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Abstract

This work presents a new upper bounding approach, based on Dantzig-Wolfe decomposition and column

generation, for a relatively novel problem of designing simple assembly lines to maximize their stability radius

under uncertainty in task processing times. The problem considers task precedence constraints, a fixed cycle

time, and a fixed number of workstations. This NP-hard optimization problem aims to assign a given set of

assembly tasks to workstations in order to find the most robust feasible line configuration. The robustness of

the configuration is measured by the stability radius with respect to its feasibility, i.e., the maximum increase

in task processing times, for which the cycle time constraint remains satisfied. The reformulation resulting

from the Dantzig-Wolfe decomposition is enhanced with valid inequalities and tight assignment intervals are

used to reduce the solution space of pricing sub-problems. In addition, a bisection method is proposed as a

pre-processing technique to improve the initial upper bound on the stability radius, which is an input for the

pricing sub-problem. Computational experiments show that the proposed approach can significantly improve

the upper bound on the stability radius for the most challenging instances.

Keywords: manufacturing, assembly line balancing, robustness, stability radius, Dantzig-Wolfe

decomposition

1. Introduction

Simple assembly lines are manufacturing systems consisting of sequentially ordered workstations connected

by a transport mechanism (or conveyor belt). These lines are usually designed for large-scale production of

a single type of product. The workstations operate simultaneously and process different tasks sequentially.

All tasks assigned to a workstation must be completed within a certain time C, called cycle time, in order to

maintain the production rate. No buffer stocks are allowed. In other words, every C units of time, an item

of raw product is fed into the first workstation and then transferred from one workstation to another at the

same rate. In this way, one item of finished product is obtained at the end of the line every C time units

(see Scholl, 1999). Note that a workstation can only process one product item during a cycle time, and each

product item can only be processed by one workstation at a time.
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In addition, any task has to be fully processed by a single workstation, and precedence constraints should

be satisfied. For example, if task i is supposed to be completed before starting task j for some manufacturing

reason, then task j can only be assigned to the same workstation as i, or to a downstream workstation.

Equivalently, this precedence constraint forbids the assignment of task j to a workstation upstream of i. Such

precedence constraints are often modeled by a directed acyclic graph whose nodes represent tasks, and arcs

such as (i, j) indicate that task i needs to be completed before task j starts.

In the literature, two optimization problems, called balancing problems, are generally studied for simple

assembly lines (see Scholl and Becker, 2006; Battäıa and Dolgui, 2013). The first one, denoted as SALBP-1,

aims at assigning a given set of assembly tasks to a minimal number of workstations while satisfying the

precedence and cycle time constraints. The second problem, referred to as SALBP-2, seeks to minimize the

cycle time for a fixed number of workstations. For other related problems, we refer the reader to the surveys:

(Scholl and Becker, 2006; Battäıa and Dolgui, 2013) and most recently (Boysen et al., 2022).

The balancing problem is related to the early stages of the assembly line design process. Therefore, task

processing times are often based on estimates or nominal values, as mentioned in Battäıa and Dolgui (2013).

These initial values can change during line operation, and deviation from them can deteriorate assembly line

throughput if the cycle time is overrun. This can result in significant economic losses. Among the main

factors that can lead to deviations in task processing times are: productivity, skill level, operators’ fatigue

and motivation; changes in product specifications and in workstation characteristics; and general delays in

task execution. In this sense, it is desirable to achieve a task assignment to workstations that protects

the corresponding line configuration and its throughput as much as possible from the uncertainty of task

processing times. In this paper, in order to measure the aforementioned uncertainty, we use the concept of

stability radius and address the balancing problem of a simple assembly line with a fixed cycle time and a

fixed number of workstations.

The stability radius in the field of assembly line balancing was first introduced by Sotskov et al. (2005,

2006) for SALBP-2 and SALBP-1, respectively. In these papers, the authors assume that an optimal line

configuration is already known and calculate its stability radius as the largest magnitude of deviation of the

processing times from their nominal values, for which the optimality of the configuration is preserved. They

also show that the stability radius can serve as an appropriate robustness measure. However, Sotskov et al.

(2005, 2006) pointed out that computing the stability radius with respect to configuration optimality is a very

difficult problem, which was confirmed in their later works (Sotskov et al., 2015; Lai et al., 2016, 2019), where

some efficient full enumeration procedures were developed. Fortunately, in Sotskov et al. (2006), it was proven

that computing the stability radius with respect to configuration feasibility only is a polynomially solvable

problem for any feasible configuration of SALBP-1. These positive outcomes have inspired several other

studies. Thus, in Gurevsky et al. (2012), the results obtained for SALBP-1 and SALBP-2 were extended

to the SALBP-E problem, whose objective is to minimize the product of the cycle time and the number

of workstations used. Then, Gurevsky et al. (2013) adapted the results of SALBP-1, obtained in Sotskov

et al. (2006), for the transfer line balancing problem aiming to minimize the equipment cost, where tasks are
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executed simultaneously by blocks, activated sequentially in the workstations. Finally, Schepler et al. (2022)

proposed a branch-and-price method for the bin-packing problem with items of uncertain size. In this last

paper, the authors seek a solution with the smallest number of bins, such that the bins with at least one

uncertain item have a predefined level of local stability radius.

Instead of computing the stability radius for a given line configuration, a completely new idea was proposed

in Rossi et al. (2016) for simple assembly lines, and later in Pirogov et al. (2021) for transfer lines. Considering

a simple assembly line with a fixed cycle time and a fixed number of workstations, the authors focused on

seeking a line configuration with the greatest stability radius with respect to its feasibility. Named SALBP-

S, this problem was proven to be NP-hard in the strong sense in Rossi et al. (2016), where the authors

proposed a compact mixed-integer linear programming (MILP) formulation to handle it, i.e., a formulation

with a polynomial number of constraints and variables. Based on some combinatorial aspects of SALBP-S

and aiming to solve it efficiently, Rossi et al. also provided tight upper bounds for small-size instances, but

optimality gaps remained significant for the larger ones.

To further reduce these gaps, the present paper proposes a new upper-bounding procedure, based on the

Dantzig-Wolfe decomposition for SALBP-S. The MILP model, described in Rossi et al. (2016), is reformulated

and strong valid inequalities are introduced to reinforce it. New upper bounds are obtained while solving the

model’s linear relaxation by column generation. A particularity is that the corresponding pricing sub-problem

depends on an existing upper bound. Moreover, solving such a sub-problem can be too time-consuming. These

characteristics motivated the use of pre-processing techniques for computing tight task assignment intervals

(Section 3) and efficient initial upper bounds (Section 4). As far as the latter is concerned, we propose a

bisection method based on destructive improvement bounds (Klein and Scholl, 1999; Scholl and Becker, 2006;

Pereira, 2015).

The assignment intervals are computed considering the solution of a single-machine scheduling problem, as

in Scholl and Becker (2006). Usually referred to as LB4, this strategy is also applied to compute lower bounds

for SALBP-1 (Scholl, 1999; Scholl and Becker, 2006). Indeed, Pereira (2015) provided an empirical evaluation

of lower bounds for the SALBP-1 and concluded that considering precedence relations in the calculation of

bounds, as in LB4, is worthwhile. Likewise, such a strategy can produce tighter assignment intervals than the

method presented by Patterson and Albracht (1975), also applied in the literature (see, for example, Peeters

and Degraeve, 2006; Morrison et al., 2014). According to the results, the availability of tighter intervals has

a positive impact on the performance of the column generation algorithm.

There are two main reasons for focusing on developing algorithms that return an upper bound on the

stability radius. On the one hand, finding good upper bounds informs the decision maker on what can be

expected in terms of robustness for a particular problem instance. More generally, it is common to search

for lower bounds in the case of minimization problems, as in Arkhipov et al (2019). On the other hand, the

MILP formulation of SALBP-S requires the availability of an upper bound on the objective function value

(see constraint (3) in Section 5). The big-M form of this constraint naturally stresses the need for the tightest

possible upper bound to achieve good performances. To the best of our knowledge, (Rossi et al., 2016) is the
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only work presenting a method to compute upper bounds for the SALBP-S, and numerical experiments show

that the method discussed in Section 4 can improve these bounds at a low computational effort.

A few other works applying Dantzig-Wolfe decomposition can be found in the literature, but for related

problems. In the present case, the decomposition allowed the identification of specific valid inequalities

that significantly improve the upper bound quality. Peeters and Degraeve (2006) study a Dantzig-Wolfe

decomposition for the SALBP-1, where the relaxation of the precedence constraints is proposed. Following

the same idea, Bautista and Pereira (2011) adapted the former approach for the case of SALBP-1 with time

and space restrictions. In these works, the authors suggested relaxing the precedence constraints in order to

reduce the size of the master problem, enhancing performances in terms of computational time. Here, we

consider a different type of precedence constraints, which according to Ritt and Costa (2018) dominate the

ones used in the aforementioned papers. We present a comparison between different versions of the Dantzig-

Wolfe decomposition approach to check if previous strategies proposed in the literature are valid for addressing

SALBP-S even with the stronger precedence constraints.

The numerical experiments were conducted on benchmark instances of Otto et al. (2013), with 100 tasks.

For the very large instances of 1000 tasks, the linear programming-based approaches tested in this work cannot

be applied because of the very large size of the linear programs, indicating that a different strategy may be

adopted in those cases. Nevertheless, the bisection method is still able to improve upper bounds for 1000-task

instances in a few seconds of computational time.

Other approaches dealing with the uncertainty of task processing times can also be found in the literature.

However, they strongly depend on the availability of extra information related to the uncertainty, which con-

trasts with the approach considered here. Among the most popular methods, we can distinguish a stochastic

method, known as chance-constrained method, which considers task processing times as independent random

variables with known probability distributions (see, e.g., Ağpak and Gökçen, 2007; Özcan, 2018). It consists

in assigning tasks in such a way that, for each workstation, the probability of satisfying the cycle time is

greater than a given value, called confidence level. In the later-mentioned papers, the authors use a MILP

formulation of the corresponding problem that incorporates the probabilistic cycle time constraint. From

the information expressing the task processing times, they introduce new additional variables using various

linearization techniques in order to obtain again a MILP formulation, this time deterministic and equivalent

to the probabilistic problem studied. Fuzzy approaches have also been applied, viewing the task processing

time values as fuzzy sets, with a known membership function. As in the stochastic case, to assign tasks

to workstations, it is necessary to control the cycle time constraint. To do so, an adapted fuzzy arithmetic

and an appropriate method dedicated to the comparison of fuzzy sets have to be introduced. Applications

of tasks with fuzzy times are presented in (Tsujimura et al., 1995; Gen et al., 1996) for SALBP-1, in Hop

(2006) for a mixed-model line balancing, and in Zacharia and Nearchou (2013), for a bi-objective variant of

SALBP-2. Finally, robust approaches can also be found in the literature. This last method assumes that a

set of possible scenarios are known a priori and seeks a solution that remains feasible for all scenarios while

offering the best possible quality in the worst case. Following this strategy, (Gurevsky et al., 2013a; Pereira
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and Álvarez-Miranda, 2018) studied the SALBP-1 with intervals of task processing times. Both papers focus

on Bertsimas and Sim’s robustness, which assumes that at most Γ tasks can take the largest processing time

of their intervals at the same time, and the remaining tasks can be considered with the smallest value of their

intervals. For this robustness criterion, both papers developed branch-and-bound procedures with different

branching strategies and lower-bound processing techniques. The same robustness approach was studied in

Hazır and Dolgui (2013), but for the SALBP-2 problem, where the authors developed an exact solution pro-

cedure similar to Benders decomposition. Finally, a min-max robustness approach was applied in Dolgui and

Kovalev (2012) for SALBP-2, but with a discrete set of scenarios. In the latter work, the computational

complexity of seeking a robust solution was presented for different types of precedence constraints.

The next section introduces basic definitions, properties, and notations. In the following, Sections 3 and 4

outline the pre-processing techniques, i.e., the computation of assignment intervals, and the bisection method,

respectively. The compact MILP formulation of Rossi et al. (2016) is revisited in Section 5, followed by the

Dantzig-Wolfe decomposition and the column generation approach, both presented in Section 6. Section 7

provides computational experiments, where we also discuss managerial insights and how to obtain heuristic

solutions using the generated columns. Finally, a conclusion is made in Section 8.

2. Basic definitions and properties

We now define notations used in further statements. Let V = {1, 2, . . . , n} be the set of required assembly

tasks and W = {1, 2, . . . ,m} be the set of available workstations. It is assumed that two sets of uncertain

tasks exist: a set Ṽ 1 ⊆ V of a priori uncertain tasks, whose processing time may deviate from its nominal

value without any additional information, and a set Ṽ 2 ⊆ V of a posteriori uncertain tasks whose uncertainty

is caused by a set Ŵ ⊆ W of uncertain workstations. These workstations are such that any task allocated

to them becomes uncertain (even if it belongs to V \ Ṽ 1). Hereinafter, the set of all uncertain tasks is

denoted as Ṽ = Ṽ 1 ∪ Ṽ 2, and any workstation from W \ Ŵ is called certain. The presence of certain and/or

uncertain workstations can be explained by the existence of assembly lines having simultaneously two types of

workstations: the ones with automatic tasks, executed by robots or machines, and workstations where tasks

are operated manually. Supplementary notations related to the studied problem are given in Table 1.

The stability radius of a feasible solution s ∈ F (t) can be defined as follows (see Sotskov et al., 2006):

ρ(s, t) = max{ε ≥ 0 | ∀ξ ∈ B(ε) (s ∈ F (t+ ξ))},

where B(ε) = {ξ ∈ Ξ | ‖ξ‖ ≤ ε}. In other words, ρ(s, t) is defined as the value of the radius of the greatest

closed ball B(·), called stability ball.

Any element ξ of B(·) is evaluated based on a given norm ‖ · ‖. In Rossi et al. (2016), two norms l1

(‖ · ‖1) and l∞ (‖ · ‖∞) were used for the stability radius, the latter being the one considered in this work.

By definition, ‖ξ‖1 =
∑
j∈Ṽ ξj and ‖ξ‖∞ = maxj∈Ṽ ξj . The notation ρ∞ denotes the stability radius in the

l∞ norm. According to Theorem 2 of Rossi et al. (2016), ρ∞ is calculated as the minimum value, over all the

uncertain workstations, of the idle time divided by the number of assigned uncertain tasks. It can be easily
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G is a directed acyclic graph (V,A) representing the precedence constraints,

where A is the set of arcs;

tj is a non-negative nominal processing time of the task j;

t is a vector expressing the nominal task processing times, i.e., (t1, t2, . . . , tn);

F (t) is the set of all feasible solutions with respect to a given vector t;

Ξ is the set of vectors, where each of which presents possible non-negative processing

time deviations for the uncertain tasks, i.e., {ξ ∈ Rn≥0 | ξj = 0, j ∈ V \ Ṽ };

C is the cycle time;

Vk is the set of all tasks that can potentially be assigned to workstation k;

Ṽk is the set of all uncertain tasks that can potentially be assigned to workstation k,

i.e., Ṽk = Vk ∩ Ṽ 1, if k ∈W \ Ŵ and Ṽk = Vk otherwise;

P j is the set of all direct predecessors of j in G;

Pj is the set of all direct and indirect predecessors of j in G;

Sj is the set of all direct successors of j in G;

Sj is the set of all direct and indirect successors of j in G;

Qj is the interval [lj , uj ] of workstations that can process the task j ∈ V .

Table 1: Supplementary notations

computed in O(n) time. Moreover, the following useful property is a direct corollary from the definition of

the stability radius.

Property 1. For any solution s ∈ F (t) and ξ ∈ Ξ such that ξj = ρ∞(s, t), j ∈ Ṽ , we have s ∈ F (t+ ξ).

This comes from the fact that the stability radius in the l∞ norm represents the largest increase that can occur

in the processing time for all uncertain tasks simultaneously, without losing the feasibility of the admissible

solution being studied. In that sense, if those processing times are artificially increased by the optimal ρ∞

value, an optimal solution will still be found. The discussion in the next two sections is essentially based on

such a property. We remind that the present work addresses the problem of maximizing the stability radius in

terms of solution feasibility. Since a decrease in task processing times cannot compromise solution feasibility,

only positive task processing time deviations are considered.

The following two properties show that adding an extra workstation does not necessarily increase the

stability radius, but extending the cycle time does. These properties are used in Section 7.6.2 to help the

assembly line manager explore options to improve the stability radius value in a practical context.

Let s be an optimal solution to a problem instance of SALBP-S with m workstations and a cycle time

equal to C.

Property 2. If ρ∞(s, t) is set by a workstation that contains a unique task that is uncertain, then adding

certain or uncertain workstations does not increase the value of the stability radius. Indeed, the stability radius

value is bounded from above by C − tj where task j is uncertain, and this upper bound is reached in s. Hence,

adding extra workstations does not change this upper bound on the stability radius.
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Property 3. If Ṽ is nonempty, increasing the cycle time by a strictly positive amount δ always yields a

strictly positive increase of the optimal stability radius value. Indeed, by Theorem 2 of Rossi et al. (2016),

ρ∞(s, t) = mink∈W
1

|Ṽk|
(C −

∑
j∈Vk

tj). Increasing C does not compromise the feasibility of s, and for each

workstation k such that Ṽk is nonempty, 1

|Ṽk|
(C + δ −

∑
j∈Vk

tj) >
1

|Ṽk|
(C −

∑
j∈Vk

tj) holds. Since Ṽ is

nonempty, the minimum of these terms is finite and increases strictly when δ is strictly positive, so the

stability radius value also increases strictly.

3. Assignment intervals

We now discuss the pre-processing technique for defining tasks’ assignment intervals. Such intervals are

computed based on representing the studied problem as a single-machine scheduling problem, as proposed in

(Scholl, 1999; Scholl and Becker, 2006). Furthermore, we consider the addition of new precedence relations

as proposed by Fleszar and Hindi (2003) for SALBP-1.

According to Scholl (1999), it is possible to associate each task i ∈ V with its earliest starting time τi

and its latest completion time ζi. The method computes a lower bound on τi and an upper bound on ζi,

considering the m parallel workstations as a single machine that can process tasks from time 0 to time m ·C.

The calculation of τi requires solving the scheduling problem 1|rj |Cmax for Pi, the set of all direct and indirect

predecessors of i. The release date rj for each task j ∈ Pi is set to its earliest starting time. The problem

1|rj |Cmax is polynomially solvable in O(n log n) (see Brucker, 2007). For a set of tasks denoted by J , we first

set Cmax to zero, and then iteratively update Cmax = max{Cmax, rj} + tj for each j ∈ J , in non-decreasing

order of rj .

Once τi is computed, we consider two well-known rounding strategies to improve τi (see Scholl and Becker,

2006). The first verifies if τi >
⌊
τi
C

⌋
· C. In this case, it implies that li = 1 +

⌊
τi
C

⌋
. Indeed, if there

exists a solution where no predecessor of i is executed on workstation li, then task i can start at time⌊
τi
C

⌋
· C on workstation li, which contradicts the hypothesis τi >

⌊
τi
C

⌋
· C. Hence, at least one predecessor

j ∈ P i is allocated to workstation li, and task i cannot start before time
⌊
τi
C

⌋
· C + tj . Consequently,

τi = max{τi,
⌊
τi
C

⌋
· C + minj∈P i

tj}.

The second rounding strategy is presented as follows. Let us define q =
⌊
τi
C

⌋
, so that a task i starting

at time τi is processed by workstation q + 1. If
⌈

1
C (τi + ti)

⌉
> q + 1, then task i cannot be allocated to

workstation q + 1, since it cannot span over two workstations. In that case, the earliest starting time τi is

improved to (q + 1) · C. On the contrary, τi remains unchanged.

For all i in V , we compute ζi using the same process as for τi, but considering the tasks of V in the reverse

topological order with respect to G. Namely, considering τ ri , a lower bound on the earliest starting time of

task i in the reverse topological order, one may set ζi = m · C − τ ri .

The bounds of assignment intervals can be tightened further by considering the following situation. As

proposed by Fleszar and Hindi (2003), considering i ∈ V , if there exists j ∈ V \Pi such that τi + ti > ζj − tj ,

then task j, which is not a predecessor of i, must be completed before task i can start. Consequently, arc (j, i)

can be added to A without modifying the solutions of SALBP-S. Such an addition of a precedence constraint
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implies that j is added to Pi, which can lead to an increase in τi when solving the scheduling problem.

Algorithm 1: Overall approach for reducing assignment intervals

Input: Precedence graph G = (V,A) and processing time tj for each task j ∈ V .

Output: Reduced assignment interval Qj = [lj , uj ] for each task j ∈ V .

1. Based on the work of Patterson and Albracht (1975), initialize τi ←
(⌈

ti+
∑

j∈Pi
tj

C

⌉
− 1
)
· C and

τ ri ←
(⌈

ti+
∑

j∈Si
tj

C

⌉
− 1
)
· C for each i ∈ V . In what follows, let us consider the tasks of V in the

topological order with respect to G.

2. For each task i ∈ V , set τi ← max{τi, f(i)}, where f(i) is the optimal value of the scheduling problem

1|rj |Cmax on the tasks of Pi. Then, try to improve τi.

3. For each task i ∈ V , set τ ri ← max{τ ri , fr(i)}, where fr(i) is the optimal value of the scheduling

problem 1|rj |Cmax on the tasks of Si. Then, try to improve τ ri . Finally, compute ζi ← m · C − τ ri for

each i ∈ V .

4. Try to identify additional precedence arcs, as shown above. If at least one arc has been added to A,

repeat Step 2, otherwise go to Step 5.

5. For each i ∈ V , compute its assignment interval Qi, where li ←
⌈
ti+τi
C

⌉
and ui ←

⌈
ζi
C

⌉
.

Considering the propositions of Scholl (1999), Fleszar and Hindi (2003), and Scholl and Becker (2006), the

overall approach to compute the assignment intervals is summarized in Algorithm 1. For all i ∈ V , the final

intervals are defined as

li =

⌈
ti + τi
C

⌉
and ui =

⌈
ζi
C

⌉
.

Note that, because of Step 1, the obtained assignment intervals are at least as tight as those returned by

Patterson and Albracht (1975). Alternatively, one can say that the method by Patterson and Albracht (1975)

requires to solve 1||Cmax, which is a relaxation of 1|rj |Cmax, thus producing weaker bounds on τi and ζi.

The running time of Step 1 is O(n). In Step 2, the scheduling problem is solved once for each task, so

the total running time is O(n2 log n) (searching for improvements can be done in linear time). Step 3 has

the same running time as Step 2. Step 4 runs in O(n2) and the execution time of Step 5 is in O(n). Steps 2

to 4 can be repeated only if at least one precedence arc is added to G, and the maximum number of arcs is

|A| = O(n2), consequently, the overall running time is in O(n4).

Finally, notice from Property 1 that if a lower bound LB∞ on the optimal stability radius is available, one

can set (tj + LB∞) as the processing time for any uncertain task j ∈ Ṽ 1 while computing lj and uj , which

may further reduce the assignment intervals. In the present work, an adaptation of the heuristic proposed by

Pirogov et al. (2021) is used to obtain an initial lower bound.
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4. Upper bound improvement

A second pre-processing procedure is proposed in this section. Indeed, an upper bound UB∞ on the

optimal stability radius is needed as input for the MILP formulation that will be presented in Section 5.

Based on combinatorial arguments, an upper bound on ρ∞ was proposed by Rossi et al. (2016), while here

we propose a bisection method to improve it.

It is assumed that we have LB∞ ≤ ρ∞ ≤ UB∞, where LB∞ is the best-known value for ρ∞ (obtained, for

example, by using dedicated heuristic methods as mentioned in Section 7.1), and UB∞ is its best known upper

bound, provided combinatorially as in Rossi et al. (2016). The main idea of the procedure is to temporarily

increase the processing time of each uncertain task by a certain amount ∆ and to check whether this makes

the problem infeasible or not. This procedure is implemented as a bisection method, which sets the value

∆ in the middle of the interval [L,U ], where L and U are initialized to LB∞ and UB∞, respectively. This

procedure is also based on the fact that the presence of an empty assignment interval is a sufficient condition

for infeasibility. More precisely, if there exists j ∈ V such that lj > uj , then Qj is empty, and task j cannot

be allocated to any workstation. When such a situation occurs, it can be concluded that the current increase

in processing times, ∆, is too large. Hence, if no empty assignment interval is found with the increased

processing times, then L is updated to ∆, otherwise such an increase causes infeasibility and the upper bound

U is updated to ∆.

The procedure is formally described in Algorithm 2. Each iteration of the bisection method consists

of computing ∆ to halve the interval [L,U ]. After increasing the processing time of the tasks by ∆, the

assignment intervals are updated and checked, verifying if one of them is empty. The bisection method stops

when U − L becomes smaller than a given strictly positive parameter ε.

Algorithm 2: Improvement of UB∞

1 Set L← LB∞, U ← UB∞ and ε← 10−3.

2 while U − L > ε do

3 Compute ∆← 1
2 (L+ U) and set tj ← tj + ∆ for each task j ∈ Ṽ .

4 For each task j ∈ V , calculate its assignment interval Qj (cf. Section 3).

5 If lj ≤ uj for all j ∈ V , then set L← ∆. Otherwise, set U ← ∆.

6 For each j ∈ Ṽ , restore tj ← tj −∆.

7 Update UB∞ ← U .

5. Compact MILP formulation

We now present a compact MILP formulation for SALBP-S. The continuous variable ρ∞ represents the

stability radius to be maximized. In addition, xjk is a binary variable equal to one if and only if task j is

allocated to workstation k. The continuous nonnegative variable ξjk denotes the possible deviation of the

processing time of task j on workstation k. Constraints (2) ensure that each task j is assigned to exactly one
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workstation. As stated in constraints (4), the stability radius is bounded by the minimal perturbation, which

is not greater than UB∞ since it is limited by constraints (3). Note that constraints (2) and (3) guarantee

that, among all k ∈ Qj , only one value ξjk is non-zero for any fixed j ∈ V . Constraints (5) enforce that

the total load of each workstation does not exceed C, whatever possible processing time deviations within

the stability ball. Remind that if the workstation is uncertain (k ∈ Ŵ ), then all tasks assignable to that

workstation are a posteriori uncertain: Ṽk = Vk. In contrast, if workstation is certain (k ∈ W \ Ŵ ), then

Ṽk ⊆ Vk. Note in the left-hand-side of constraint (5) that ξjk has no impact if j /∈ Ṽk. Finally, inequalities

(6) express the precedence constraints, followed by the domains of variables: (7)-(9).

Maximize ρ∞ (1)∑
k∈Qj

xjk = 1, ∀j ∈ V (2)

ξjk ≤ UB∞ · xjk, ∀j ∈ V, ∀k ∈ Qj (3)

ρ∞ ≤
∑
k∈Qj

ξjk, ∀j ∈ V (4)

∑
j∈Vk

tj · xjk +
∑
j∈Ṽk

ξjk ≤ C, ∀k ∈W (5)

ui∑
q=k

xiq ≤
uj∑
q=k

xjq, ∀(i, j) ∈ A, ∀k ∈ Qi ∩Qj (6)

ξjk ≥ 0, ∀j ∈ V, ∀k ∈ Qj (7)

xjk ∈ {0, 1}, ∀j ∈ V, ∀k ∈ Qj (8)

ρ∞ ≥ 0 (9)

Since the goal is to maximize the stability radius, in any feasible assignment there will be a critical

workstation k∗, where the values of ξjk∗ will be equal among all tasks j ∈ Ṽk∗ assigned to k∗, and their sum

will be equal to the idle time, so that ρ∞ can reach its maximum. Also, note that the number of constraints

depends on the range of the intervals Qj , j ∈ V . Tighter assignment intervals lead to fewer variables and

constraints, which stresses the importance of tightening these intervals (see Section 3). A last remark concerns

the influence of UB∞. Indeed, lower values of UB∞ can lead to shorter computation times, which justifies

the search for better upper bounds.

6. Dantzig-Wolfe decomposition

This section presents a Dantzig-Wolfe decomposition of the MILP formulation, discussed in Section 5. Let

S denote the bounded set of integer points defined by constraints (3), (5), (7), and (8). It is not difficult to see

that this set can be decomposed by workstation such that S = S1 × . . .× Sm. In addition, since x is binary,

S coincides with B, which is the set of extreme points of the convex hull of S, denoted by conv(S) (see, e.g.,

Wolsey, 1998). Thus, a reformulation is possible based on the convexification of these extreme points.

10



Note that variables ξ represent, in fact, the local stability radius for each uncertain task with respect to

the workstation where it is assigned. Since we are dealing with the l∞ norm, these values have to be equal

for all uncertain tasks assigned to the same workstation. Therefore, given a point r ∈ B, ρ
(r)
k can be defined

as the local stability radius at workstation k such that

ρ
(r)
k =

∑
j∈Ṽk

ξ̄
(r)
jk /

∑
j∈Ṽk

x̄
(r)
jk ,

where x̄
(r)
jk and ξ̄

(r)
jk are respectively the values corresponding to variables xjk and ξjk at the point r ∈ B. Hence,

with variable ρk, representing the local stability radius in the workstation k ∈ W , the equality ρk · xjk = ξjk

can be enforced for each task j ∈ V and workstation k ∈ W . Such additional constraints are linearized and

implicitly included in the pricing sub-problem (cf. Section 6.1), being hereinafter part of the definition of S

(and thus Sk, k ∈ W , too). In this way, given Bk, the set of all extreme points of conv(Sk), for all k ∈ W ,

SALBP-S is reformulated by (10)-(16). Variable λ
(r)
k is related to the extreme point r ∈ Bk, assuming value

1 if the extreme point r ∈ Bk is selected for the workstation k ∈W , and value 0 otherwise.

Maximize ρ∞ (10)∑
r∈Bk

λ
(r)
k = 1, ∀k ∈W (11)

∑
k∈Qj

∑
r∈Bk

x̄
(r)
jk · λ

(r)
k = 1, ∀j ∈ V (12)

ρ∞ ≤
∑
k∈Qj

∑
r∈Bk

ξ̄
(r)
jk · λ

(r)
k , ∀j ∈ V (13)

ui∑
q=k

∑
r∈Bq

x̄
(r)
iq · λ

(r)
q ≤

uj∑
q=k

∑
r∈Bq

x̄
(r)
jq · λ

(r)
q , ∀(i, j) ∈ A, ∀k ∈ Qi ∩Qj (14)

ρ∞ ≥ 0 (15)

λ
(r)
k ∈ {0, 1}, ∀r ∈ Bk, ∀k ∈W (16)

The model above is called the master problem, and it is denoted by DW in the sequel. Considering ρ̄L the

value given by the linear relaxation of the original compact MILP formulation, and ρ̄D the value obtained by

relaxing the integrality in DW , it is known from (see, e.g., Geoffrion, 1974) that ρ̄∞ ≤ ρ̄D ≤ ρ̄L, where ρ̄∞ is

the value of the optimal stability radius. We call DW the linear relaxation of the master problem DW .

Finally, note that each extreme point r ∈ Bk defines a set of tasks {j ∈ Vk : x̄
(r)
jk = 1} related to the

workstation k ∈ W , called pattern, whose local stability radius is ρ
(r)
k . In the following, we consider each

extreme point as a pattern and call uncertain patterns those with at least one uncertain task. Considering

B̃k ⊆ Bk, the subset of uncertain patterns in Bk (B̃k = Bk, if k ∈ Ŵ ), the following inequalities are valid for

DW :

ρ∞ ≤
∑
r∈B̃k

(ρ
(r)
k − UB∞) · λ(r)k + UB∞, ∀k ∈W. (17)
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Since at most one pattern is assigned per workstation, these inequalities require that ρ∞ is less than or equal

to the local stability radius of the uncertain pattern assigned to workstation k. If no uncertain pattern has

been assigned, then the inequality becomes loose (ρ∞ ≤ UB∞). Indeed, Proposition 1 shows that inequalities

(17) may improve the upper bound given by DW , i.e., ρ̄D.

Proposition 1. Inequalities (13) do not dominate (17), and (17) do not dominate (13).

Proof. Using a small example, we show that there exist feasible solutions of DW satisfying (13) but not (17),

and vice-versa. We consider the problem with three uncertain tasks having equal processing time tj = 2,

j ∈ {1, 2, 3}, and 2 workstations with cycle time C = 10. The precedence graph has two arcs, (1, 2) and (1, 3).

Considering the formulation (10)-(16), a feasible solution is given by patterns {1}, {2}, {3} in workstation

1, and patterns {1, 2}, {1, 3}, and {2, 3} in workstation 2. The solution is illustrated in Figure 1, where

the tasks constituting the patterns are provided in curly braces. The variable values corresponding to each

pattern are, respectively, λ11 = 0.4, λ21 = 0.3, λ31 = 0.3, λ12 = 0.3, λ22 = 0.3, and λ32 = 0.4. The local stability

radii of patterns in workstation 1 are equal to 8, and the local stability radii of patterns in workstation 2 are

equal to 3.

1

2 {1, 2} λ1
2 = 0.3 {1, 3} λ2

2 = 0.3 {2, 3} λ3
2 = 0.4

{1} λ1
1 = 0.4 {2} λ2

1 = 0.3 {3} λ3
1 = 0.3

Figure 1: Solution violating (17)

The objective value ρ̄D of the solution in Figure 1 is 4.5. This solution violates (17) since for workstation

2 we have 0.4× 3 + 0.3× 3 + 0.3× 3 = 3, which is less than 4.5.

We now consider the formulation provided by (10)-(12) and (14)-(17). A feasible solution is given by

the patterns {1} and {2, 3}, in workstations 1 and 2. Figure 2 illustrates this solution. The variable values

corresponding to each pattern are all equal to 0.5. The local stability radii of patterns {1} are equal to 8,

while the local stability radii of patterns {2, 3} are equal to 3.

1

2 {1} λ1
2 = 0.5 {2, 3} λ2

2 = 0.5

{1} λ1
1 = 0.5 {2, 3} λ2

1 = 0.5

Figure 2: Solution violating (13)

The objective value ρ̄D of the solution in Figure 2 is 5.5. This solution violates (13) since for tasks 2

and 3 we have 0.5 × 3 + 0.5 × 3 = 3, which is less than 5.5. Note that the optimal solution value of the

proposed example is 3, and that both inequalities (13) and (17) are needed so that DW gives the optimal

upper bound.
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6.1. Column generation

A column generation algorithm is proposed to compute ρ̄D. We consider that a known feasible solution

is available, producing the initial subset of columns. At each iteration, m pricing sub-problems are solved to

generate columns, each corresponding to a pattern and associated with a variable λ
(r)
k . The DW model is

then re-optimized with this additional set of columns. For each workstation k ∈W , the objective function of

pricing sub-problem PSk depends on the dual variables of DW , defined as follows:

• µk ∈ R is the dual variable associated with constraints (11) for all k ∈W ,

• κj ∈ R is the dual variable associated with constraint (12) for all j ∈ V ,

• ωj ≥ 0 is the dual variable associated with constraint (13) for all j ∈ V ,

• πijk ≥ 0 is the dual variable associated with constraint (14) for all (i, j) ∈ A and for all k ∈ [lj , ui],

• γk ≥ 0 is the dual variable of DW associated with constraint (17) for all k ∈W .

The reduced cost c̄
(r)
k of variable λ

(r)
k in DW is computed as follows:

0− µk + (ρ
(r)
k − UB∞) · γk −

∑
j∈Vk

x̄
(r)
jk · κj +

∑
j∈Vk

ξ̄
(r)
jk · ωj

−
∑

(i,j)∈A:lj≤k≤ui

k∑
q=lj

x̄
(r)
ik · πijq +

∑
(i,j)∈A:lj≤k≤uj

min{k,ui}∑
q=lj

x̄
(r)
jk · πijq

The above expression leads to a non-linear pricing objective function due to the term ρ
(r)
k , which is an

unknown value (ρk) expressed as
∑
j∈Ṽk

ξjk/
∑
j∈Ṽk

xjk, ξ and x being in their turn, variable vectors of the

pricing sub-problem. Fortunately, a linearization is straightforward since ξjk = ρk ·xjk, for all j ∈ Ṽk, k ∈W .

Thus, for any k ∈W , the pricing sub-problem PSk is defined as follows:

Maximize
∑
j∈Vk

ωj · ξkj + γk · ρk

−
∑
j∈Vk

κj +
∑

i∈Vk:(j,i)∈A,li≤k≤uj

k∑
q=li

πjiq −
∑

i∈Vk:(i,j)∈A,lj≤k≤uj

min{k,ui}∑
q=lj

πijq

 · xkj
ξjk ≤ UB∞ · xjk, ∀j ∈ Vk∑
j∈Vk

tj · xjk +
∑
j∈Ṽk

ξjk ≤ C

ξjk ≤ ρk, ∀j ∈ Vk

ξjk ≥ ρk − UB∞ · (1− xjk), ∀j ∈ Ṽk

ξjk ≥ 0, ∀j ∈ Vk

xjk ∈ {0, 1}, ∀j ∈ Vk
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ρk ≥ 0

The first two sets of constraints are derived from Sk, followed by the linearization constraints and the

domains of the variables. Note that the first set of linearization constraints also includes bounds for certain

tasks too. Indeed, by modeling, variables ξ are also defined for certain tasks in certain workstations, but they

do not impact the local stability radius. In that manner, they can be artificially set to ρ
(r)
k to improve the

upper bound, which is enforced by these additional bounding constraints.

In Peeters and Degraeve (2006), the authors proposed the addition of constraints (18) in the pricing sub-

problem to reinforce the precedence relations. The effectiveness of such constraints in the present case is

investigated in Section 7.3

xik + xlk − 1 ≤ xjk, ∀(i, j) ∈ A, ∀l ∈ Sj ∩ Vk. (18)

If PSk has a feasible solution, whose objective value is pk, and if pk − µk − UB∞ · γk is strictly positive,

then this solution may be included in DW as a new column. If, for all k ∈ W , no column can be included,

then the current solution of DW is optimal. At this point, the column generation algorithm terminates, and

the upper bound ρ̄D is returned.

We recall that the dual objective value of DW is computed as
∑
k∈W UB∞ · γk +

∑
k∈W µk +

∑
j∈V κj .

Then, it is known that for the current feasible set of columns and the corresponding dual point, an upper

bound over ρ̄D is obtained by
∑
j∈V κj +

∑
k∈W pk (see Wolsey, 1998, for basic theory). This property allows

us to obtain an upper bound from DW even if column generation stops before reaching optimality (due to

the imposed time or iteration limit). The quality of the upper bound returned by this column generation

algorithm is studied through computational experiments in the next section.

7. Computational experiments

7.1. Experimental settings

The computational experiments are conducted on a CentOS Linux machine with 8 GB of RAM and an Intel

Xeon CPU E5-2680 v4 processor at 2.40 GHz. All the linear and mixed-integer linear programs are addressed

with the state-of-the-art solver IBM CPLEX 12.10, for which a single thread is used. The algorithms are

implemented in C++, and CPLEX is called through the Concert Technology. A testbed of 525 benchmark

instances1 from Otto et al. (2013) is considered, each one having 100 tasks.

The instances are divided into 21 groups based on the probability distribution used for generating task

processing times, the structure of the precedence graph, and the order strength (OS). The latter is a density

indicator of precedence graphs computed as 2 · |A|/(n · (n− 1)). Each group contains 25 instances, and their

characteristics are presented in Table 2. Column ‘Group’ present the label given to each group, followed by the

graph structure (column ‘Graph Structure’). There are three types of graphs: the ones containing bottleneck

tasks, the ones containing at least 40% of tasks in chains, and the mixed ones, containing a bottleneck

1Instances and detailed results can be found at: http://pagesperso.ls2n.fr/~gurevsky-e/data/R-ALBP.zip
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and chained tasks in a random proportion. Finally, the columns ‘OS’ and ‘Times Distribution’ of Table 2

respectively present the graphs’ OS and the distribution of probability used to generate task processing times.

A bimodal distribution consists of a combination of two normal distributions with means centered around

small and large times. The term ‘peak in the bottom’ stands for a normal distribution with the mean centered

around small times, while ‘peak in the middle’ refers to normal distributions averaged to 0.5 · C, where C is

the cycle time set to 1000. We refer the reader to Otto et al. (2013) for more details on those probability

distributions and other instance features.

Group Graph Structure OS Times Distribution

BN 2 BM bottleneck 0.2 bimodal

BN 2 PB bottleneck 0.2 peak at the bottom

BN 2 PM bottleneck 0.2 peak in the middle

BN 6 BM bottleneck 0.6 bimodal

BN 6 PB bottleneck 0.6 peak at the bottom

BN 6 PM bottleneck 0.6 peak in the middle

CH 2 BM chains 0.2 bimodal

CH 2 PB chains 0.2 peak at the bottom

CH 2 PM chains 0.2 peak in the middle

CH 6 BM chains 0.6 bimodal

CH 6 PB chains 0.6 peak at the bottom

CH 6 PM chains 0.6 peak in the middle

MX 2 BM mixed 0.2 bimodal

MX 2 PB mixed 0.2 peak at the bottom

MX 2 PM mixed 0.2 peak in the middle

MX 6 BM mixed 0.6 bimodal

MX 6 PB mixed 0.6 peak at the bottom

MX 6 PM mixed 0.6 peak in the middle

MX 9 BM mixed 0.9 bimodal

MX 9 PB mixed 0.9 peak at the bottom

MX 9 PM mixed 0.9 peak in the middle

Table 2: Groups of instances

The considered instances were originally designed for the problem of minimizing the number of workstations

(SALBP-1). Here, the number of workstations is fixed and has been set to the best-known solution value of

SALBP-1 (Otto et al., 2013; Morrison et al., 2014). Furthermore, the set of uncertain tasks Ṽ 1 (resp. the set

of uncertain workstations Ŵ ) is built by taking the first |Ṽ 1| (resp. |Ŵ |) elements of a random permutation of

{1, . . . , n} (resp. {1, . . . ,m}) associated with each instance. We consider three different levels of uncertainty:

(i) |Ṽ 1| = d0.5ne and |Ŵ | = 0;
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(ii) |Ṽ 1| = d0.5ne and |Ŵ | = d0.5me;

(iii) |Ṽ 1| = n and |Ŵ | = 0.

In the next subsections, the average results per group are analyzed. It is worth noting that the computed

average values take into account the results for the three different levels of uncertainty. Since the remarks

made in the sequel cover the three levels of uncertainty, we choose to present aggregated results to improve

readability. The detailed results are available online as mentioned earlier.

First, the tightness of the assignment intervals returned by the method of Patterson and Albracht and the

method discussed in this paper are compared in Section 7.2. More specifically, since variable xjk can be set

to zero if workstation k is not in the assignment interval Qj of task j, the two methods for computing the

assignment intervals are compared on the basis of the average number of such pre-fixed decision variables.

In Section 7.3, we provide a comparison between different versions of the Dantzig-Wolfe approach. The

experiments intend to confirm the effectiveness of the proposed valid inequalities (17) and to test strategies

previously applied in the literature for simple assembly line balancing problems without uncertainty. Notably,

we test the effect of removing the precedence constraints from the master problem and adding constraints

(18) to the pricing sub-problem, as these strategies have been applied in (Peeters and Degraeve, 2006) for the

SALBP-1, providing promising results.

We recall that the main goal of the proposed Dantzig-Wolfe approach is to obtain better upper bounds

for the stability radius. In Section 7.4, we investigate the quality of the upper bound provided by the linear

relaxation of the proposed extended formulation (10)-(17). For that purpose, two approaches are compared:

the first one, denoted by CF (compact formulation), consists in solving the compact MILP formulation of

Section 5 with a time limit of 600 seconds. The second one, denoted by CFCG, is a two-stage approach relying

on the compact MILP formulation followed by the Dantzig-Wolfe decomposition introduced in Section 6. In

the first stage, the compact MILP formulation of Section 5 is addressed using CPLEX with a time limit of

300 seconds. Then, the resulting upper bound on the stability radius is used as the value for UB∞ in PSk

for every k ∈ W . The second stage of CFCG (named CG) runs the column generation algorithm proposed

in Section 6.1 with a time limit of 300 seconds, attempting to reduce the upper bound obtained in the first

stage. Note that the best solution found by CPLEX during the first stage (including at pre-solve) is used to

produce initial columns for DW . Since CG may benefit from enhanced upper and lower bounds, aiming for

a fair comparison, the CF approach is actually restarted at 300 seconds of computational time to take into

account the enhanced bounds. This includes updating UB∞ in inequalities (3) and recomputing assignment

values with the enhanced lower bound. As one can expect, the current best solution is used as restarting

point.

In Section 7.5, we discuss about the possibility of obtaining an improved feasible solution from the columns

generated with the Dantzig-Wolfe approach. Finally, Section 7.6 focuses on managerial insights. We first study

the impact of having uncertain workstations grouped at the beginning of the line, in the end, or randomly

distributed. We then investigate the effect of increasing the number of workstations and the effect of varying

the cycle time on the stability radius value.

16



7.2. Reductions in assignment intervals

The assignment intervals computed according to the classical method, presented in Patterson and Albracht

(1975) (‘PA’), are compared with the assignment intervals returned by the method discussed in Section 3

(‘NAI’). The comparison is performed on the number of binary variables xjk (j ∈ V and k ∈ W ) set to zero

due to the computed assignment intervals. Note that those variables are present in the compact formulation

and in the pricing sub-problem. Hence, we also provide the impact of each method on the performance of the

CG algorithm.

The effect of providing an initial lower bound is analyzed too. Indeed, as explained in Section 3, if a

feasible solution with a strictly positive stability radius is known, this value can serve as a lower bound to

the stability radius. Then, the assignment intervals can be computed after increasing the duration of each

uncertain task by this lower bound.

Each row in Table 3 shows the average results for each group of instances. Columns 2 to 5 present

the results when using PA, while columns 6 to 10 show the results when using NAI. Columns ‘Fixed Vars’

correspond to the average number of decision variables set to zero thanks to the assignment intervals computed

with each method. These values are given for the case where no initial lower bound is used (columns ‘No

LB’) and for the case where an initial solution is available (columns ‘With LB’). Here, the considered initial

solution is the one obtained after solving the compact formulation for 300 seconds. Next, columns under ‘CG’

present the performances of the CG algorithm in terms of upper bounds (columns ‘Dev’) and computational

times in seconds (columns ‘Time’). The values in columns ‘Dev’ correspond to deviations, computed as

(UBX −UB∗)/UB∗ × 100, where UBX is the upper bound obtained with each method, and UB∗ is the best

upper bound found with one of them. Finally, column ‘+Arcs’ provides the average number of new precedence

arcs that have been added to the precedence graph by Step 4 of Algorithm 1. These last values were obtained

using an initial lower bound. In the case where no initial lower bound is available, the addition of arcs was

almost never observed.

The computational time of PA and NAI is below 0.1 seconds per instance. However, when assignment

intervals are computed repeatedly, as in the bisection method to produce an upper bound on the stability

radius (see Section 4), the running time of NAI becomes slightly more significant as can be seen in Section

7.4.1.

The results of Table 3 show that both PA and NAI take advantage of the availability of an initial solution,

which confirms that a fast heuristic is beneficial to pre-set some variables without compromising optimality.

As shown in Section 3, the assignment intervals returned by NAI are at least as tight as those of PA, so the

number of decision variables that can be pre-fixed to zero is always larger when NAI is used. For MX 2 PB

and MX 6 PB, NAI does not improve over PA. Generally, the ‘PB’ instances (those for which the time

distribution is ‘peak at the bottom’) only marginally benefit from NAI. On the whole instance set, however,

the new assignment intervals increase the number of decision variables that can be pre-fixed to zero by 2.2% on

average. Moreover, using a lower bound increases the number of pre-fixed variables by 1% without increasing

running times significantly.
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PA NAI

Fixed Vars CG Fixed Vars CG

Group No LB With LB Dev Time (s) No LB With LB Dev Time (s) +Arcs

BN 2 BM 379 385 0.00 300.0 387 393 0.00 300.0 0.0

BN 2 PB 210 217 0.00 300.0 211 218 0.00 300.0 0.0

BN 2 PM 974 974 3.02 189.7 1052 1052 0.00 181.1 0.0

BN 6 BM 1258 1271 0.14 300.0 1260 1273 0.00 300.0 0.0

BN 6 PB 746 773 0.00 278.0 746 773 0.00 278.3 0.0

BN 6 PM 2933 2934 0.00 77.6 2977 2978 0.00 76.5 0.0

CH 2 BM 386 390 0.00 300.0 395 399 0.00 300.0 0.0

CH 2 PB 208 214 0.00 300.0 209 215 0.00 300.0 0.0

CH 2 PM 968 968 2.89 192.6 1052 1052 0.00 182.5 0.0

CH 6 BM 1272 1280 0.17 282.8 1281 1288 0.00 281.9 0.3

CH 6 PB 728 753 0.00 273.6 728 753 0.00 271.7 0.0

CH 6 PM 2975 2976 0.02 96.2 3054 3055 0.00 90.1 0.0

MX 2 BM 393 398 0.00 300.0 398 403 0.00 300.0 0.0

MX 2 PB 210 217 0.00 300.0 210 217 0.00 300.0 0.0

MX 2 PM 979 979 2.35 184.8 1039 1039 0.01 175.7 0.0

MX 6 BM 1271 1284 0.07 288.2 1273 1286 0.00 287.5 0.1

MX 6 PB 756 780 0.00 284.2 756 780 0.00 283.3 0.0

MX 6 PM 2940 2941 0.00 88.6 2978 2979 0.00 83.1 0.0

MX 9 BM 1955 1996 0.48 4.2 1983 2022 0.00 4.6 0.6

MX 9 PB 1154 1198 0.00 0.8 1161 1205 0.00 0.9 1.2

MX 9 PM 4468 4483 0.99 40.7 4627 4648 0.00 33.4 0.0

Overall Average 1293 1305 0.48 208.7 1323 1335 0.00 206.2 0.1

Table 3: Average number of binary variables pre-fixed to zero and the impact of assignment intervals on CG

The NAI’s procedure for identifying new precedence constraints is rarely successful, especially when no

initial lower bound is available. However, the column ‘+Arcs’ shows that those new constraints are slightly

more frequent when an initial lower bound is used.

With respect to the impact on the performances of the CG algorithm, one can observe that the greatest

advantages of the NAI are obtained for the ‘peak in the middle’ groups. In fact, these are the groups for

which the NAI was the most successful in pre-fixing variables. In the best cases, the use of NAI resulted in an

improvement of more than 3% on upper bounds and a reduction of computational times by 8 to 10 seconds.

On the overall average (last row of Table 3), using NAI provided a 0.48% improvement in terms of upper

bound and a 2-second reduction in terms of computational time.

Since NAI is more successful than PA in reducing assignment intervals and thus filtering assignment

variables, all methods in the following experiments implement NAI for pre-processing. Indeed, fixing variables

to zero helps to reduce the problem’s size, enhancing the performance of the methods, as observed in (Pirogov

et al., 2021). In Section 7.4.1, we provide results showing that the bisection method (Algorithm 2) also

provides better upper bounds while applying NAI rather than PA.
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7.3. Comparing different strategies for the Dantzig-Wolfe approach

Six versions of the Dantzig-Wolfe approach are compared on the basis of the returned upper bound for the

stability radius (in Table 5) and in terms of running time (in Table 6). Each row in Table 4 characterizes a

version of the Dantzig-Wolfe approach. These versions differ by the presence or absence of the valid inequalities

(17), by the presence or absence of the precedence constraints (14) in the master problem, and by the presence

or absence of precedence constraints (18) in the pricing sub-problem.

Tables 5 and 6 provide averaged results on the 21 groups of instances indicated by the first column. Table

5 displays the average deviation of the upper bound obtained with the corresponding version, with respect to

the best available bound. The deviations are computed as (UBX−UB∗)/UB∗×100, where UBX corresponds

to the upper bound provided by each version, and UB∗ is the best upper bound found by one of them. Table

6 displays the average running times.

Version Enforcing (17) Enforcing (14) Enforcing (18)

DW-0.0.1 No No Yes

DW-0.1.0 No Yes No

DW-1.0.0 Yes No No

DW-1.1.0 Yes Yes No

DW-1.1.1 Yes Yes Yes

DW-1.0.1 Yes No Yes

Table 4: Different versions of the Dantzig-Wolfe approach

It can be seen in Table 5 that all the versions of the Dantzig-Wolfe approach tend to return very similar

upper bounds on the stability radius for the BM and PM instances, i.e., for the ‘bimodal’ and ‘peak in the

bottom’ processing times distribution. By contrast, the quality of upper bounds becomes significantly different

for the instances with ‘peak in the middle’ processing times distribution. The worst values are returned by

DW-0.1.0 and DW-0.0.1, while the results obtained by DW-1.1.0 and DW-1.0.1 are significantly better, which

illustrates the beneficial effect of constraint (17). More generally, all the versions for which constraint (17)

is implemented outperform the versions for which this constraint is not present. For that reason, versions

DW-0.0.0 and DW-0.1.1 do not produce competitive results and are not considered.

Considering the overall averages, the best results were obtained with DW-1.1.1 and DW-1.0.1, which

suggests that the precedence constraints can be relaxed in the master problem provided that they are enforced

in the pricing sub-problem by inequalities (18). Furthermore, the results obtained with versions DW-1.0.0 and

DW-1.1.0 demonstrate that removing inequalities (18) is detrimental to upper bound quality. This suggests

that reinforcing the pricing, i.e., enforcing precedence inequalities (18) in the pricing sub-problem, has a

positive impact on the upper bound.

Table 6 displays the running time of the seven versions of the Dantzig-Wolfe approach, where a time limit

of 300 seconds is enforced for each instance. It can now clearly be seen that the worst versions in terms of

upper bound, i.e., DW-0.0.1 and DW-0.1.0 are also the fastest ones. This indicates that constraint (17) has
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Group DW-0.0.1 DW-0.1.0 DW-1.0.0 DW-1.1.0 DW-1.1.1 DW-1.0.1

BN 2 BM 0.00 0.00 0.00 0.00 0.00 0.00

BN 2 PB 0.00 0.00 0.00 0.00 0.00 0.00

BN 2 PM 821.89 821.89 50.55 51.69 5.63 3.65

BN 6 BM 1.54 1.54 1.11 0.45 0.02 0.43

BN 6 PB 0.00 0.00 0.00 0.00 0.00 0.00

BN 6 PM 521.07 696.34 239.28 226.02 0.00 0.02

CH 2 BM 0.00 0.00 0.00 0.00 0.00 0.00

CH 2 PB 0.00 0.00 0.00 0.00 0.00 0.00

CH 2 PM 527.69 595.19 6.80 8.32 11.98 2.02

CH 6 BM 2.72 2.72 2.23 1.08 0.00 1.25

CH 6 PB 0.00 0.00 0.00 0.00 0.00 0.00

CH 6 PM 438.98 474.55 82.34 77.94 0.00 2.10

MX 2 BM 0.00 0.00 0.00 0.00 0.00 0.00

MX 2 PB 0.00 0.00 0.00 0.00 0.00 0.00

MX 2 PM 461.16 480.43 24.67 26.42 5.30 2.64

MX 6 BM 2.01 2.01 1.56 0.62 0.01 0.89

MX 6 PB 0.04 0.04 0.04 0.04 0.02 0.04

MX 6 PM 390.22 446.31 115.04 110.68 0.00 0.41

MX 9 BM 0.11 0.11 0.11 0.11 0.00 0.02

MX 9 PB 0.00 0.00 0.00 0.00 0.00 0.00

MX 9 PM 453.65 554.55 306.03 254.04 0.00 0.35

Overall Average 172.43 194.08 39.51 36.07 1.09 0.66

Table 5: Average deviations to the best upper bound among versions of the Dantzig-Wolfe approach

a nasty effect on the running time. This is not very surprising, because the corresponding inequalities are

very dense in the sense that if pattern r for workstation k contains at least one uncertain task, or if k is an

uncertain workstation, then the coefficient of variable λ
(r)
k in constraint (17) is nonzero.

The best versions in terms of upper bound, i.e., DW-1.0.1 and DW-1.1.1 are also the slower ones. As

a consequence, versions DW-1.0.0 and DW-1.1.0 managed to provide better upper bounds in some cases,

namely 3.5% of the instances. This is due to the fact that the addition of inequalities (18) produces harder

sub-problems, which slows down the column generation algorithm. Therefore, in some cases, better upper

bounds are obtained with versions DW-1.0.0 and DW-1.1.0 since they are able to perform more iterations

than versions DW-1.0.1 and DW-1.1.1 within the same time limit. However, if more time is allotted for the

four versions to run, e.g. one hour, the best upper bounds are definitely provided by versions DW-1.0.1 and

DW-1.1.1 (cf. detailed results on the previously mentioned link). In fact, even though the addition of (18)

slows down the solution process of the sub-problems, fewer iterations are needed to converge, which means
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Group DW-0.0.1 DW-0.1.0 DW-1.0.0 DW-1.1.0 DW-1.1.1 DW-1.0.1

BN 2 BM 25.04 42.62 297.84 299.55 300.00 300.00

BN 2 PB 13.24 16.46 287.12 299.52 300.00 300.00

BN 2 PM 30.62 30.02 164.32 201.41 210.54 181.14

BN 6 BM 8.18 6.60 288.44 297.80 300.00 300.00

BN 6 PB 4.72 3.55 235.11 292.88 299.37 278.26

BN 6 PM 11.27 8.31 96.40 158.40 90.48 76.52

CH 2 BM 30.66 63.51 300.00 300.00 300.00 300.00

CH 2 PB 13.07 18.33 292.30 300.00 300.00 300.00

CH 2 PM 28.63 38.86 151.25 198.98 220.10 182.49

CH 6 BM 10.03 9.39 268.08 282.07 283.47 281.87

CH 6 PB 6.26 4.59 213.82 281.34 290.71 271.70

CH 6 PM 11.72 11.28 94.84 193.71 162.19 90.06

MX 2 BM 24.45 44.71 300.00 300.00 300.00 300.00

MX 2 PB 13.24 16.81 278.38 296.67 299.19 300.00

MX 2 PM 28.26 30.05 162.30 195.86 208.10 175.74

MX 6 BM 8.27 7.32 260.06 285.72 291.82 287.46

MX 6 PB 4.88 3.87 224.80 291.84 300.00 283.31

MX 6 PM 11.32 10.21 95.29 172.34 127.20 83.08

MX 9 BM 0.60 0.48 2.18 4.00 5.04 4.57

MX 9 PB 0.08 0.06 0.43 0.58 1.55 0.88

MX 9 PM 5.07 3.41 45.67 81.66 44.06 33.40

Overall Average 13.79 17.64 193.27 225.44 220.66 206.21

Table 6: Average computational times for different versions of the Dantzig-Wolfe approach

that implementing these inequalities in the pricing sub-problem is a competitive trade-off.

In Table 7, we provide the results of the two most promising versions applying a time limit of one hour.

Since, for this extended time limit, versions DW-1.0.0 and DW-1.1.0 are outperformed by DW-1.0.1 and

DW-1.1.1, Table 7 displays the results of the last two versions only. Still, the complete set of results is

available online, as previously mentioned. Table 7 also excludes the instances which could be previously

solved within a 300-second time limit. The lines present the average results per group indicated in the first

column. The last line provides the overall average values for the whole set of considered instances. Followed

by the computational times (in seconds), columns ‘Dev’ present the quality of the upper bound provided by

every version for each group of instances. As previously, the quality is measured by deviations computed as

(UBX − UB∗)/UB∗ × 100, where UBX corresponds to the upper bound provided by each version, and UB∗

is the best upper bound found by one of them. The two columns under ‘Time-Stopped’ present the number

of instances for which DW-1.1.1 and DW-1.1.0 run until the time limit without converging. These values
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DW-1.1.1 DW-1.0.1 Time-Stopped

Group Dev Time Dev Time 300s 3600s UB Improv

BN 2 BM 0.02 3406.74 0.46 3372.12 75 67 −0.50

BN 2 PB 0.00 3540.63 0.04 3165.41 75 60 −0.04

BN 2 PM 0.00 645.84 0.37 565.48 22 0 −7.42

BN 6 BM 0.01 2385.28 0.76 2448.64 75 31 −1.35

BN 6 PB 0.00 3511.35 0.46 3308.86 61 53 −0.81

CH 2 BM 0.00 3596.20 0.80 3562.79 75 73 −0.99

CH 2 PB 0.00 3559.18 0.02 3287.88 75 66 −0.02

CH 2 PM 0.00 629.53 0.13 483.73 12 0 −8.26

CH 6 BM 0.01 2125.33 1.51 2135.61 68 16 −1.98

CH 6 PB 0.01 3408.45 0.73 3145.45 60 48 −1.07

MX 2 BM 0.00 3525.41 0.44 3553.99 75 69 −0.51

MX 2 PB 0.00 3515.54 0.04 3064.18 74 58 −0.04

MX 2 PM 0.00 591.22 0.02 590.05 17 0 −14.04

MX 6 BM 0.01 2353.58 1.08 2340.89 69 24 −1.33

MX 6 PB 0.00 3462.62 0.47 3112.22 65 50 −0.59

Overall Average 0.00 2683.79 0.49 2542.49 60 41 −2.60

Table 7: Average results for two versions of the Dantzig-Wolfe approach with a time limit of one hour.

are provided for the time limit of 300 seconds (column ‘300s’) and for the time limit of one hour (column

‘3600s’). Finally, the last column provides the average improvements in the upper bounds obtained with the

extra computational time. The improvements are computed as (UB∗3600−UB∗300)/UB∗300× 100, where UB∗300

and UB∗3600, represent the best upper bound obtained with a time limit of 300 and 3600 seconds respectively.

From Table 7, one can observe that for ‘peak in the middle’ groups, DW-1.1.1 and DW-1.0.1 may converge

much earlier than the time limit of 3600 seconds. For those instances, DW-1.1.1 takes 622 seconds and DW-

1.0.1 takes 546 seconds on average. Indeed, the extra time is sufficient to close the duality gaps of all ‘peak

in the middle’ instances, which in the best case (MX 2 PM) represents an improvement of 14% on the upper

bound.

We remark that duality gaps are also closed for a considerable number of ‘bimodal’ instances with OS=0.6.

However, in this case, computational times are much closer to the time limit, and the improvements in terms

of upper bounds remain under 1.98%. For other groups of instances, the results are less significant. In the

remaining groups, the duality gap can be closed for 8 to 10 more instances on average. In the worst case, that

number decreases to 2. With respect to the upper bounds, the improvements remain under 1.07% on average.

Finally, we compare the two DW versions considering the extended time limit. We observe that DW-1.1.1

provides the best upper bounds, but spends more computational time than DW-1.0.1 (about 140 seconds on

the overall average). Even though the upper bounds provided by the later version are worse, they remain close
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to the best ones. Indeed, the deviations of the DW-1.0.1 version reach 1.51% in the worse case (CH 6 BM),

but remain under 0.5% in the overall average.

As a conclusion of this study, the only Dantzig-Wolfe version that will be considered in the sequel is DW-

1.0.1, since for the considered time limit of 300 seconds it provides the best overall performance. A natural

idea to enhance DW-1.0.1 is to add precedence constraints on-the-fly if they are found to be violated. This

seventh version has also been tested, but the computational time turns out to be even larger than the one of

DW-1.1.1, and the improvements in terms of upper bounds are not significant.

7.4. Quality of the upper bounds

We now investigate the quality of the upper bounds returned by the proposed methods. In Section 7.4.1,

we first compare the upper bounds obtained by the bisection method (Algorithm 2) with the ones computed

as per Rossi et al. (2016). Moreover, two versions of the bisection method are compared: the first one uses

PA to compute the assignment intervals, whereas the second one relies on NAI. Then in Section 7.4.2, the

quality of the upper bounds returned by CF and CFCG is compared.

7.4.1. Improvements brought by the bisection method over the initial upper bound

In Table 8, PA refers to the use of the method of Patterson and Albracht (1975), and NAI refers to the

method discussed in Section 7.2 to compute the assignment intervals. The columns ‘BS UB Improv (%)’

provide the gains obtained with the bisection method over the upper bound computed by the combinatorial

approach presented in Rossi et al. (2016). To the best of our knowledge, the latter work corresponds to the

state-of-the-art and sole method for computing upper bounds for the SALBP-S, other than CF. The gains

in terms of upper bound are computed as (UBBS − UB0)/UB0, where UBBS is the upper bound provided

by the bisection method, and UB0 is the upper bound given by the combinatorial approach. We note that

UBBS ≤ UB0, since UB0 is an input for the bisection method, hence all gains are negative, which means that

the bisection method can only yield tighter upper bounds.

As expected, the upper bound improvements are much higher when NAI is used instead of PA, and this

improvement in terms of upper bound quality is obtained at a modest extra computational cost of 0.12 seconds

on average. Hence, considering the results obtained with NAI, the bisection method improves upper bounds

for all groups of instances except three: ‘CH 2 PM’, ‘MX 2 BM’, and ‘MX 2 PM’. In general, the bisection

method is less effective for instances with a PM (‘peak in the middle’) time distribution, and when the

precedence graph is sparse (OS equal to 0.2). By contrast, the best results are obtained when the precedence

graph is highly dense, as in groups whose labels start by ‘MX 9’ (OS equal to 0.9). This is not surprising,

since the method relies on the infeasibility caused by sharp assignment intervals. Indeed, the more precedence

constraints, the sharper those intervals tend to be. With respect to the time distribution, according to Otto

et al. (2013) and Morrison et al. (2014), the PM instances are the hardest ones, which may explain why

the improvements were less significant. The PB (‘peak at the bottom’) instances are those for which the

improvement is the most notable.
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PA NAI

Group BS UB Improv (%) Time (s) BS UB Improv (%) Time (s)

BN 2 BM 0.00 0.00 −2.04 0.00

BN 2 PB −2.97 0.00 −8.88 0.00

BN 2 PM 0.00 0.00 −0.55 0.00

BN 6 BM −19.19 0.00 −31.23 0.01

BN 6 PB −43.38 0.00 −51.54 0.03

BN 6 PM −0.29 0.00 −4.56 0.01

CH 2 BM −0.33 0.00 −4.08 0.00

CH 2 PB 0.00 0.00 −1.51 0.00

CH 2 PM 0.00 0.00 0.00 0.00

CH 6 BM −11.01 0.00 −31.19 0.04

CH 6 PB −31.51 0.00 −51.16 0.11

CH 6 PM −2.29 0.00 −11.23 0.22

MX 2 BM 0.00 0.00 0.00 0.00

MX 2 PB −0.25 0.00 −3.55 0.00

MX 2 PM 0.00 0.00 0.00 0.00

MX 6 BM −12.35 0.00 −29.34 0.03

MX 6 PB −35.80 0.00 −54.82 0.12

MX 6 PM −0.02 0.00 −5.42 0.32

MX 9 BM −73.89 0.00 −82.90 0.66

MX 9 PB −81.24 0.00 −86.44 0.44

MX 9 PM −10.68 0.00 −23.87 0.57

Overall average −15.49 0.00 −23.06 0.12

Table 8: Average reductions provided by the bisection method in the initial upper bound

7.4.2. Comparison of CF and CFCG

We now compare CF and CFCG, which are both allowed to run for 600 seconds on each instance. Note

that the two approaches take advantage of the pre-processing strategies introduced in Sections 3 and 4, and

that CPLEX is warm started with the solution returned by an adaptation of the heuristic presented in Pirogov

et al. (2021). In case the heuristic could not find a feasible solution, the one provided by Morrison et al. (2014)

for the SALBP-1 is used to construct a feasible solution for the SALBP-S. In case no initial feasible solution

is available to start CG, an alternative is to add artificial variables to (11) and (12), with sufficiently high

negative coefficients in the objective function.

Table 9 provides the average results of CF and CFCG in terms of upper bounds and computational times

for each group of instances. Column ‘Group’ indicates the label of each group. We let UBCF and UBCFCG

denote the upper bound values provided by CF and CFCG, respectively.
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Group CF GAP (%) CF UB Improv (%) CG UB Improv (%) DEV UB (%) CFCG Time (s)

BN 2 BM 57.50 −0.39 0.00 0.40 600

BN 2 PB 32.32 −0.46 0.00 0.48 600

BN 2 PM 99.46 −3.05 −66.20 −65.34 481

BN 6 BM 64.52 −1.29 −1.03 0.27 600

BN 6 PB 29.90 −0.90 0.00 0.95 578

BN 6 PM 98.50 −9.67 −67.98 −64.42 377

CH 2 BM 70.54 −0.68 0.00 0.70 600

CH 2 PB 30.71 −0.84 0.00 0.87 600

CH 2 PM 99.52 −3.16 −67.76 −66.84 482

CH 6 BM 76.17 −1.85 −1.33 0.56 582

CH 6 PB 32.38 −1.21 0.00 1.29 572

CH 6 PM 99.10 −6.64 −67.35 −65.36 390

MX 2 BM 63.01 −0.42 0.00 0.43 600

MX 2 PB 35.28 −0.58 0.00 0.60 600

MX 2 PM 99.22 −3.76 −71.36 −70.48 476

MX 6 BM 68.51 −1.54 −1.02 0.55 587

MX 6 PB 27.85 −1.14 −0.01 1.20 583

MX 6 PM 99.13 −10.33 −67.48 −63.05 383

MX 9 BM 10.55 −1.62 −0.09 2.38 305

MX 9 PB 0.26 −0.81 0.00 0.97 301

MX 9 PM 92.28 −11.31 −57.56 −52.57 333

Table 9: Upper bound improvement and computational effort resulting from CFCG over CF

‘CF GAP’ presents the average gap (UBCF −LBCF )/UBCF provided by CF. As one can notice, the most

difficult instances are those with ‘peak in the middle’ time distributions (groups whose labels finish by ‘PM’).

The columns ‘CF UB Improv’ and ‘CG UB Improv’ present how CF and CG improve over UB1, the value

obtained in the first stage of CFCG. Those improvements are calculated as (UBX − UB1)/UB1, where X

corresponds to CF in the first case and CFCG in the latter. Remark that UBX ≤ UB1 ≤ UBBS ≤ UB0 since

the bisection method works as a pre-processing stage for CF and CFCG, as mentioned in Section 4. From

columns ‘CF UB Improv’ and ‘CG UB Improv’, one can conclude that, for the hardest instances (with ‘peak in

the middle’ time distributions), CFCG provides far better upper bounds than CF. This is confirmed by column

‘DEV UB’, which shows the average upper bound deviations calculated as (UBCFCG − UBCF )/UBCFCG.

Note that negative values indicate an improvement of CFCG over CF. From these results, it can be seen that,

when dealing with the hardest instances, CFCG outperforms CF in terms of upper-bound quality. For the

other groups, the deviation does not exceed 2.38% on average (group ‘MX 9 BM’).

Figure 3 provides more details about the performance of CF and CFCG. The values corresponding to

columns ‘CF GAP’ and ‘DEV UB’ of Table 9 are plotted individually for each instance. Hence, it is worth

noting that those are average values taking into account the results for the three different levels of uncertainty.
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The black bars at the bottom are related to the vertical axis on the right side of the figure, while the gray lines

correspond to the vertical axis on the left. As shown by the black bars, CFCG improvements over CF reached

up to 100% for PM groups. Recall that these improvements are indicated by negative values, according to

the definition of ‘DEV UB’ above.

Still in Figure 3, when CF returns better bounds (positive-valued black bars), the deviation from UBCFCG

is close to zero, except for groups ‘MX 9 BM’ and ‘MX 9 PB’, where UBCFCG is worse than UBCF by a more

significant amount. In those groups, UBCF is around 40% better than UBCFCG for one instance, but the

deviations remain under 10% for all the others. Remark that ‘MX 9 BM’ and ‘MX 9 PB’ correspond to the

lowest gaps, determined by the gray lines in the right part of Figure 3. Indeed, the relation between the gray

lines and black bars in Figure 3 indicates that Dantzig-Wolfe decomposition is less efficient in cases where

CF provides relatively small gaps. Although, one can note that for several instances, ‘CF GAP’ is 100%, and

the proposed approach could not provide any improvement. In those cases, the best-known solution value is

zero, leading to a 100% gap ever since the upper bound is not optimal. Indeed, for those cases, CF already

manages to provide near-optimal upper bounds despite the high-valued gap.

A total of 144 instances out of 1575 (525 times three uncertainty levels) have been solved to optimality.

Most of them belong to groups ‘MX 9 BM’ and ‘MX 9 PB’ and are solved by CF within 600 seconds. However,

the optimality of the solution to 26 instances out of the 144 ones (18%) has been proven by the proposed

approach, i.e., CG returns an upper bound whose value is equal to the best-known solution value. This is

typically the case when the best-known solution value is zero.

In terms of computational time, column ‘CFCG Time’ in Table 9 presents the average computational

time, in seconds, spent by CFCG. For CF, the computational time is always equal to the limit of 600 seconds,

except for the 118 instances solved to optimality as mentioned before. It can be observed that the column

generation algorithm may converge relatively fast in some cases, especially for high levels of OS (MX 9 BM,

MX 9 PM, and MX 9 PB). Since the first 300 seconds are spent during the first stage of CFCG, column

generation converges in approximately 5 seconds for MX 9 BM, 1 second for MX 9 PB, and 33 seconds for

MX 9 PM on average.

The very large-scale instances of 1000 tasks from Otto et al. (2013) were also used for computational

experiments, but both CF and CFCG failed on them. Indeed, CPLEX could not provide any feasible solu-

tion after 1 hour of computational time, and for hard instances, even the linear relaxation of the compact

formulation (1)-(9) could not be solved after 1 hour of computational time. In its turn, the bisection method

remained effective for those instances, managing to decrease upper bounds by 80% in some cases. In terms of

computational time, the method stopped within a few seconds for all instances. These results are reported as

averages in Appendix A. The values for each instance are available at the web link mentioned earlier.

7.5. Heuristic improvement of initial solutions

When column generation converges before the time limit, an attempt to improve the lower bound is made,

taking advantage of the generated columns. In this manner, integrality is reimposed to λ variables, and the
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current integer master problem is solved using CPLEX. A time limit is set so that CFCG cannot run for more

than 600 seconds.

According to the obtained results, such a heuristic procedure provides better solutions in some of the cases

where it could be executed, namely 12 out of 674 instances (2%). Concerning the computational time, this

heuristic procedure is relatively fast, taking less than two minutes to run. These results are also available on

the online material.

7.6. Managerial insights

We now present computational results aiming to study how the stability radius changes once some of the

instance’s features are modified, namely the number of workstations, the cycle time, and the positioning of

uncertain workstations. Considering the best-known feasible solution (LB) and the best-known upper bound

(UB) for each instance, we provide charts on the evolution of those values as the features are changed. The

optimality gap (GAP), computed as (UB − LB)/UB × 100, is also provided to indicate how the difficulty

of instances evolves according to the modifications. All those values represent averages on the whole set of

instances.

7.6.1. Impact of the position of uncertain workstations along the assembly line

In this section, we study the impact of the position of uncertain workstations along the assembly line.

More precisely, in the second level of uncertainty, we have |Ṽ 1| = d0.5ne and |Ŵ | = d0.5me, and the uncertain

workstations are selected randomly. We now consider two additional scenarios: front refers to the situation,

where the first |Ŵ | workstations are uncertain, and end corresponds to the situation, where the last |Ŵ |

workstations are uncertain. Figure 4 shows the lower and upper bounds on the stability radius, as well as

the gap under these three scenarios. It can be seen that the actual position of uncertain workstations in

the assembly line does not have a noticeable impact on the stability radius value. The random scenario is

slightly more challenging, as its gap and the upper bound are a bit larger than in the other two scenarios.

In a managerial context, this means that if we are given a way to select the uncertain tasks, then it may be

slightly more beneficial to select them as the first or the last tasks in the precedence graph.

7.6.2. Increasing the number of workstations, and the cycle time

We now investigate the impact of having additional workstations in the line. We denote by m? the situation

where the number of workstations is minimum, i.e., is equal to the optimal objective value of SALBP-1 when

the cycle time is C = 1000 units of time. Then, m?+1 and m?+2 represent the situations, where respectively

one and two new (certain) workstations are added to the line. Figure 5 suggests that the lower bound increases

by an average of 1% of the cycle time per additional workstation, and that the upper bound increases by

an average of 1.5% of the cycle time per additional workstation. The gap decreases significantly when the

number of workstations is at least m? + 1, which shows that the problem gets easier when the number of

workstations increases by one or two units.

Next, we consider the effects on the stability radius value in the face of an increase in cycle time, when

the number of workstations is equal to the optimal objective value of SALBP-1. In Figure 6, the cycle time C
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Figure 4: Average results for different workstation distributions
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Figure 5: Average results for the increased number of workstations

is set to 1000, 1200, and 1400 units of time. As expected, the lower and upper bounds on the stability radius

both increase when C increases. The figure also suggests that when C increases, the lower bound increases by

40% of the extra time, and the upper bound increases by 50% of the extra time. The gap decreases somewhat

faster than when the number of workstations increases, which can be explained by the fact that varying

the cycle time does not change the number of variables in the extended formulation, whereas the number

of decision variables increases by the number of patterns associated with the added workstation. Moreover,

additional pricing sub-problems must be solved.

Remark that adding a new workstation leads to an increase of C units of time to the production capacity,

whereas setting C to 1200 increases the production capacity by 200 × m? units of time, where m? is the

average number of workstations (approximately 30 for the considered set of instances). Hence, setting the

cycle time value to 1200 brings around six times more production capacity than adding a new workstation.

Taking the stability radius’ increase per unit of time added, we can see that, in terms of lower bound, adding

one workstation gives an increase in the stability radius of 0.01 per unit of time, and adding 200 units of time
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Figure 6: Average results for increased cycle time

to C gives an increase of 0.013 per unit of time. This can help the assembly line manager who considers adding

a new workstation or extending the cycle time in an attempt to increase the stability radius: increasing the

cycle time rather than the number of workstations might lead to a more significant increase in the stability

radius. Moreover, adding a workstation may not impact the stability radius value at all, while increasing

the cycle time always has a positive impact, as shown in Properties 2 and 3. More specifically, Property

2 shows that adding a new workstation is vain when the stability radius value is set by a workstation that

processes a unique uncertain task, whereas Property 3 shows that increasing the cycle time always leads

to improving the stability radius value. By contrast, increasing the cycle time has a negative effect on the

assembly line throughput, and the line’s productivity is often an important parameter for achieving economic

sustainability. This suggests that if the stability radius of the current solution to SALBP-S is found to be

insufficient, a trade-off between the stability radius value and the assembly line throughput should be found

so that the best decision is made.

8. Conclusion

This paper proposes a Dantzig-Wolfe decomposition approach for the maximization of the stability radius

of a simple assembly line under task processing time uncertainty. The main goal is to provide a more effective

bounding procedure. In that sense, valid inequalities are also proposed to enhance the extended formulation

given by the Dantzig-Wolfe decomposition. A comparison between several versions of the Dantzig-Wolfe

approach is made, and the results show that the valid inequalities are quite effective in improving upper

bounds. The results also indicate that it might be preferable to include precedence relations in the pricing

sub-problem rather than in the master problem.

Two pre-processing techniques are used to help improve performance. We show that using a ‘single-

machine scheduling problem’ to represent the line is an efficient way to produce shorter assignment intervals,

reducing the number of binary assignment variables and enhancing the algorithms’ performance. A second

pre-processing technique consists of a bisection method, which highly improves the existing upper bounds

30



in less than one second of computational time. Using those improved values as an input, the Dantzig-Wolfe

decomposition approach is compared to CPLEX on the compact MILP formulation of the problem. On

average, the proposed approach provides better upper bounds for the most challenging instances. In those

cases, improvements reached 70%, while for the less difficult instances, even though improvements in upper

bounds are not achieved, the deviations to the best upper bound remain under 3%. For the cases where

the optimality gap is small, the column generation converges fast. Moreover, in a few cases, better feasible

solutions can be obtained in a heuristic way using the columns generated in the proposed approach.

Computational experiments also show the limitation of all the approaches based on integer linear program-

ming: when the number of tasks gets very large (typically, when there are more than 1000 tasks), solving the

linear programming relaxation of the compact model is too time-consuming. However, upper bounds on the

stability radius can still be obtained very quickly with the bisection method. Analogously, existing heuristics

can quickly produce lower bounds without resorting to linear programming. Consequently, depending on the

size of the instance, the decision-maker can use the results proposed in this paper to assess the robustness

level that can be achieved. If the stability radius value is too low to offer adequate protection against uncer-

tainty, the proposed methods can serve as a decision-aiding tool. For example, the effects of adding a new

workstation or increasing the cycle time can be evaluated quantitatively, helping to choose among alternative

solutions.

Finally, future research involves applying the Dantzig-Wolfe decomposition into a branch-and-price scheme,

taking advantage of better upper bounds and better heuristic solutions. That might help reduce the size of

the enumeration tree, thus accelerating the algorithm. Moreover, a theoretical study on why some groups of

instances, notably those with a ‘peak in the middle’ processing time distribution, are harder than others is a

topic that needs to be fulfilled.

Appendix A. Results for very large-scale instances, with 1000 tasks

In this appendix, we present the results obtained for the very large-scale instances, with 1000 tasks. We

use the same notations as in Table 2 of the main paper. As mentioned in the main text, both CF and CFCG

failed in providing upper bounds for the SALBP-S. For 87.4% of the instances, even the linear relaxation of

the compact formulation (1)-(9) could not be solved after 1 hour of computational time. The other instances

are mainly ‘peak at the bottom’ ones, which are easier according to Otto et al. (2013). Nevertheless, the

computational times for these instances remain high (solving the linear relaxation of the compact formulation

took about 40 minutes on average).

For all instances, since no basic feasible solution was found for the extended formulation, the Dantzig-Wolfe

approach could not be run. However, the bisection method still manages to improve the initial upper bounds

of the most difficult instances.

Following the same notation as in Table 8 of the main text (which is built for instances with 100 tasks),

Table A.10 presents the results with the bisection method on instances with 1000 tasks. In this case, the results

were less significant, but the bisection method still improves over the initial upper bound on the classes with
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PA NAI

Group BS UB Improv (%) Time (s) BS UB Improv (%) Time (s)

BN 2 PB 0.00 0.01 0.00 0.09

BN 2 PM 0.00 0.02 0.00 0.15

BN 2 BM 0.00 0.01 0.00 0.09

BN 6 PB −8.93 0.02 −13.86 0.33

BN 6 PM −4.89 0.03 −7.56 0.97

BN 6 BM 0.00 0.02 0.00 0.17

CH 2 PB 0.00 0.02 0.00 0.11

CH 2 PM 0.00 0.03 0.00 0.17

CH 2 BM 0.00 0.02 0.00 0.09

CH 6 PB −4.55 0.02 −12.42 0.50

CH 6 PM −3.61 0.03 −10.60 1.28

CH 6 BM 0.00 0.02 0.00 0.19

MX 2 PB 0.00 0.02 0.00 0.11

MX 2 PM 0.00 0.03 0.00 0.17

MX 2 BM 0.00 0.02 0.00 0.09

MX 6 PB −4.67 0.02 −9.08 0.35

MX 6 PM −1.73 0.03 −5.19 1.11

MX 6 BM 0.00 0.02 0.00 0.19

MX 9 PB −45.97 0.02 −57.63 3.18

MX 9 PM −13.18 0.03 −14.27 2.74

MX 9 BM −38.34 0.02 −53.33 3.67

Overall average −5.99 0.02 −8.76 0.75

Table A.10: Average reductions provided by the bisection method in the initial upper bound, for very large-scale instances.

a dense precedence graph (OS=0.6 and OS=0.9), especially on groups of type ‘peak in the middle’ and ‘peak

at the bottom’. As expected, the running time of the bisection method increases with the number of tasks

but is still very low. The improvement in upper bound quality, when NAI is used, is around 46% greater

compared to the use of PA, which is similar to what was observed with instances of 100 tasks.
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Arkhipov, D., Battäıa, O., Lazarev, A., 2019. An efficient pseudo-polynomial algorithm for finding a lower

bound on the makespan for the resource constrained project scheduling problem. European Journal of

Operational Research 275 (1), 35–44.

32
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