and limited number of workstations[END_REF]. Moreover, two versions of the bisection method are compared: the first one uses PA to compute the assignment intervals, whereas the second one relies on NAI. Then in Section 7.4.2, the quality of the upper bounds returned by CF and CFCG is compared.

Improvements brought by the bisection method over the initial upper bound

In Table 8, PA refers to the use of the method of [START_REF] Patterson | Assembly-line balancing: Zero-one programming with Fibonacci search[END_REF], and NAI refers to the method discussed in Section 7.2 to compute the assignment intervals. The columns 'BS UB Improv (%)' provide the gains obtained with the bisection method over the upper bound computed by the combinatorial approach presented in [START_REF] Rossi | Maximizing the robustness for simple assembly lines with fixed cycle time and limited number of workstations[END_REF]. To the best of our knowledge, the latter work corresponds to the state-of-the-art and sole method for computing upper bounds for the SALBP-S, other than CF. The gains in terms of upper bound are computed as (U B BS -U B 0 )/U B 0 , where U B BS is the upper bound provided by the bisection method, and U B 0 is the upper bound given by the combinatorial approach. We note that U B BS ≤ U B 0 , since U B 0 is an input for the bisection method, hence all gains are negative, which means that the bisection method can only yield tighter upper bounds.

As expected, the upper bound improvements are much higher when NAI is used instead of PA, and this improvement in terms of upper bound quality is obtained at a modest extra computational cost of 0.12 seconds on average. Hence, considering the results obtained with NAI, the bisection method improves upper bounds for all groups of instances except three: 'CH 2 PM', 'MX 2 BM', and 'MX 2 PM'. In general, the bisection method is less effective for instances with a PM ('peak in the middle') time distribution, and when the precedence graph is sparse (OS equal to 0.2). By contrast, the best results are obtained when the precedence graph is highly dense, as in groups whose labels start by 'MX 9' (OS equal to 0.9). This is not surprising, since the method relies on the infeasibility caused by sharp assignment intervals. Indeed, the more precedence constraints, the sharper those intervals tend to be. With respect to the time distribution, according to [START_REF] Otto | Systematic data generation and test design for solution algorithms on the example of SALBPGen for assembly line balancing[END_REF] and [START_REF] Morrison | An application of the branch, bound, and remember algorithm to a new simple assembly line balancing dataset[END_REF], the PM instances are the hardest ones, which may explain why the improvements were less significant. The PB ('peak at the bottom') instances are those for which the improvement is the most notable.

The black bars at the bottom are related to the vertical axis on the right side of the figure, while the gray lines correspond to the vertical axis on the left. As shown by the black bars, CFCG improvements over CF reached up to 100% for PM groups. Recall that these improvements are indicated by negative values, according to the definition of 'DEV UB' above.

Still in Figure 3, when CF returns better bounds (positive-valued black bars), the deviation from U B CF CG is close to zero, except for groups 'MX 9 BM' and 'MX 9 PB', where U B CF CG is worse than U B CF by a more significant amount. In those groups, U B CF is around 40% better than U B CF CG for one instance, but the deviations remain under 10% for all the others. Remark that 'MX 9 BM' and 'MX 9 PB' correspond to the lowest gaps, determined by the gray lines in the right part of Figure 3. Indeed, the relation between the gray lines and black bars in Figure 3 indicates that Dantzig-Wolfe decomposition is less efficient in cases where CF provides relatively small gaps. Although, one can note that for several instances, 'CF GAP' is 100%, and the proposed approach could not provide any improvement. In those cases, the best-known solution value is zero, leading to a 100% gap ever since the upper bound is not optimal. Indeed, for those cases, CF already manages to provide near-optimal upper bounds despite the high-valued gap.

A total of 144 instances out of 1575 (525 times three uncertainty levels) have been solved to optimality.

Most of them belong to groups 'MX 9 BM' and 'MX 9 PB' and are solved by CF within 600 seconds. However, the optimality of the solution to 26 instances out of the 144 ones (18%) has been proven by the proposed approach, i.e., CG returns an upper bound whose value is equal to the best-known solution value. This is typically the case when the best-known solution value is zero.

In terms of computational time, column 'CFCG Time' in Table 9 presents the average computational time, in seconds, spent by CFCG. For CF, the computational time is always equal to the limit of 600 seconds, except for the 118 instances solved to optimality as mentioned before. It can be observed that the column generation algorithm may converge relatively fast in some cases, especially for high levels of OS (MX 9 BM, MX 9 PM, and MX 9 PB). Since the first 300 seconds are spent during the first stage of CFCG, column generation converges in approximately 5 seconds for MX 9 BM, 1 second for MX 9 PB, and 33 seconds for MX 9 PM on average. The very large-scale instances of 1000 tasks from [START_REF] Otto | Systematic data generation and test design for solution algorithms on the example of SALBPGen for assembly line balancing[END_REF] were also used for computational experiments, but both CF and CFCG failed on them. Indeed, CPLEX could not provide any feasible solution after 1 hour of computational time, and for hard instances, even the linear relaxation of the compact formulation (1)-( 9) could not be solved after 1 hour of computational time. In its turn, the bisection method remained effective for those instances, managing to decrease upper bounds by 80% in some cases. In terms of computational time, the method stopped within a few seconds for all instances. These results are reported as averages in Appendix A. The values for each instance are available at the web link mentioned earlier.

Heuristic improvement of initial solutions

When column generation converges before the time limit, an attempt to improve the lower bound is made, taking advantage of the generated columns. In this manner, integrality is reimposed to λ variables, and the -110,00 -90,00 -70,00 -50,00 -30,00 -10,00 10,00 30,00 50,00 70,00 90,00 110,00 130,00 150,00 170,00 190,00 210,00 230,00 250,00 270,00 290,00 -70,00 -60,00 -50,00 -40,00 -30,00 -20,00 -10,00 0,00 10,00 20,00 30,00 40,00 50,00 60,00 70,00 80,00 90,00 100,00 110,00 current integer master problem is solved using CPLEX. A time limit is set so that CFCG cannot run for more than 600 seconds.

According to the obtained results, such a heuristic procedure provides better solutions in some of the cases where it could be executed, namely 12 out of 674 instances (2%). Concerning the computational time, this heuristic procedure is relatively fast, taking less than two minutes to run. These results are also available on online material.

Managerial insights

We now present computational results aiming to study how the stability radius changes once some of the instance's features are modified, namely the number of workstations, the cycle time, and the positioning of uncertain workstations. Considering the best-known feasible solution (LB) and the best-known upper bound (U B) for each instance, we provide charts on the evolution of those values as the features are changed. The optimality gap (GAP), computed as (U B -LB)/U B × 100, is also provided to indicate how the difficulty of instances evolves according to the modifications. All those values represent averages on the whole set of instances.

Impact of the position of uncertain workstations along the assembly line

In this section, we study the impact of the position of uncertain workstations along the assembly line. Figure 4 shows the lower and upper bounds on the stability radius, as well as the gap under these three scenarios. It can be seen that the actual position of uncertain workstations in the assembly line does not have a noticeable impact on the stability radius value. The random scenario is slightly more challenging, as its gap and the upper bound are a bit larger than in the other two scenarios.

In a managerial context, this means that if we are given a way to select the uncertain tasks, then it may be slightly more beneficial to select them as the first or the last tasks in the precedence graph.

Increasing the number of workstations, and the cycle time

We now investigate the impact of having additional workstations in the line. We denote by m the situation where the number of workstations is minimum, i.e., is equal to the optimal objective value of SALBP-1 when the cycle time is C = 1000 units of time. Then, m + 1 and m + 2 represent the situations, where respectively one and two new (certain) workstations are added to the line. Figure 5 suggests that the lower bound increases by an average of 1% of the cycle time per additional workstation, and that the upper bound increases by an average of 1.5% of the cycle time per additional workstation. The gap decreases significantly when the number of workstations is at least m + 1, which shows that the problem gets easier when the number of workstations increases by one or two units.

Next, we consider the effects on the stability radius value in the face of an increase in cycle time, when the number of workstations is equal to the optimal objective value of SALBP-1. In Figure 6, the cycle time C to C gives an increase of 0.013 per unit of time. This can help the assembly line manager who considers adding a new workstation or extending the cycle time in an attempt to increase the stability radius: increasing the cycle time rather than the number of workstations might lead to a more significant increase in the stability radius. Moreover, adding a workstation may not impact the stability radius value at all, while increasing the cycle time always has a positive impact, as shown in Properties 2 and 3. More specifically, Property 2 shows that adding a new workstation is vain when the stability radius value is set by a workstation that processes a unique uncertain task, whereas Property 3 shows that increasing the cycle time always leads to improving the stability radius value. By contrast, increasing the cycle time has a negative effect on the assembly line throughput, and the line's productivity is often an important parameter for achieving economic sustainability. This suggests that if the stability radius of the current solution to SALBP-S is found to be insufficient, a trade-off between the stability radius value and the assembly line throughput should be found so that the best decision is made.

Conclusion

This paper proposes a Dantzig-Wolfe decomposition approach for the maximization of the stability radius of a simple assembly line under task processing time uncertainty. The main goal is to provide a more effective bounding procedure. In that sense, valid inequalities are also proposed to enhance the extended formulation given by the Dantzig-Wolfe decomposition. A comparison between several versions of the Dantzig-Wolfe approach is made, and the results show that the valid inequalities are quite effective in improving upper bounds. The results also indicate that it might be preferable to include precedence relations in the pricing sub-problem rather than in the master problem.

Two pre-processing techniques are used to help improve performance. We show that using a 'singlemachine scheduling problem' to represent the line is an efficient way to produce shorter assignment intervals, reducing the number of binary assignment variables and enhancing the algorithms' performance. A second pre-processing technique consists of a bisection method, which highly improves the existing upper bounds in less than one second of computational time. Using those improved values as an input, the Dantzig-Wolfe decomposition approach is compared to CPLEX on the compact MILP formulation of the problem. On average, the proposed approach provides better upper bounds for the most challenging instances. In those cases, improvements reached 70%, while for the less difficult instances, even though improvements in upper bounds are not achieved, the deviations to the best upper bound remain under 3%. For the cases where the optimality gap is small, the column generation converges fast. Moreover, in a few cases, better feasible solutions can be obtained in a heuristic way using the columns generated in the proposed approach.

Computational experiments also show the limitation of all the approaches based on integer linear programming: when the number of tasks gets very large (typically, when there are more than 1000 tasks), solving the linear programming relaxation of the compact model is too time-consuming. However, upper bounds on the stability radius can still be obtained very quickly with the bisection method. Analogously, existing heuristics can quickly produce lower bounds without resorting to linear programming. Consequently, depending on the size of the instance, the decision-maker can use the results proposed in this paper to assess the robustness level that can be achieved. If the stability radius value is too low to offer adequate protection against uncertainty, the proposed methods can serve as a decision-aiding tool. For example, the effects of adding a new workstation or increasing the cycle time can be evaluated quantitatively, helping to choose among alternative solutions.

Finally, future research involves applying the Dantzig-Wolfe decomposition into a branch-and-price scheme, taking advantage of better upper bounds and better heuristic solutions. That might help reduce the size of the enumeration tree, thus accelerating the algorithm. Moreover, a theoretical study on why some groups of instances, notably those with a 'peak in the middle' processing time distribution, are harder than others is a topic that needs to be fulfilled.
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  where U B X corresponds to the upper bound provided by each version, and U B * is the best upper bound found by one of them. The two columns under 'Time-Stopped' present the number of instances for which DW-1.1.1 and DW-1.1.0 run until the time limit without converging. These values DW-1.1.1 DW-1.0.
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  More precisely, in the second level of uncertainty, we have| V 1 | = 0.5n and | W | = 0.5m , and the uncertain workstations are selected randomly. We now consider two additional scenarios: front refers to the situation, where the first | W | workstations are uncertain, and end corresponds to the situation, where the last | W | workstations are uncertain.
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 56 Figure 4: Average results for different workstation distributions

  5 • C, where C is the cycle time set to 1000. We refer the reader to Otto et al. (2013) for more details on those probability distributions and other instance features.

	Group	Graph Structure OS Times Distribution
	BN 2 BM	bottleneck	0.2	bimodal
	BN 2 PB	bottleneck	0.2 peak at the bottom
	BN 2 PM	bottleneck	0.2 peak in the middle
	BN 6 BM	bottleneck	0.6	bimodal
	BN 6 PB	bottleneck	0.6 peak at the bottom
	BN 6 PM	bottleneck	0.6 peak in the middle
	CH 2 BM	chains	0.2	bimodal
	CH 2 PB	chains	0.2 peak at the bottom
	CH 2 PM	chains	0.2 peak in the middle
	CH 6 BM	chains	0.6	bimodal
	CH 6 PB	chains	0.6 peak at the bottom
	CH 6 PM	chains	0.6 peak in the middle
	MX 2 BM	mixed	0.2	bimodal
	MX 2 PB	mixed	0.2 peak at the bottom
	MX 2 PM	mixed	0.2 peak in the middle
	MX 6 BM	mixed	0.6	bimodal
	MX 6 PB	mixed	0.6 peak at the bottom
	MX 6 PM	mixed	0.6 peak in the middle
	MX 9 BM	mixed	0.9	bimodal
	MX 9 PB	mixed	0.9 peak at the bottom
	MX 9 PM	mixed	0.9 peak in the middle
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 2 Groups of instances
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 6 Average computational times for different versions of the Dantzig-Wolfe approach

	1

Table 7 :

 7 Average results for two versions of the Dantzig-Wolfe approach with a time limit of one hour.

	1	Time-Stopped

Instances and detailed results can be found at: http://pagesperso.ls2n.fr/ ~gurevsky-e/data/R-ALBP.zip

The NAI's procedure for identifying new precedence constraints is rarely successful, especially when no initial lower bound is available. However, the column '+Arcs' shows that those new constraints are slightly more frequent when an initial lower bound is used.

With respect to the impact on the performances of the CG algorithm, one can observe that the greatest advantages of the NAI are obtained for the 'peak in the middle' groups. In fact, these are the groups for which the NAI was the most successful in pre-fixing variables. In the best cases, the use of NAI resulted in an improvement of more than 3% on upper bounds and a reduction of computational times by 8 to 10 seconds.

On the overall average (last row of Table 3), using NAI provided a 0.48% improvement in terms of upper bound and a 2-second reduction in terms of computational time.

Since NAI is more successful than PA in reducing assignment intervals and thus filtering assignment variables, all methods in the following experiments implement NAI for pre-processing. Indeed, fixing variables to zero helps to reduce the problem's size, enhancing the performance of the methods, as observed in [START_REF] Pirogov | Robust balancing of transfer lines with blocks of uncertain parallel tasks under fixed cycle time and space restrictions[END_REF]. In Section 7.4.1, we provide results showing that the bisection method (Algorithm 2) also provides better upper bounds while applying NAI rather than PA.

Comparing different strategies for the Dantzig-Wolfe approach

Six versions of the Dantzig-Wolfe approach are compared on the basis of the returned upper bound for the stability radius (in Table 5) and in terms of running time (in Table 6). Each row in Table 4 characterizes a version of the Dantzig-Wolfe approach. These versions differ by the presence or absence of the valid inequalities (17), by the presence or absence of the precedence constraints (14) in the master problem, and by the presence or absence of precedence constraints (18) in the pricing sub-problem.

Tables 5 and6 provide averaged results on the 21 groups of instances indicated by the first column. It can be seen in Table 5 that all the versions of the Dantzig-Wolfe approach tend to return very similar upper bounds on the stability radius for the BM and PM instances, i.e., for the 'bimodal' and 'peak in the bottom' processing times distribution. By contrast, the quality of upper bounds becomes significantly different for the instances with 'peak in the middle' processing times distribution. The worst values are returned by DW-0.1.0 and DW-0.0.1, while the results obtained by DW-1.1.0 and DW-1.0.1 are significantly better, which illustrates the beneficial effect of constraint (17). More generally, all the versions for which constraint ( 17) is implemented outperform the versions for which this constraint is not present. For that reason, versions DW-0.0.0 and DW-0.1.1 do not produce competitive results and are not considered.

Considering the overall averages, the best results were obtained with DW-1.1.1 and DW-1.0.1, which suggests that the precedence constraints can be relaxed in the master problem provided that they are enforced in the pricing sub-problem by inequalities (18). Furthermore, the results obtained with versions DW-1.0.0 and DW-1.1.0 demonstrate that removing inequalities ( 18) is detrimental to upper bound quality. This suggests that reinforcing the pricing, i.e., enforcing precedence inequalities (18) in the pricing sub-problem, has a positive impact on the upper bound. a nasty effect on the running time. This is not very surprising, because the corresponding inequalities are very dense in the sense that if pattern r for workstation k contains at least one uncertain task, or if k is an uncertain workstation, then the coefficient of variable λ

k in constraint ( 17) is nonzero. The best versions in terms of upper bound, i.e., DW-1.0.1 and DW-1.1.1 are also the slower ones. As a consequence, versions DW-1.0.0 and DW-1.1.0 managed to provide better upper bounds in some cases, namely 3.5% of the instances. This is due to the fact that the addition of inequalities (18) produces harder sub-problems, which slows down the column generation algorithm. Therefore, in some cases, better upper bounds are obtained with versions DW-1.0.0 and DW-1.1.0 since they are able to perform more iterations than versions DW-1.0.1 and DW-1.1.1 within the same time limit. However, if more time is allotted for the four versions to run, e.g. one hour, the best upper bounds are definitely provided by versions DW-1.0.1 and DW-1.1.1 (cf. detailed results on the previously mentioned link). In fact, even though the addition of ( 18 

Comparison of CF and CFCG

We now compare CF and CFCG, which are both allowed to run for 600 seconds on each instance. Note that the two approaches take advantage of the pre-processing strategies introduced in Sections 3 and 4, and that CPLEX is warm started with the solution returned by an adaptation of the heuristic presented in [START_REF] Pirogov | Robust balancing of transfer lines with blocks of uncertain parallel tasks under fixed cycle time and space restrictions[END_REF]. In case the heuristic could not find a feasible solution, the one provided by [START_REF] Morrison | An application of the branch, bound, and remember algorithm to a new simple assembly line balancing dataset[END_REF] for the SALBP-1 is used to construct a feasible solution for the SALBP-S. In case no initial feasible solution is available to start CG, an alternative is to add artificial variables to ( 11) and ( 12), with sufficiently high negative coefficients in the objective function. Note that negative values indicate an improvement of CFCG over CF. From these results, it can be seen that, when dealing with the hardest instances, CFCG outperforms CF in terms of upper-bound quality. For the other groups, the deviation does not exceed 2.38% on average (group 'MX 9 BM').

Figure 3 provides more details about the performance of CF and CFCG. The values corresponding to columns 'CF GAP' and 'DEV UB' of Table 9 are plotted individually for each instance. Hence, it is worth noting that those are average values taking into account the results for the three different levels of uncertainty.

Appendix A. Results for very large-scale instances, with 1000 tasks

In this appendix, we present the results obtained for the very large-scale instances, with 1000 tasks. We use the same notations as in Table 2 of the main paper. As mentioned in the main text, both CF and CFCG failed in providing upper bounds for the SALBP-S. For 87.4% of the instances, even the linear relaxation of the compact formulation (1)-( 9) could not be solved after 1 hour of computational time. The other instances are mainly 'peak at the bottom' ones, which are easier according to [START_REF] Otto | Systematic data generation and test design for solution algorithms on the example of SALBPGen for assembly line balancing[END_REF]. Nevertheless, the computational times for these instances remain high (solving the linear relaxation of the compact formulation took about 40 minutes on average).

For all instances, since no basic feasible solution was found for the extended formulation, the Dantzig-Wolfe approach could not be run. However, the bisection method still manages to improve the initial upper bounds of the most difficult instances.

Following the same notation as in Table 8 of the main text (which is built for instances with 100 tasks), Table A.10 presents the results with the bisection method on instances with 1000 tasks. In this case, the results were less significant, but the bisection method still improves over the initial upper bound on the classes with a dense precedence graph (OS=0.6 and OS=0.9), especially on groups of type 'peak in the middle' and 'peak at the bottom'. As expected, the running time of the bisection method increases with the number of tasks but is still very low. The improvement in upper bound quality, when NAI is used, is around 46% greater compared to the use of PA, which is similar to what was observed with instances of 100 tasks.