N
N

N

HAL

open science

A new upper bound based on Dantzig-Wolfe
decomposition to maximize the stability radius of a

simple assembly line under uncertainty
Rui S. Shibasaki, André Rossi, Evgeny Gurevsky

» To cite this version:

Rui S. Shibasaki, André Rossi, Evgeny Gurevsky. A new upper bound based on Dantzig-Wolfe de-
composition to maximize the stability radius of a simple assembly line under uncertainty. European
Journal of Operational Research, 2024, 313 (3), pp.1015-1030. 10.1016/j.ejor.2023.08.046 . hal-
04192659

HAL Id: hal-04192659
https://u-picardie.hal.science/hal-04192659v1
Submitted on 30 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

https://u-picardie.hal.science/hal-04192659v1
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

A new upper bound based on Dantzig-Wolfe decomposition to maximize the
stability radius of a simple assembly line under uncertainty

Rui S. Shibasaki®* André Rossi”, Evgeny Gurevsky®

@ MIS, Université de Picardie Jules Verne, Amiens, France
LAMSADE, Université Paris-Dauphine, PSL, France
¢LS2N, Université de Nantes, France

Abstract

This work presents a new upper bounding approach, based on Dantzig-Wolfe decomposition and column
generation, for a relatively novel problem of designing simple assembly lines to maximize their stability radius
under uncertainty in task processing times. The problem considers task precedence constraints, a fixed cycle
time, and a fixed number of workstations. This NP-hard optimization problem aims to assign a given set of
assembly tasks to workstations in order to find the most robust feasible line configuration. The robustness of
the configuration is measured by the stability radius with respect to its feasibility, i.e., the maximum increase
in task processing times, for which the cycle time constraint remains satisfied. The reformulation resulting
from the Dantzig-Wolfe decomposition is enhanced with valid inequalities and tight assignment intervals are
used to reduce the solution space of pricing sub-problems. In addition, a bisection method is proposed as a
pre-processing technique to improve the initial upper bound on the stability radius, which is an input for the
pricing sub-problem. Computational experiments show that the proposed approach can significantly improve
the upper bound on the stability radius for the most challenging instances.

Keywords: manufacturing, assembly line balancing, robustness, stability radius, Dantzig-Wolfe

decomposition

1. Introduction

Simple assembly lines are manufacturing systems consisting of sequentially ordered workstations connected
by a transport mechanism (or conveyor belt). These lines are usually designed for large-scale production of
a single type of product. The workstations operate simultaneously and process different tasks sequentially.
All tasks assigned to a workstation must be completed within a certain time C, called cycle time, in order to
maintain the production rate. No buffer stocks are allowed. In other words, every C' units of time, an item
of raw product is fed into the first workstation and then transferred from one workstation to another at the
same rate. In this way, one item of finished product is obtained at the end of the line every C time units
(see Scholl, 1999). Note that a workstation can only process one product item during a cycle time, and each

product item can only be processed by one workstation at a time.

*Corresponding author.
Email address: rui.sa.shibasaki@u-picardie.fr (Rui S. Shibasaki)

Preprint submitted to Elsevier November 30, 2023

In addition, any task has to be fully processed by a single workstation, and precedence constraints should
be satisfied. For example, if task ¢ is supposed to be completed before starting task j for some manufacturing
reason, then task j can only be assigned to the same workstation as ¢, or to a downstream workstation.
Equivalently, this precedence constraint forbids the assignment of task j to a workstation upstream of 7. Such
precedence constraints are often modeled by a directed acyclic graph whose nodes represent tasks, and arcs
such as (7, j) indicate that task 7 needs to be completed before task j starts.

In the literature, two optimization problems, called balancing problems, are generally studied for simple
assembly lines (see Scholl and Becker, 2006; Battaia and Dolgui, 2013). The first one, denoted as SALBP-1,
aims at assigning a given set of assembly tasks to a minimal number of workstations while satisfying the
precedence and cycle time constraints. The second problem, referred to as SALBP-2, seeks to minimize the
cycle time for a fixed number of workstations. For other related problems, we refer the reader to the surveys:
(Scholl and Becker, 2006; Battaia and Dolgui, 2013) and most recently (Boysen et al., 2022).

The balancing problem is related to the early stages of the assembly line design process. Therefore, task
processing times are often based on estimates or nominal values, as mentioned in Battaia and Dolgui (2013).
These initial values can change during line operation, and deviation from them can deteriorate assembly line
throughput if the cycle time is overrun. This can result in significant economic losses. Among the main
factors that can lead to deviations in task processing times are: productivity, skill level, operators’ fatigue
and motivation; changes in product specifications and in workstation characteristics; and general delays in
task execution. In this sense, it is desirable to achieve a task assignment to workstations that protects
the corresponding line configuration and its throughput as much as possible from the uncertainty of task
processing times. In this paper, in order to measure the aforementioned uncertainty, we use the concept of
stability radius and address the balancing problem of a simple assembly line with a fixed cycle time and a
fixed number of workstations.

The stability radius in the field of assembly line balancing was first introduced by Sotskov et al. (2005,
2006) for SALBP-2 and SALBP-1, respectively. In these papers, the authors assume that an optimal line
configuration is already known and calculate its stability radius as the largest magnitude of deviation of the
processing times from their nominal values, for which the optimality of the configuration is preserved. They
also show that the stability radius can serve as an appropriate robustness measure. However, Sotskov et al.
(2005, 2006) pointed out that computing the stability radius with respect to configuration optimality is a very
difficult problem, which was confirmed in their later works (Sotskov et al., 2015; Lai et al., 2016, 2019), where
some efficient full enumeration procedures were developed. Fortunately, in Sotskov et al. (2006), it was proven
that computing the stability radius with respect to configuration feasibility only is a polynomially solvable
problem for any feasible configuration of SALBP-1. These positive outcomes have inspired several other
studies. Thus, in Gurevsky et al. (2012), the results obtained for SALBP-1 and SALBP-2 were extended
to the SALBP-E problem, whose objective is to minimize the product of the cycle time and the number
of workstations used. Then, Gurevsky et al. (2013) adapted the results of SALBP-1, obtained in Sotskov

et al. (2006), for the transfer line balancing problem aiming to minimize the equipment cost, where tasks are

executed simultaneously by blocks, activated sequentially in the workstations. Finally, Schepler et al. (2022)
proposed a branch-and-price method for the bin-packing problem with items of uncertain size. In this last
paper, the authors seek a solution with the smallest number of bins, such that the bins with at least one
uncertain item have a predefined level of local stability radius.

Instead of computing the stability radius for a given line configuration, a completely new idea was proposed
in Rossi et al. (2016) for simple assembly lines, and later in Pirogov et al. (2021) for transfer lines. Considering
a simple assembly line with a fixed cycle time and a fixed number of workstations, the authors focused on
seeking a line configuration with the greatest stability radius with respect to its feasibility. Named SALBP-
S, this problem was proven to be NP-hard in the strong sense in Rossi et al. (2016), where the authors
proposed a compact mixed-integer linear programming (MILP) formulation to handle it, i.e., a formulation
with a polynomial number of constraints and variables. Based on some combinatorial aspects of SALBP-S
and aiming to solve it efficiently, Rossi et al. also provided tight upper bounds for small-size instances, but
optimality gaps remained significant for the larger ones.

To further reduce these gaps, the present paper proposes a new upper-bounding procedure, based on the
Dantzig-Wolfe decomposition for SALBP-S. The MILP model, described in Rossi et al. (2016), is reformulated
and strong valid inequalities are introduced to reinforce it. New upper bounds are obtained while solving the
model’s linear relaxation by column generation. A particularity is that the corresponding pricing sub-problem
depends on an existing upper bound. Moreover, solving such a sub-problem can be too time-consuming. These
characteristics motivated the use of pre-processing techniques for computing tight task assignment intervals
(Section 3) and efficient initial upper bounds (Section 4). As far as the latter is concerned, we propose a
bisection method based on destructive improvement bounds (Klein and Scholl, 1999; Scholl and Becker, 2006;
Pereira, 2015).

The assignment intervals are computed considering the solution of a single-machine scheduling problem, as
in Scholl and Becker (2006). Usually referred to as LB4, this strategy is also applied to compute lower bounds
for SALBP-1 (Scholl, 1999; Scholl and Becker, 2006). Indeed, Pereira (2015) provided an empirical evaluation
of lower bounds for the SALBP-1 and concluded that considering precedence relations in the calculation of
bounds, as in LB4, is worthwhile. Likewise, such a strategy can produce tighter assignment intervals than the
method presented by Patterson and Albracht (1975), also applied in the literature (see, for example, Peeters
and Degraeve, 2006; Morrison et al., 2014). According to the results, the availability of tighter intervals has
a positive impact on the performance of the column generation algorithm.

There are two main reasons for focusing on developing algorithms that return an upper bound on the
stability radius. On the one hand, finding good upper bounds informs the decision maker on what can be
expected in terms of robustness for a particular problem instance. More generally, it is common to search
for lower bounds in the case of minimization problems, as in Arkhipov et al (2019). On the other hand, the
MILP formulation of SALBP-S requires the availability of an upper bound on the objective function value
(see constraint (3) in Section 5). The big-M form of this constraint naturally stresses the need for the tightest

possible upper bound to achieve good performances. To the best of our knowledge, (Rossi et al., 2016) is the

only work presenting a method to compute upper bounds for the SALBP-S, and numerical experiments show
that the method discussed in Section 4 can improve these bounds at a low computational effort.

A few other works applying Dantzig-Wolfe decomposition can be found in the literature, but for related
problems. In the present case, the decomposition allowed the identification of specific valid inequalities
that significantly improve the upper bound quality. Peeters and Degraeve (2006) study a Dantzig-Wolfe
decomposition for the SALBP-1, where the relaxation of the precedence constraints is proposed. Following
the same idea, Bautista and Pereira (2011) adapted the former approach for the case of SALBP-1 with time
and space restrictions. In these works, the authors suggested relaxing the precedence constraints in order to
reduce the size of the master problem, enhancing performances in terms of computational time. Here, we
consider a different type of precedence constraints, which according to Ritt and Costa (2018) dominate the
ones used in the aforementioned papers. We present a comparison between different versions of the Dantzig-
Wolfe decomposition approach to check if previous strategies proposed in the literature are valid for addressing
SALBP-S even with the stronger precedence constraints.

The numerical experiments were conducted on benchmark instances of Otto et al. (2013), with 100 tasks.
For the very large instances of 1000 tasks, the linear programming-based approaches tested in this work cannot
be applied because of the very large size of the linear programs, indicating that a different strategy may be
adopted in those cases. Nevertheless, the bisection method is still able to improve upper bounds for 1000-task
instances in a few seconds of computational time.

Other approaches dealing with the uncertainty of task processing times can also be found in the literature.
However, they strongly depend on the availability of extra information related to the uncertainty, which con-
trasts with the approach considered here. Among the most popular methods, we can distinguish a stochastic
method, known as chance-constrained method, which considers task processing times as independent random
variables with known probability distributions (see, e.g., Agpak and Gokgen, 2007; Oann, 2018). It consists
in assigning tasks in such a way that, for each workstation, the probability of satisfying the cycle time is
greater than a given value, called confidence level. In the later-mentioned papers, the authors use a MILP
formulation of the corresponding problem that incorporates the probabilistic cycle time constraint. From
the information expressing the task processing times, they introduce new additional variables using various
linearization techniques in order to obtain again a MILP formulation, this time deterministic and equivalent
to the probabilistic problem studied. Fuzzy approaches have also been applied, viewing the task processing
time values as fuzzy sets, with a known membership function. As in the stochastic case, to assign tasks
to workstations, it is necessary to control the cycle time constraint. To do so, an adapted fuzzy arithmetic
and an appropriate method dedicated to the comparison of fuzzy sets have to be introduced. Applications
of tasks with fuzzy times are presented in (Tsujimura et al., 1995; Gen et al., 1996) for SALBP-1, in Hop
(2006) for a mixed-model line balancing, and in Zacharia and Nearchou (2013), for a bi-objective variant of
SALBP-2. Finally, robust approaches can also be found in the literature. This last method assumes that a
set of possible scenarios are known a priori and seeks a solution that remains feasible for all scenarios while

offering the best possible quality in the worst case. Following this strategy, (Gurevsky et al., 2013a; Pereira

and Alvarez—Miranda, 2018) studied the SALBP-1 with intervals of task processing times. Both papers focus
on Bertsimas and Sim’s robustness, which assumes that at most I' tasks can take the largest processing time
of their intervals at the same time, and the remaining tasks can be considered with the smallest value of their
intervals. For this robustness criterion, both papers developed branch-and-bound procedures with different
branching strategies and lower-bound processing techniques. The same robustness approach was studied in
Hazir and Dolgui (2013), but for the SALBP-2 problem, where the authors developed an exact solution pro-
cedure similar to Benders decomposition. Finally, a min-maz robustness approach was applied in Dolgui and
Kovalev (2012) for SALBP-2, but with a discrete set of scenarios. In the latter work, the computational
complexity of seeking a robust solution was presented for different types of precedence constraints.

The next section introduces basic definitions, properties, and notations. In the following, Sections 3 and 4
outline the pre-processing techniques, i.e., the computation of assignment intervals, and the bisection method,
respectively. The compact MILP formulation of Rossi et al. (2016) is revisited in Section 5, followed by the
Dantzig-Wolfe decomposition and the column generation approach, both presented in Section 6. Section 7
provides computational experiments, where we also discuss managerial insights and how to obtain heuristic

solutions using the generated columns. Finally, a conclusion is made in Section 8.

2. Basic definitions and properties

We now define notations used in further statements. Let V' = {1,2,... ,n} be the set of required assembly
tasks and W = {1,2,...,m} be the set of available workstations. It is assumed that two sets of uncertain
tasks exist: a set V! C V of a priori uncertain tasks, whose processing time may deviate from its nominal
value without any additional information, and a set V2CVofa posteriori uncertain tasks whose uncertainty
is caused by a set 1% C W of uncertain workstations. These workstations are such that any task allocated
to them becomes uncertain (even if it belongs to V \ V!). Hereinafter, the set of all uncertain tasks is
denoted as V = V! U V2, and any workstation from W\ W is called certain. The presence of certain and/or
uncertain workstations can be explained by the existence of assembly lines having simultaneously two types of
workstations: the ones with automatic tasks, executed by robots or machines, and workstations where tasks
are operated manually. Supplementary notations related to the studied problem are given in Table 1.

The stability radius of a feasible solution s € F'(t) can be defined as follows (see Sotskov et al., 2006):
pls,1) = max{e > 0] V€ € B(e) (s € F(t+€))},

where B(e) = {£ € 2] ||€]| < €}. In other words, p(s,t) is defined as the value of the radius of the greatest
closed ball B(+), called stability ball.

Any element £ of B(-) is evaluated based on a given norm | - ||. In Rossi et al. (2016), two norms
(I) and Iso (|| - |loo) were used for the stability radius, the latter being the one considered in this work.
By definition, [|€]l1 = >, ¢ & and [|{]|c = max; i &;. The notation pe denotes the stability radius in the
loo norm. According to Theorem 2 of Rossi et al. (2016), poo is calculated as the minimum value, over all the

uncertain workstations, of the idle time divided by the number of assigned uncertain tasks. It can be easily

G is a directed acyclic graph (V, A) representing the precedence constraints,
where A is the set of arcs;
t; is a non-negative nominal processing time of the task j;
t is a vector expressing the nominal task processing times, i.e., (t1,t2,...,tn);
F(t) is the set of all feasible solutions with respect to a given vector ¢;
= is the set of vectors, where each of which presents possible non-negative processing
time deviations for the uncertain tasks, i.e., {£ € R, [&=0, €V f/},
C is the cycle time;
Vi is the set of all tasks that can potentially be assigned to workstation k;
Vi is the set of all uncertain tasks that can potentially be assigned to workstation k,
i.e., Vi =ViN 171, if ke W\ W and Vi = Vi otherwise;
P; s the set of all direct predecessors of j in Gj
P; is the set of all direct and indirect predecessors of j in G
S, is the set of all direct successors of j in G;
S; is the set of all direct and indirect successors of j in G;

@, 1is the interval [I;,u;] of workstations that can process the task j € V.

Table 1: Supplementary notations

computed in O(n) time. Moreover, the following useful property is a direct corollary from the definition of

the stability radius.
Property 1. For any solution s € F(t) and £ € E such that & = poo(s,t), j € V., we have s € F(t+¢).

This comes from the fact that the stability radius in the [, norm represents the largest increase that can occur
in the processing time for all uncertain tasks simultaneously, without losing the feasibility of the admissible
solution being studied. In that sense, if those processing times are artificially increased by the optimal po
value, an optimal solution will still be found. The discussion in the next two sections is essentially based on
such a property. We remind that the present work addresses the problem of maximizing the stability radius in
terms of solution feasibility. Since a decrease in task processing times cannot compromise solution feasibility,
only positive task processing time deviations are considered.

The following two properties show that adding an extra workstation does not necessarily increase the
stability radius, but extending the cycle time does. These properties are used in Section 7.6.2 to help the
assembly line manager explore options to improve the stability radius value in a practical context.

Let s be an optimal solution to a problem instance of SALBP-S with m workstations and a cycle time

equal to C.

Property 2. If poo(s,t) is set by a workstation that contains a unique task that is uncertain, then adding
certain or uncertain workstations does not increase the value of the stability radius. Indeed, the stability radius
value is bounded from above by C —t; where task j is uncertain, and this upper bound is reached in s. Hence,

adding extra workstations does not change this upper bound on the stability radius.

Property 3. If Vois nonempty, increasing the cycle time by a strictly positive amount § always yields a
strictly positive increase of the optimal stability radius value. Indeed, by Theorem 2 of Rossi et al. (2016),
Poo(8,t) = mingew ﬁ(c — 2 e, tj)- Increasing C' does not compromise the feasibility of s, and for each
workstation k such that Vi is nonempty, |‘7—1k‘(0 +0 =2 v ti) > ﬁ(C’ — Yjev, tj) holds. Since V is
nonempty, the minimum of these terms is finite and increases strictly when & is strictly positive, so the

stability radius value also increases strictly.

3. Assignment intervals

We now discuss the pre-processing technique for defining tasks’ assignment intervals. Such intervals are
computed based on representing the studied problem as a single-machine scheduling problem, as proposed in
(Scholl, 1999; Scholl and Becker, 2006). Furthermore, we consider the addition of new precedence relations
as proposed by Fleszar and Hindi (2003) for SALBP-1.

According to Scholl (1999), it is possible to associate each task i € V' with its earliest starting time 7;
and its latest completion time (;. The method computes a lower bound on 7; and an upper bound on (;,
considering the m parallel workstations as a single machine that can process tasks from time 0 to time m - C.
The calculation of 7; requires solving the scheduling problem 1|r;|Cpax for P;, the set of all direct and indirect
predecessors of i. The release date r; for each task j € P; is set to its earliest starting time. The problem
1|7j|Cmax is polynomially solvable in O(nlogn) (see Brucker, 2007). For a set of tasks denoted by J, we first
set Chax to zero, and then iteratively update Cyax = max{Cumax, 7} + t; for each j € J, in non-decreasing
order of r;.

Once 7; is computed, we consider two well-known rounding strategies to improve 7; (see Scholl and Becker,
2006). The first verifies if 7, > L%J - C. In this case, it implies that [; = 1 + L%J Indeed, if there

exists a solution where no predecessor of i is executed on workstation I;, then task i can start at time
L%J - C on workstation l;, which contradicts the hypothesis 7; > {%J - C. Hence, at least one predecessor
j € P; is allocated to workstation I;, and task i cannot start before time L%J - C +t;. Consequently,
7 =max{r, | %] - C+ min,; 5, ¢}

The second rounding strategy is presented as follows. Let us define ¢ = L%J, so that a task ¢ starting
at time 7; is processed by workstation ¢ + 1. If (% (7; —|—tiﬂ > g + 1, then task 7 cannot be allocated to
workstation ¢ + 1, since it cannot span over two workstations. In that case, the earliest starting time 7; is
improved to (¢ + 1) - C. On the contrary, 7; remains unchanged.

For all 7 in V', we compute (; using the same process as for 7;, but considering the tasks of V' in the reverse
topological order with respect to G. Namely, considering 7;°, a lower bound on the earliest starting time of
task ¢ in the reverse topological order, one may set ¢; =m - C — 77

The bounds of assignment intervals can be tightened further by considering the following situation. As
proposed by Fleszar and Hindi (2003), considering ¢ € V, if there exists j € V\P; such that 7; +¢; > {; — ¢,

then task j, which is not a predecessor of i, must be completed before task i can start. Consequently, arc (j,)

can be added to A without modifying the solutions of SALBP-S. Such an addition of a precedence constraint

implies that j is added to P;, which can lead to an increase in 7; when solving the scheduling problem.

Algorithm 1: Overall approach for reducing assignment intervals

Input: Precedence graph G = (V, A) and processing time t; for each task j € V.

Output: Reduced assignment interval Q; = [I;,u;] for each task j € V.

1. Based on the work of Patterson and Albracht (1975), initialize 7; (Fi%tﬂ — 1) -C and
T (F’JFZJTGSJJ—‘ — 1) - C for each i € V. In what follows, let us consider the tasks of V' in the

topological order with respect to G.

2. For each task i € V, set 7; « max{r;, f(i)}, where f(¢) is the optimal value of the scheduling problem

1|rj|Cmax on the tasks of P;. Then, try to improve 7.

3. For each task ¢ € V, set 77 <— max{7], f"(¢)}, where f"(i) is the optimal value of the scheduling

problem 1|7;|Cpax on the tasks of S;. Then, try to improve 7;. Finally, compute ; <— m - C — 7 for

eachi e V.
4. Try to identify additional precedence arcs, as shown above. If at least one arc has been added to A,
repeat Step 2, otherwise go to Step 5.

5. For each i € V| compute its assignment interval Q);, where [; < {%] and u; + [%’—‘

Considering the propositions of Scholl (1999), Fleszar and Hindi (2003), and Scholl and Becker (2006), the

overall approach to compute the assignment intervals is summarized in Algorithm 1. For all 4 € V| the final

lz{ c —‘ and uz[c—‘.

Note that, because of Step 1, the obtained assignment intervals are at least as tight as those returned by

intervals are defined as

Patterson and Albracht (1975). Alternatively, one can say that the method by Patterson and Albracht (1975)
requires to solve 1||Cax, which is a relaxation of 1|r;|Cmax, thus producing weaker bounds on 7; and ¢;.

The running time of Step 1 is O(n). In Step 2, the scheduling problem is solved once for each task, so
the total running time is O(n?logn) (searching for improvements can be done in linear time). Step 3 has
the same running time as Step 2. Step 4 runs in O(n?) and the execution time of Step 5 is in O(n). Steps 2
to 4 can be repeated only if at least one precedence arc is added to GG, and the maximum number of arcs is
|A] = O(n?), consequently, the overall running time is in O(n*).

Finally, notice from Property 1 that if a lower bound LB, on the optimal stability radius is available, one
can set (t; + LBs) as the processing time for any uncertain task j € V! while computing /; and u;, which
may further reduce the assignment intervals. In the present work, an adaptation of the heuristic proposed by

Pirogov et al. (2021) is used to obtain an initial lower bound.

4. Upper bound improvement

A second pre-processing procedure is proposed in this section. Indeed, an upper bound UB., on the
optimal stability radius is needed as input for the MILP formulation that will be presented in Section 5.
Based on combinatorial arguments, an upper bound on p., was proposed by Rossi et al. (2016), while here
we propose a bisection method to improve it.

Tt is assumed that we have LBy < poo < UBy, where LB, is the best-known value for po, (obtained, for
example, by using dedicated heuristic methods as mentioned in Section 7.1), and U B, is its best known upper
bound, provided combinatorially as in Rossi et al. (2016). The main idea of the procedure is to temporarily
increase the processing time of each uncertain task by a certain amount A and to check whether this makes
the problem infeasible or not. This procedure is implemented as a bisection method, which sets the value
A in the middle of the interval [L,U], where L and U are initialized to LBs and U By, respectively. This
procedure is also based on the fact that the presence of an empty assignment interval is a sufficient condition
for infeasibility. More precisely, if there exists j € V' such that I; > u;, then @Q); is empty, and task j cannot
be allocated to any workstation. When such a situation occurs, it can be concluded that the current increase
in processing times, A, is too large. Hence, if no empty assignment interval is found with the increased
processing times, then L is updated to A, otherwise such an increase causes infeasibility and the upper bound
U is updated to A.

The procedure is formally described in Algorithm 2. Each iteration of the bisection method consists
of computing A to halve the interval [L,U]. After increasing the processing time of the tasks by A, the
assignment intervals are updated and checked, verifying if one of them is empty. The bisection method stops

when U — L becomes smaller than a given strictly positive parameter e.

Algorithm 2: Improvement of UB,

1 Set L + LBoo, U < UBy and € < 1073.

2 while U — L > e do

3 Compute A < 1 (L +U) and set ¢; + t; + A for each task j € V.

4 For each task j € V, calculate its assignment interval @); (cf. Section 3).
5 If I; <y for all j € V, then set L < A. Otherwise, set U < A.

6 For each j € V, restore t; < t; — A.

Update UBy, < U.

~

5. Compact MILP formulation

We now present a compact MILP formulation for SALBP-S. The continuous variable p., represents the
stability radius to be maximized. In addition, x;; is a binary variable equal to one if and only if task j is
allocated to workstation k. The continuous nonnegative variable {;; denotes the possible deviation of the

processing time of task j on workstation k. Constraints (2) ensure that each task j is assigned to exactly one

workstation. As stated in constraints (4), the stability radius is bounded by the minimal perturbation, which
is not greater than UBy, since it is limited by constraints (3). Note that constraints (2) and (3) guarantee
that, among all k& € @, only one value ¢j;, is non-zero for any fixed j € V. Constraints (5) enforce that
the total load of each workstation does not exceed C', whatever possible processing time deviations within
the stability ball. Remind that if the workstation is uncertain (k € W), then all tasks assignable to that
workstation are a posterior: uncertain: Vi, = Vi. In contrast, if workstation is certain (ke W\ W), then
Vk C V. Note in the left-hand-side of constraint (5) that & has no impact if j ¢ Vk. Finally, inequalities

(6) express the precedence constraints, followed by the domains of variables: (7)-(9).

Maximize poo (1>
dap=1, VjeV (2)
keQ;
&k SUBy - xjr, Vi€V, VkeQ; (3)
oo < D ik ViEV (4)
kEQ;
ij'l’jk+25jk§0, Vke W (5)
JEVR FEVi
S @i < @, Vij) €A VhEQiNQ; (6)
q=k q=k
ik >0, VjeV, VkeQ; (7)
zj, € {0,1}, Vj eV, Vk € Q; (8)
Poc >0 9)

Since the goal is to maximize the stability radius, in any feasible assignment there will be a critical
workstation £*, where the values of 3~ will be equal among all tasks j € YN/k assigned to k*, and their sum
will be equal to the idle time, so that p,, can reach its maximum. Also, note that the number of constraints
depends on the range of the intervals @;, 7 € V. Tighter assignment intervals lead to fewer variables and
constraints, which stresses the importance of tightening these intervals (see Section 3). A last remark concerns
the influence of UB,,. Indeed, lower values of UB, can lead to shorter computation times, which justifies

the search for better upper bounds.

6. Dantzig-Wolfe decomposition

This section presents a Dantzig-Wolfe decomposition of the MILP formulation, discussed in Section 5. Let
S denote the bounded set of integer points defined by constraints (3), (5), (7), and (8). It is not difficult to see
that this set can be decomposed by workstation such that S =57 x ... x S;,. In addition, since z is binary,
S coincides with B, which is the set of extreme points of the convex hull of S, denoted by conv(S) (see, e.g.,

Wolsey, 1998). Thus, a reformulation is possible based on the convezification of these extreme points.

10

Note that variables £ represent, in fact, the local stability radius for each uncertain task with respect to
the workstation where it is assigned. Since we are dealing with the [, norm, these values have to be equal
for all uncertain tasks assigned to the same workstation. Therefore, given a point r € B, p,(:) can be defined

as the local stability radius at workstation k£ such that

(m _ (T)
Pr _ZEV;c /Z]EVk gk

where 5:;2) and 5;;) are respectively the values corresponding to variables x5 and &;;, at the point » € B. Hence,
with variable py, representing the local stability radius in the workstation £ € W, the equality py - xj1 = i
can be enforced for each task j € V and workstation & € W. Such additional constraints are linearized and
implicitly included in the pricing sub-problem (cf. Section 6.1), being hereinafter part of the definition of S
(and thus Sk, k € W, too). In this way, given By, the set of all extreme points of conv(Sy), for all k € W,
SALBP-S is reformulated by (10)-(16). Variable)\,(:) is related to the extreme point r € By, assuming value

1 if the extreme point r € By, is selected for the workstation k& € W, and value 0 otherwise.

Maximize poo (10)
YN =1, Vkew (11)
r€ By
D jg_;ﬁ).Ag“) =1, VjeV (12)
k,EQj r€ By
<3SN DN, viev (13)
keQ,; r€EBy
3OS A A0 €30 Y ED AR, Vi) € A V€ Qi (14)
q=k T€B, q=krEBy
o >0 (15)
A e 0,1}, Vre By, VkeW (16)

The model above is called the master problem, and it is denoted by DW in the sequel. Considering py, the
value given by the linear relaxation of the original compact MILP formulation, and pp the value obtained by
relaxing the integrality in DW, it is known from (see, e.g., Geoffrion, 1974) that poo < pp < pr, where po is
the value of the optimal stability radius. We call DW the linear relaxation of the master problem DW .

Finally, note that each extreme point r € By defines a set of tasks {j € Vj : jk = 1} related to the
workstation £ € W, called pattern, whose local stability radius is pl(c). In the following, we consider each
extreme point as a pattern and call uncertain patterns those with at least one uncertain task. Considering

By, C By, the subset of uncertain patterns in By, (Ek =By, ifke /V[7), the following inequalities are valid for
DW:

P < 3 () —UBs) - A + UBuw, VkeW. (17)
reék

11

Since at most one pattern is assigned per workstation, these inequalities require that p. is less than or equal
to the local stability radius of the uncertain pattern assigned to workstation k. If no uncertain pattern has
been assigned, then the inequality becomes loose (pso < UBy). Indeed, Proposition 1 shows that inequalities

(17) may improve the upper bound given by DW | i.e., pp.
Proposition 1. Inequalities (13) do not dominate (17), and (17) do not dominate (13).

Proof. Using a small example, we show that there exist feasible solutions of DW satisfying (13) but not (17),
and vice-versa. We consider the problem with three uncertain tasks having equal processing time t; = 2,
j €41,2,3}, and 2 workstations with cycle time C' = 10. The precedence graph has two arcs, (1,2) and (1, 3).

Considering the formulation (10)-(16), a feasible solution is given by patterns {1}, {2}, {3} in workstation
1, and patterns {1,2}, {1,3}, and {2,3} in workstation 2. The solution is illustrated in Figure 1, where
the tasks constituting the patterns are provided in curly braces. The variable values corresponding to each
pattern are, respectively, A = 0.4, \? = 0.3, A\§ = 0.3, A = 0.3, A\3 = 0.3, and A3 = 0.4. The local stability
radii of patterns in workstation 1 are equal to 8, and the local stability radii of patterns in workstation 2 are

equal to 3.

2 [{1,2} X} =0.3 [{1,3} \2=0.3 [{2,3} A3 =04 }

1 [{1} A =04 [{2} A2 =0.3 [{3} M= 0.3}

Figure 1: Solution violating (17)

The objective value pp of the solution in Figure 1 is 4.5. This solution violates (17) since for workstation
2 we have 0.4 X 3+ 0.3 x 3+ 0.3 x 3 = 3, which is less than 4.5.

We now consider the formulation provided by (10)-(12) and (14)-(17). A feasible solution is given by
the patterns {1} and {2,3}, in workstations 1 and 2. Figure 2 illustrates this solution. The variable values
corresponding to each pattern are all equal to 0.5. The local stability radii of patterns {1} are equal to 8,

while the local stability radii of patterns {2,3} are equal to 3.

2 [{1} A =05 [{2,3} A2 =105 }
1 [{1} Al =05 [{2,3} A2 =05 }

Figure 2: Solution violating (13)

The objective value pp of the solution in Figure 2 is 5.5. This solution violates (13) since for tasks 2
and 3 we have 0.5 x 3+ 0.5 x 3 = 3, which is less than 5.5. Note that the optimal solution value of the
proposed example is 3, and that both inequalities (13) and (17) are needed so that DW gives the optimal
upper bound. O

12

6.1. Column generation

A column generation algorithm is proposed to compute pp. We consider that a known feasible solution
is available, producing the initial subset of columns. At each iteration, m pricing sub-problems are solved to
generate columns, each corresponding to a pattern and associated with a variable)\,(:). The DW model is
then re-optimized with this additional set of columns. For each workstation k € W the objective function of

pricing sub-problem PS}) depends on the dual variables of DW, defined as follows:

o uj € R is the dual variable associated with constraints (11) for all k € W,

k;j € R is the dual variable associated with constraint (12) for all j € V,

w; > 0 is the dual variable associated with constraint (13) for all j € V,

mijk > 0 is the dual variable associated with constraint (14) for all (¢, j) € A and for all k € [I;, u;],
e 7, > 0 is the dual variable of DW associated with constraint (17) for all k € W.

The reduced cost Eg) of variable)\5:) in DW is computed as follows:

0=k + (o) = UBoo) -y — D 25 o+ Y €7 w

JEVE JEVL
k min{k,u;}
_(r) =)
- E: E:xik'”ijq+ § E, Lig * Tijq
(i.5)€A:L; <k<u; q=l; (1.5)€Al;<k<u; q=l;

The above expression leads to a non-linear pricing objective function due to the term p,(;), which is an
unknown value (py) expressed as Zje?k &ik/ Zje\?,c Zjk, £ and x being in their turn, variable vectors of the
pricing sub-problem. Fortunately, a linearization is straightforward since &, = pr -z, forall j € Vi, k€ W.

Thus, for any k € W, the pricing sub-problem P.Sj is defined as follows:

Maximize Z wj -5}“ + - pF

JEVEK
k min{k,u;}
k
AL > > Tig — > > T | @)
JEVE 1€Vi:(4,1) €Al <k<u; q=l; 1€Vi:(i,5) €A <k<u; q=l;

&k SUBs - i, YjEVR

otprapt Y g&r<C

JEVE JEVR
Eik < pr, Vi E Vg
&k 2> p —UBs - (1 —zj1), Vj€ Vi
&k >0, VjeV

Tjk € {0,1}, Vje Vg

13

pr >0

The first two sets of constraints are derived from Sy, followed by the linearization constraints and the
domains of the variables. Note that the first set of linearization constraints also includes bounds for certain
tasks too. Indeed, by modeling, variables £ are also defined for certain tasks in certain workstations, but they
do not impact the local stability radius. In that manner, they can be artificially set to pg) to improve the
upper bound, which is enforced by these additional bounding constraints.

In Peeters and Degraeve (2006), the authors proposed the addition of constraints (18) in the pricing sub-
problem to reinforce the precedence relations. The effectiveness of such constraints in the present case is

investigated in Section 7.3

Tik + T — 1 <z, V(Z,j) e A Ve Sj NVi. (18)

If PSy has a feasible solution, whose objective value is py, and if py — pp — UB - v is strictly positive,
then this solution may be included in DW as a new column. If, for all & € W, no column can be included,
then the current solution of DW is optimal. At this point, the column generation algorithm terminates, and
the upper bound pp is returned.

We recall that the dual objective value of DW is computed as >,y UBoo - Vi + D e Mk + D jev K-
Then, it is known that for the current feasible set of columns and the corresponding dual point, an upper
bound over pp is obtained by >y, £j + >y e Pr (see Wolsey, 1998, for basic theory). This property allows
us to obtain an upper bound from DW even if column generation stops before reaching optimality (due to
the imposed time or iteration limit). The quality of the upper bound returned by this column generation

algorithm is studied through computational experiments in the next section.

7. Computational experiments

7.1. Experimental settings

The computational experiments are conducted on a CentOS Linux machine with 8 GB of RAM and an Intel
Xeon CPU E5-2680 v4 processor at 2.40 GHz. All the linear and mixed-integer linear programs are addressed
with the state-of-the-art solver IBM CPLEX 12.10, for which a single thread is used. The algorithms are
implemented in C++, and CPLEX is called through the Concert Technology. A testbed of 525 benchmark
instances! from Otto et al. (2013) is considered, each one having 100 tasks.

The instances are divided into 21 groups based on the probability distribution used for generating task
processing times, the structure of the precedence graph, and the order strength (OS). The latter is a density
indicator of precedence graphs computed as 2 - |A|/(n - (n — 1)). Each group contains 25 instances, and their
characteristics are presented in Table 2. Column ‘Group’ present the label given to each