
HAL Id: hal-04243661
https://u-picardie.hal.science/hal-04243661

Submitted on 16 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards a Privacy-preserving Attestation for
Virtualized Networks

Ghada Arfaoui, Thibaut Jacques, Marc Antoine Lacoste, Cristina Onete, Léo
Robert

To cite this version:
Ghada Arfaoui, Thibaut Jacques, Marc Antoine Lacoste, Cristina Onete, Léo Robert. Towards a
Privacy-preserving Attestation for Virtualized Networks. 28th European Symposium on Research in
Computer Security, Sep 2023, La Haye, Netherlands. �hal-04243661�

https://u-picardie.hal.science/hal-04243661
https://hal.archives-ouvertes.fr

Towards a Privacy-preserving Attestation for Virtualized
Networks

Ghada Arfaoui1, Thibaut Jacques1,2, Marc Lacoste1, Cristina Onete2, and Léo Robert3

1 Orange
2 XLIM, University of Limoges

3 MIS, Université de Picardie Jules Verne

Abstract. TPM remote attestation allows to verify the integrity of the boot sequence of a
remote device. Deep Attestation extends that concept to virtualized platforms by allowing
to attest virtual components, the hypervisor, and the link between them. In multi-tenant
environments, deep attestation solution offer security and/or efficiency, but no privacy.
In this paper, we propose a privacy preserving TPM-based deep attestation solution in
multi-tenant environments, which provably guarantees: (i) Inter-tenant privacy: a tenant
is cannot know whether other VMs outside its own are hosted on the same machine; (ii)
Configuration hiding: the hypervisor’s configuration, used during attestation, remains
hidden from the tenants; and (iii) Layer linking: tenants can link hypervisors with the
VMs, thus obtaining a guarantee that the VMs are running on specific hardware. We also
implement our scheme and show that it is efficient despite the use of complex cryptographic
tools.

Keywords: Deep Attestation · Multi-tenant · 5G · Privacy

1 Introduction

The use of virtualization has revolutionized mobile networks (5G and beyond). Virtual Network
Functions (VNFs) can be easily added, removed, or migrated to form slices (also called tenants),
propose new services on demand, and meet the heterogeneous, stringent requirements of verticals
(e.g., e-health, banking, etc.). The flexibility of virtualization, however, induces an inevitable loss
of control and a need to regularly confirm that the resulting network can be trusted.

A solution recommended by the European Telecommunications Standards Institute (ETSI) is
remote attestation [11]. It enables a prover to convince an authorized verifier that it conforms
to some specifications (and thus that it has specific properties). In this paper, we focus on the
type of attestation that verifies the integrity state of a component. Recently, at ACNS 2022, [3]
proposed a solution to attest VNFs and their underlying infrastructure, offering both security and
scalability for single tenant use, i.e., one entity operates all VNFs and the underlying infrastruc-
ture. However, new mobile network generations are typically multi-tenant environments (i.e., the
operator provides slices / tenants to different verticals). In that setting, the solution of [3] becomes
inefficient. Moreover, privacy concerns arise (e.g., the operator does not want to reveal its network
nodes configuration), which are not addressed.

1.1 Our contribution

We consider the typical multi-tenant architecture shown in Figure 1, which is equipped with a
hardware Trusted Platform Module (TPM) and spawns a virtual TPM (vTPM) for each VM it
manages. VMs can be operated by tenants, and one tenant can have multiple VMs. Every tenant
has a dedicated verifier to perform attestation. Our work makes a triple contribution.

A new protocol. We propose a primitive called privacy-preserving multi-tenant attestation
(PP-MTA), which provides attestation, but also layer-binding and privacy: Inter-tenant privacy
(no tenant can learn if other tenants share the same platforms as its own VMs) and Configuration
hiding (the hypervisor attestation convinces a tenant that the hypervisor is well-configured with-
out revealing the configuration). These strong properties are achieved with no modification to the
TPM, and rely on ZK-SNARKs, vector-commitment schemes, and secure-channel establishment.

2 G. Arfaoui et al.

Fig. 1. Multi-tenant architecture where each VNFs belongs to a different tenant.

Formal analysis. We formally model and prove the security and privacy of our protocol. We extend
the layer-binding properties defined in [3] to a multi-tenant environment, and add definitions for
inter-tenant privacy and configuration-hiding. We formally quantify the privacy of our protocol.
The security of our scheme relies on standard ACCE-secure channels, secure vector commitments,
and zero-knowledge succinct non-interactive arguments of knowledge (ZK-SNARKs), but also two
new properties: partner-hiding authenticated key-exchange (AKE) and collision-resistant vector
commitments.

Implementation. We provide an implementation of our protocol, with several benchmarks. De-
spite relying on ZK-SNARKs, known for poor performance, our scheme remains fast enough for
real-world use.

1.2 Background and Related work

Our work builds on TPM-based remote-attestation, for which we recall some basics below. We
also recall the syntax of vector commitment and ZK-SNARK. Finally we review related work on
attestation with a focus on [3].

Vector commitment. Introduced in [7], vector commitment schemes allow a user to commit
to a list of values (rather than to a single message). Vector commitments can be opened par-
tially, by index (opening information exists separately per committed value). After a setup phase
VC.Setup(1λ, q) → ppar, one can commit to a sequence of values VC.Com(v) → (c, aux). Given
an opening VC.Open(m, i, aux) → πi, one can verify that a value is contained in the commitment
VC.Ver(m, c, i, πi)→ b ∈ {0, 1}.

ZK-SNARK. Zero-Knowledge Succinct Non-Interactive Arguments of Knowledge (ZK-SNARKs)
[5] are generic NIZK proof systems. Given an NP statement, one can prove knowledge of a
valid witness without revealing it. A common reference string (CRS) is generated during setup:
ZKP.Setup(R)→ CRS. Given the CRS, a statement xZK , and a witness wZK such that (xZK , wZK)
∈ R, one can compute ZKP.Prove(CRS, R, xZK , wZK)→ πZK and verify the proof ZKP.SkVer(CRS,
R, xZK , πZK)→ b ∈ {0, 1}.

TPM Remote Attestation. This type of attestation, which allows the verification of the integrity
state of a target, has two main phases: (1) the TPM measures all the code involved in the boot
process and securely stores the measurements in the Platform Configuration Registers (PCR); (2)
upon request, the TPM signs with an attestation key (AK) the target configuration (PCR values)
and sends the result. The receiver of the attestation checks the validity of the signature and of the
PCR-values. Thus, classical attestation requires verifiers to know a full set of valid PCR-values
(i.e., valid configurations) – which, in some environments, is a privacy threat.

Property-based attestation. Property-based attestation (PBA) [22] aims to improve privacy in
TPM remote attestation. Indeed, [22] showed that binary attestation can enable easier configura-
tion leakage. PBA provides a privacy-friendly attestation mechanism by verifying that the target
satisfies some high-level properties (rather than sending PCR measurements). A property can be
achieved by multiple configurations. While some PBAs [20, 8] use a Trusted Third Party (TTP), its
existence is not always guaranteed. Alternatively, some PBAs [9, 12] leverage zero-knowledge proofs
of membership of a configuration among a set of valid configurations – at the expense of modifying
TPM specifications. PBA achieves a different kind of privacy than Direct Anonymous Attestation

Towards a Privacy-preserving Attestation for Virtualized Networks 3

(DAA) [6]. While DAA prevents linking attestations to a specific TPM (or multiple attestation to
the same TPM), PBA aims to protect the content of the attestation itself. In our work, we focus
on classical attestation in a multi-tenant environment, for which DAA is unnecessary.

Deep Attestation. Attesting a virtual component (e.g., a VM) implies attesting the underlying
virtualization infrastructure, a process called deep attestation (DA). In single-channel DA [11,
27, 24, 19], the integrity of a VM is verified simultaneously with attesting its hypervisor, and the
linking of the two components layer binding. This approach can ensure trust, scales badly for a
large number of VMs. Conversely, multiple-channel DA [11, 27, 10] drops layer-binding to provide
independent (and efficient) VM and hypervisor attestations.

Comparison to [3]. The DA scheme by [3] provides both layer-binding DA that scales as well
as multiple-channel attestation, and requires no modification of the TPM. Hypervisor attestations
also incidentally attest the public keys of the VMs they manage. As a result, the verifier can link
those attestations with those of the VMs. Unfortunately, this solution does not scale in multi-
tenant environments (e.g., 5G and beyond) for which inter-tenant privacy is required. Moreover,
as the scheme builds on standard DA, the verifier learns, from the attestation quote, the current
PCR-configurations of the physical machine. This is a privacy risk for the platform owner (e.g.,
the operator).

Attestation in the cloud. Although other works have explored attestation for trust in cloud-like
environments [29, 4, 25, 30, 23, 21, 18], none focused on DA. Such solutions require full trust in the
infrastructure provider. DA enables stronger security and privacy, making less trust assumptions
on the provider.

2 Technical Overview

In this section we give an overview of our solution for DA in multi-tenant environments.

Use case and problem statement. We consider a use-case similar to that of Keylime [17,
24]. This solution found in cloud infrastructures provides system integrity monitoring based on
TPM attestations. Keylime allows deploying an agent on each target VM: the agent sends, ev-
ery few seconds, an attestation to a cloud verifier. Keylime is efficient even in very large cloud-
infrastructures [14]. Unfortunately, it is limited to VM attestations (rather than to linked hyper-
visor/VM attestations). Moreover, it provides neither tenant privacy nor hypervisor configuration
privacy.

Ideally, we would like to provide linkable attestation in multi-tenant settings, such that the
resulting solution is practical (scalable and efficient), secure, provides strong privacy for both the
tenants and for the provider of the physical infrastructure and requires no modification of the
TPM.

Solution outline. A naïve application of [3] to multi-tenant scenarios provides layer-linking but
not privacy. The result also scales poorly.

Hypervisor-configuration hiding requires that attestation quotes, signed by a physical root of
trust (TPM), only prove the validity of the PCR-measurement, without revealing it. The naïve
approach of the TPM computing a zero-knowledge proof would require TPM modifications. This
is precisely what we want to avoid. In our solution, this is achieved by the use of ZK-SNARKs.

Moreover, the protocol in [3] is designed for environments where a single entity owns the
infrastructure and all the VMs. Naïvely reusing that solution in multi-tenant environments creates
a significant bottleneck when multiple tenants request attestations simultaneously; this could be
resolved by batching [23] hypervisor attestations for multiple tenants. Batching is challenging to
achieve simultaneously with inter-tenant privacy and layer-linking. As layer-linking requires VM
attestations to be linked to their managing hypervisor’s attestation, the latter has to include some
binding information to the VMs it is managing. Yet, in multi-tenant environments such VMs might
belong to distinct users; each user must only verify the binding of its own VMs to the hypervisor. To
bridge that gap, we use vector-commitment schemes to store (in a hidden form) linking information
to VMs hosted on the hypervisor. This allows each tenant to open some specific positions in that
commitment, learning nothing about other positions.

4 G. Arfaoui et al.

Our solution. We introduce several new elements to the layer-linking DA solution of [3]. A trivial,
but necessary modification is at setup: unlike [3], we need to account for the ownership, by a tenant,
of a VM. In our infrastructure, tenants will have to use long-term credentials in order to register
new VMs.

As VM attestations are independently requested by VM-owners, we can simply use typical
multiple-channel attestation for this step. Our key contribution, however, is a novel hypervisor-
attestation method which is scalable (as it allows for simultaneous attestation requests to be
batched), linkable to VM attestations, and guaranteeing inter-tenant privacy and hypervisor-
configuration hiding.

The hypervisor may receive one or more attestation requests from one or more tenants. Requests
are buffered if the TPM is busy. As soon as the TPM is free, the hypervisor makes an attestation
request for the aggregated queries, using a special nonce computed as follows.

For each tenant, the hypervisor retrieves linking information and concatenates it with that
tenant’s nonces (per each VM). Then it assigns a random position in a vector commitment to each
tenant, places the concatenated linking-values for the tenant at that position, and commits to the
resulting vector4. This is the nonce used in the attestation request.

The unmodified TPM computes and signs a regular attestation quote (revealing the PCR val-
ues). The hypervisor receives the signed quote and computes a ZK-SNARK confirming its validity
without revealing the configuration. Then, the hypervisor computes, for each tenant, an opening to
the vector for its attributed positions. Each tenant can verify the ZK-SNARK and use the opening
information to retrieve its linking information, thus ensuring layer-linking.

3 Model

Our security model applies to the virtualization architecture shown in Figure 1. Tenants associated
with unique identities T can register a number of virtual machines VM on a hypervisor H.

Each hypervisor H has a physical root of trust represented by a TPM TPM . We assume each
physical machine (with a unique hypervisor H) upper-bounds the number of tenants NT it can
host, and the number of VMs NVM each tenant can have on H. Such bounds do exist in practice,
usually driven by physical constraints. For the sake of legibility, we assume universal bounds (for
all hypervisors), rather than local, hypervisor-specific ones.

We call the list of tuples of PCR measurements and accepted values during hypervisor attes-
tation the configuration of the hypervisor. We assume the existence of a set (of more than one
element) CONF of possible configurations for each hypervisor. In the quote, the current configu-
ration is represented as the hash of the list of PCRs.

Security/privacy notions. We formally define the privacy properties required for our protocol
and the adversary model in Sections 3.2 and 3.3. For attestation security we require an extension
of the linking property formalized by [3], adapted to the multi-tenant setting. In a nutshell, this
notion requires that no malicious party (even a malicious hypervisor) be able to fool a tenant into
falsely believing that a VM is hosted by the hypervisor when in fact it is not. The full formalization
of this property is in section 3.4.

3.1 Primitive Syntax

We formally define a new primitive called privacy-preserving multi-tenant attestation (PP-MTA).
It consists of 9 PPT algorithms: PP-MTA= (Setup, HSetup, TKGen, VMReg, HAttest, VMAttest,
VfHAttest, VfVMAttest, Link) with:

Setup(1λ)→ {ppar, spar}: On input of a security parameter λ, this algorithm outputs public
parameters ppar (including the bounds NT , NVM , and valid configuration-set CONF), and
private parameters spar (which may be instantiated to ⊥ if not useful). The public parameters
are input implicitly for every subsequent algorithm.

4 If not all tenants simultaneously request attestations, or if the platform contains less tenants than its
capacity, remaining vector positions are filled with dummy values.

Towards a Privacy-preserving Attestation for Virtualized Networks 5

HSetup(ppar)→ {H.pk,H.sk,AK.pk,AK.sk,H.Conf,H.state}: This algorithm sets up the (honest)
hypervisor H, by associating it with a public key H.pk, a private key H.sk, public- and private-
attestation credentials (AK.pk,AK.sk), and a configuration H.Conf ∈ CONF . The hypervisor
“inherits" the universal bounds NT and NVM from ppar. The hypervisor maintains stateH.state
related to hosted tenants and their VMs.

TKGen(ppar)→ {T .pk, T .sk}: This algorithm generates public and private keys for a single tenant
T . All parties have access to all the public keys. Only the tenant has access to its private key.

VMReg(H, T .sk,VMdesc)→ {(VM ,VAK.pk),VAK.sk,H.state} ∪ ⊥: This algorithm performs the re-
gistration, by tenant T , of a VM of description VMdesc on the machine with hypervisor H. If
the tenant’s request exceeds either the hypervisor’s capacity to host new tenants NT , or its
capacity for VMs for this tenant NVM , then the algorithm returns ⊥. Otherwise, the hypervisor
creates the required VM, for which it returns a handle VM , as well as a tuple of public/private
parameters, corresponding to the attestation keypair for that VM, as stored by the vTPM:
(VAK.pk,VAK.sk). The algorithm also requires mutual authentication of the tenant and the
hypervisor, enabling H to update its state H.state. If the authentication fails, the algorithm
returns ⊥. Otherwise it returns to the tenant the handle VM and the public keys and VAK.pk.

HAttest⟨T (T .sk, nonceT),H(H.sk,AK.sk,H.state,H.Conf)⟩ → {ATTH,T }:
The hypervisor attestation protocol is an interactive algorithm between a tenant T which
takes as input its private key and a fresh nonce nonceT and the hypervisor with input its long-
term credentials H.sk, AK.sk, its current state H.state, its configuration H.Conf. It outputs an
attestation ATTH,T .

VfHAttest(ATTH,T , nonceT , linkT)→ {0, 1}: Given as input a hypervisor attestation ATTH,T ,
a nonce nonceT and linking information linkT , this verification algorithm outputs 1 if the
attestation is valid and 0 otherwise.

VMAttest⟨VM (VAK.sk), T (T .sk, nonce)⟩ → {ATTVM } ∪ ⊥: The interactive
VM attestation protocol takes place between a tenant (using its key T .sk and a fresh nonce
nonce) and a VM that the tenant owns (associated with its private key VAK.sk). The output
could be ⊥ (typically if the tenant does not own VM) or a VM attestation ATTVM .

VfVMAttest(ATTVM , nonce, link)→ {0, 1}: Given as input a VM attestation ATTVM , a nonce
nonce and linking information link, the VM attestation-verification algorithm outputs 1 if the
attestation is valid and 0 otherwise.

Link(ATTH,T , nonceT , linkT ,ATTVM , nonce, link)→ {0, 1}: Given as input a tuple consisting of a
hypervisor attestation quote ATTH,T and hypervisor attestation linking information linkT , and
a tuple consisting of a VM attestation quote ATTVM and VM attestation linking information
link, the linking algorithm outputs 1 if the two attestation are linked and 0 if they are not.

3.2 Inter-tenant Privacy

Intuitively, inter-tenant privacy ensures that a malicious, but legitimate tenant cannot tell whether
or not VMs from other tenants are running on the same hypervisor as its own VMs. In the real-
world, tenants might be well-aware that they are sharing resources with other tenants. However, by
considering a much stronger privacy notion, we ensure that this (and potentially other) information
is not leaked by the attestation. This makes our protocol usable in all situations, not just those
in which some leakage is acceptable. The definition we provide (and prove for our protocol) only
guarantees that leakage is avoided at the protocol-level: the adversary may have alternative means
of knowing about VMs co-hosted on the same hardware.

Formally, inter-tenant privacy is defined as a game (depicted in Figure 2) between a challenger
G and an adversary A. The challenger runs the setup algorithm Setup(1λ). It then sets up a hy-
pervisor H by running HSetup(ppar). G initiates LH := ∅ and LC := ∅. The challenger draws a
random bit b

r← {0, 1}. The adversary, given ppar and the length of the security parameter (in
unary) 1λ, as well as the handle H, can then use the following oracles:

oHonTRegb({VMDesci}ℓi=1): this oracle depends on bit b. Given as input a set of VM descriptions
VMDesci, this oracle internally runs the key-generation algorithm TKGen(ppar), receiving either
⊥ (too many tenants) or a handle T and keys T .pk, T .sk. The oracle adds T to LH and
increments a variable nT (that stores the number of tenants on that hypervisor) by 1. Assuming
that oHonTReg did not output ⊥: if b = 1, the oracle runs VMReg(H, T .sk,VMDesci) for each

6 G. Arfaoui et al.

VM in the input set, obtaining handles VM , keys VAK.pk,VAK.sk, and an updated hypervisor
state H.state, containing tuples of the form (T , VM i, VAK.ski, VAK.pki, REAL) for each VM. If
b = 0, then the VMs are not truly created: instead, the oracle generates random values VAK.pki
for each i = 1, . . . , ℓ, and handles VM i, updating the hypervisor state with tuples of the form
(T ,VM i,VAK.pki,FAKE). Finally, the oracle outputs the following values to the adversary:
T , {VM i}ℓi=1 as well as keys: T .pk, {VAK.pki}ℓi=1. If ℓ > NVM , the output of VMReg will be ⊥,
forwarded to the adversary instead of the VM information. The adversary can, in parallel, use
TKGen algorithm to register malicious tenants: these will be added by the challenger to LC .

oVMReg(T ,VMDesc): given as input a (registered) tenant T ∈ LH and a VM with description
VMDesc, this oracle internally runs VMReg(H, T .sk,VMDesc). If the bound NVM has still not
been reached for tenant T then the algorithm outputs (VM ,VAK.pk) as in the previous oracle.
The hypervisor state H.state is updated. A malicious tenant can always register a new VM by
running the VMReg algorithm directly.

oHAttest(T): given as input a registered tenant T ∈ LH , this oracle simulates running HAttest

between T and the hypervisor H. The adversary gains a transcript τHAtt of the protocol run
(or ⊥ if e.g., H does not exist or if T has no VMs registered on H). If the VMs created for this
tenant were fake (the bit b picked by the challenger is 0), the hypervisor attestation is done
over the current configuration and the VMs currently existing on the machine.

Since the adversary is a collusion of valid tenants, it does not need oracle access to VM attestations:
it can simply run the correct algorithms.

The Inter-tenant Privacy Game GTPriv(λ) :

Game GTPriv(λ)

{ppar, spar} ← Setup(1λ)
{H.pk,H.sk,HAK.pk,HAK.sk,H.Conf},
H.state← HSetup(ppar)

b
r← {0, 1}

d← AoHonTRegb(·),oVMReg(·,·),oHAttest(·)(1λ)

A wins iff.: d = b

Fig. 2. The inter-tenant privacy game.

Definition 1 (Inter-tenant privacy). A PP-MTA scheme PP-MTA=
(Setup, HSetup, TKGen, VMReg, HAttest, VMAttest, VfHAttest, VfVMAttest, Link) is (NT , NVM , ϵ)-
inter-tenant private if, and only if, for every probabilistic polynomial adversary A, the following
holds:

AdvTPrivPP-MTA(A) :=
∣∣∣∣Pr[A wins GTPriv(λ)]−

1

2

∣∣∣∣ ≤ ϵ.

The value AdvTPrivPP-MTA(A) is called the advantage of A against the inter-tenant privacy of PP-MTA.
Asymptotically, we call a PP-MTA scheme inter-tenant private if ϵ is a negligible function of the
security parameter λ.

3.3 Hypervisor-Configuration Hiding

Intuitively, hypervisor-configuration ensures that an adversary (which can be a group of colluding,
legitimate tenants) cannot learn the precise configuration of the hypervisor: just that this configu-
ration is one of potentially many valid configurations. Technically, the property is formalized using
a oChooseConfig oracle, which allows the adversary to choose two configurations, one of which will
be used in fact for attestation. The adversary’s task is to distinguish between those configurations.

In the hypervisor configuration-hiding game (figure 3), the adversary gets access to the follow-
ing oracle:

Towards a Privacy-preserving Attestation for Virtualized Networks 7

– oChooseConfigb(H.Conf0,H.Conf1)→ {OK}∪ ⊥: This oracle can only be called once. Given as
input two hypervisor configurations H.Conf0 and H.Conf1, this oracle checks that H.Conf0 ∈
CONF and H.Conf1 ∈ CONF . It ensure ensure that H has not yet been set up (e.g., through
HSetup). If either verification fails, the oracle outputs ⊥. If verification succeeds, the oracle
calls HSetup, forcing the picked hypervisor configuration H.H.Conf to be H.Confb.

The Hypervisor Privacy Game GCPriv(λ) :

Game GCPriv(λ)

{ppar, spar} ← Setup(1λ)

b
r← {0, 1}

d← AoChooseConfigb(·)(1λ)

A wins iff.: d = b

Fig. 3. The configuration-privacy game.

Definition 2 (Configuration privacy). A PP-MTA scheme PP-MTA= (Setup, HSetup, TKGen,
VMReg, HAttest, VMAttest,
VfHAttest, VfVMAttest, Link) is ϵ-configurations-private if, and only if, for every probabilistic
polynomial adversary A, the following holds:

AdvCPrivPP-MTA(A) :=
∣∣∣∣Pr[A wins GCPriv(λ)]−

1

2

∣∣∣∣ ≤ ϵ.

The value AdvCPrivPP-MTA(A) is called the advantage of A against the configuration privacy of PP-MTA.
Asymptotically, we call a PP-MTA scheme configuration-private if ϵ is a negligible function in the
security parameter λ.

Limitations. The security definition above is limited, formalizing that an adversary cannot distin-
guish between two valid configurations. Yet, clearly, the guarantee provided by the privacy property
depends on the size of the configuration-set CONF – if it is small, then any tenant can guess the
hypervisor configuration with a decent probability (equal to 1

|CONF|).

3.4 Linkability Security

The linking property ensures that two components, registered on two different platforms (later
denoted S1 and S2), cannot be linked. For instance, a VM’s attestation is linked to its hypervisor
if both components are on the same platform, while other links from other platforms cannot be
made and should be detected. Our model is directly inspired from [3].

We consider in our model some simplifications which ease the readability; notice that general-
izations can be made:

– Malicious tenant: our adversary is (the only) tenant. So A has external capabilities with the
possibility of registering VM and attesting them (same as a tenant would). Note that we
consider only one tenant in our security game (or equivalently, the adversary represents all the
tenants);

– The setup is made for only two platforms, each including only one hypervisor and a maximum
of NVM VM. Since we consider only one tenant (so NT := 1 for each platform), there is
no need to let the adversary adaptively register VMs or platforms. However, each position are
created for each tenant so only one tenant would lead to only one position. Thus, the challenger
creates "dummy" tenants (which are not active) to allow more than one position in the vector
commitment.

– The adversary does not have a corrupt oracle, all the VMs are already registered during the
setup and accessible to A. In particular, we suppose that hypervisors are always honest.

8 G. Arfaoui et al.

The linkability property is formalized through a security game, GLink(λ,NP), played between a
challenger G and an adversary A. The challenger runs the setup algorithm Setup(1λ), returns ppar
to A, then sets up an hypervisor H by running HSetup(ppar) on both platforms S1 and S2. Then,
G initiates LAtt := ∅ which consists of a list of linkable attestations. The adversary then plays the
game using the following oracles:

– oHAttest(Si)→ (ATTH,T): this oracle simulates a run of the HAttest algorithm between the
adversary and the hypervisor H on platform Si for i ∈ {1, 2}, allowing the adversary to gain a
transcript τHAtt of the communication. Notice that this oracle does not depend on the challenge
bit b. The output is stored in LAtt.

– oVMAttest(VM)→ (ATTVM): this oracle simulates a run of the VMAttest algorithm on VM .
The output is stored in LAtt.

At the end of the game, A outputs a party P such that its attestation is stored in LAtt. We
say that A wins the game if the following conditions hold:

– P is registered on Si for i ∈ {0, 1};
– It exists Q ∈ Sj ̸=i such that its attestation lies in LAtt;
– Link(P||Q) = 1.

Thus the adversary wins the game if it is able to store two attestation’s component in LAtt

for two components on different platforms. The linkability property ensures that the probability
of winning, for any adversary, is negligible.

Definition 3 (Linkability security). A PP-MTA scheme PP-MTA= (Setup, HSetup, TKGen,
VMReg, HAttest, VMAttest, VfHAttest, VfVMAttest, Link) is (qatt, NP , ϵ)-linkable if, and only if,
for every probabilistic polynomial adversary A, the following holds:

AdvLinkPP-MTA(A) := Pr[A wins GLink(λ,NP)] ≤ ϵ.

The value AdvLinkPP-MTA(A) is called the advantage of A against the linkability security of PP-MTA.
Asymptotically, we call a PP-MTA scheme linkable if ϵ is a negligible function of the security
parameter λ.

4 Construction

In this section we instantiate the PP-MTA primitive using a signature scheme (SigKGen, SigSig,
SigVer), a collision-resistant hash function H, a vector commitment scheme (VC.Setup, VC.Com,
VC.Open, VC.Ver), a ZK-SNARK scheme (ZKP.Setup, ZKP.Prove, ZKP.SkVer, ZKP.SkSim), and
a secure-channel establishment protocol : AKE=(AKE.KGen, AKE.AKE, AKE.Enc, AKE.Dec).

4.1 Setup

We first instantiate the global-setup and hypervisor-setup algorithms (Setup, HSetup), then set up
the tenants with long-term parameters.

Global setup. The goal is to instantiate the scheme’s global public and private parameters:
{ppar, spar} ← Setup(1λ). Two universal bounds are chosen: a maximal number of tenants per
physical machine NT and a maximal number of VMs per hosted tenant NVM . These bounds are
later crucial in avoiding trivial inter-tenant privacy attacks. A set of plausible configurations CONF
is chosen for the hypervisor. We set up the vector commitment and ZK-SNARK:

(pparVC)← VC.Setup(1λ, NT)

(CRS, τ)← ZKP.Setup(R)

The vector-commitment length is a constant NT . Given the following zero-knowledge proof:

ZK-SNARK{(quote, σ) : SigVer(AK.pk, quote, σ, c) == 1 ∧ quote.H.Conf ∈ CONF}

Towards a Privacy-preserving Attestation for Virtualized Networks 9

we fix the statement :

(xZK)← {SigVer(AK.pk, quote, σ, c) == 1;∧ quote.H.Conf ∈ CONF}

At the end of the global setup, we set ppar := (NT , NVM , CONF , pparVC, CRS, xZK) and
spar := τ .

Hypervisor setup. We instantiate the algorithm {H.pk, H.sk, H.Conf} ← HSetup(ppar) as fol-
lows. To begin with the hypervisor will require two pairs of keys, one for the AKE protocol, the
other, for attestation, as follows:

(H.pk,H.sk)← AKE.KGen(ppar)

(AK.pk,AK.sk)← SigKGen(ppar)

The hypervisor then picks uniformly at random a configuration H.Conf r← CONF and sets
H.state = ∅.

Tenant setup. The tenants generate long-term keys {T .pk, T .sk} ← TKGen(ppar) which are, in
fact, AKE keys:

(T .pk, T .sk)← AKE.KGen(ppar)

4.2 Registration

Registration is run by a tenant and a hypervisor, to register a VM of a given description on the
given hypervisor:

{(VM ,VAK.pk,VAK.sk),H.state} ∪ ⊥ ← VMReg(H, T .sk,VMdesc)

Registration

Tenant T Hypervisor VM
AKE.AKE(T ,H)

VMdesc

Check NVM for T
Instantiate VM
(VAK.sk,VAK.pk)← SigKGen(ppar)

T.pk,VAK.sk

H.state(T .pk).add(VM ,VAK.pk, T)

VM ,VAK.pk

Fig. 4. Registration, the tenant (successfully) registers a new VM of description VMdesc.

As depicted in Figure 4, when a registration request is made, H and T run AKE.AKE (using
their long-term credentials) to establish a secure channel, over which they can communicate in a
confidential and authentic manner. Over this secure channel, T requests the registration of a VM
with description VMdesc. The hypervisor verifies it can still allow tenants to register a new VM
(w.r.t.NVM). If this is not so, the algorithm aborts. Otherwise, the hypervisor generates attestation
(signature) keys for the newly-registered VM: (VAK.sk,VAK.pk)← SigKGen(ppar). The keys VAK.sk
and T .pk will be stored in the vTPM corresponding to the new VM.

Once the VM is created, H updates its internal state H.state with entries (VM ,VAK.pk, T).
Still over the secure channel, the hypervisor sends the VM handle VM and public keys VAK.pk to
T .

10 G. Arfaoui et al.

4.3 Hypervisor Attestation

We instantiate this algorithm as {ATTH,T } ← HAttest⟨T (T .sk, nonceT),H(H.sk,AK.sk,H.state,
H.Conf⟩). The idea is to attest (in a configuration-hiding way) the hypervisor and also to embed in
that attestation elements that characterise each managed VM. During hypervisor attestation, the
latter retrieves the public attestation-key stored on each of the vTPMs it manages5. Those values
are concatenated with the nonce and hashed to obtain a new nonce.

Hypervisor Attestation

Tenant T Hypervisor TPM
AKE.AKE(T ,H)

nonceT

Wait until TPM is available

iT
r← {1, 2, ..., (NT)}

linkT ← H.state(T .pk)

v ← (..., (nonceT |linkT)iT , ...)NT

c, aux← VC.Com(v)

c

σ ← SigSig(AK.sk, quote, c)

quote, σ

πiT ← VC.Open(c, iT , aux)

wZK ← SnarkCirc(AK.pk, quote, σ, c, CONF)
πZK ← ZKP.Prove(CRS,R, xZK , wZK)

πZK , πiT , c, iT

ATTH,T ← (πZK , πiT , c, iT)

Fig. 5. Hypervisor Attestation, only the i-th tenant is represented but we can see the aggregation of all
the nonce through commitment which allow a single TPM operation.

Authenticated key-exchange. To start, the hypervisor and tenant establish a mutually authen-
ticated secure channel, over which all subsequent communication takes place.

Preparation of vector commitment. Multiple tenants (authenticated over a secure channel)
may request attestations simultaneously, each providing a nonce to the hypervisor. The hypervisor
randomly associates each tenant with an index i ∈ {1, . . . NT }. It then retrieves the VAK.pk of all
the VMs registered by the tenant(s) requesting an attestation and concatenates, for each tenant, the
nonce that tenant provided and the VAK.pk of all the VMs the latter owns. The list of VAK.pk per
tenant constitutes its linking information (link in Fig. 5). If less than NT request an attestation,
empty position in the vector are filled with random values, and the commitment is always of
constant size.

The vector commitment must be hiding, as tenants should learn no information about positions
they will (later on) be unauthorized to open.

Our scaling approach provides scalability. Say that two or more tenants request hypervisor
attestation while the TPM is busy. Without nonce-aggregation, those requests would be treated
separately. Instead, aggregation allows the hypervisor to generate a single attestation that can be
provided to all the tenants and still hide everything except the content pertinent to the tenant
itself.

Hypervisor attestation. The next step is to obtain an attestation quote from the TPM. This
communication is on the physical device (hidden from tenants). The hypervisor submits to the
5 This idea appears in [3] but there the instantiation consists of simply including a set of public keys into

the nonce. This achieves layer-linking but no inter-tenant privacy. In our approach, the instantiation
requires vector commitments and ZK-SNARKs.

Towards a Privacy-preserving Attestation for Virtualized Networks 11

TPM the commitment c in lieu of an attestation nonce. The TPM computes a quote quote and a
signature σ on it with the private attestation key AK.sk associated to the hypervisor.

Proof of attestation. The hypervisor, having received the quote and signature computes a proof
of ownership of a valid attestation. Note that the attestation quote (and corresponding signature)
reveal the configuration of the hypervisor, which we want to hide from the tenants. Thus, the
hypervisor proves that it has a valid attestation from the TPM for a configuration within the set
CONF , with respect to nonce c, i.e., it needs to compute:
ZK-SNARK{(quote, σ) : SigVer(AK.pk, quote, σ, c) == 1∧quote.H.Conf ∈ CONF}

We can compile this computation into an arithmetic circuit. Then, a ZK-SNARK will allow
the hypervisor to prove it has run this algorithm for some public set CONF , the nonce c, with
respect to AK.pk, and that the algorithm output 1, all this without revealing the quote quote nor
the signature σ.

Algorithm 1 The snark circuit
procedure SnarkCirc(AK.pk, quote, σ, c, CONF)

if SigVer(AK.pk, quote, σ, c) == 1 and quote.H.Conf ∈ CONF then
return 1

else
return 0

end if
end procedure

Opening. Finally, the hypervisor needs to provide to each tenant its partial vector-commitment
opening (i.e., each tenant can only open the position corresponding to the index the hypervisor
associated with that tenant at the beginning of its attestation). The hypervisor sets, for each tenant
ATTH,T to contain: the proof of attestation πZK , the vector commitment c; the position i on which
the tenant is placed; and the opening information πt for that position.

4.4 VM Attestation

This algorithm {ATTVM } ← VMAttest(VM (VAK.sk,VAK.pk), T (T .sk, nonce)) (fig. 6) generates a
quote that only the tenant owning the VM can actually see and verify. The tenant and VM run an
AKE protocol to establish a secure channel, over which T requests an attestation and forwards a
nonce. The VM retrieves the linking information (VAK.pk) and concatenates it with the nonce to
obtain a value later hashed to lkaux. Then, the VM requests a signed quote for lkaux and forwards
the response to the tenant over the secure channel.

Tenant VM vTPM
AKE.AKE(T ,VM)

nonce

link← VAK.pk

lkaux← H(nonce|link)

lkaux

σ ← SigSig(VAK.sk, quote, lkaux)

quote, σ

quote, σ

ATTVM ← (σ, quote)

Fig. 6. VM Attestation

12 G. Arfaoui et al.

4.5 Verification

Hypervisor attestation verification. We instantiate the algorithm {0, 1} ← VfHAttest(ATTH,T ,
nonceT , linkT) as depicted in Figure 4.5. The tenant opens the commitment c at the relevant in-
dex,then checks that it opens to the concatenation of the nonce nonceT and linking information
linkT (if this fails, the algorithm outputs 0). Then the tenant verifies the ZK-SNARK proof and
outputs 1 if both verifications succeed.

VfHAttest(ATTH,T , nonceT , linkT)→ {0, 1} :

Parse ATTH,T as (πZK , πiT , c, iT)

VC.Ver((nonceT |linkT), c, iT , πiT)

ZKP.SkVer(CRS,R, xZK , πZK)

If all verification pass output 1, otherwise 0

Fig. 7. Hypervisor Attestation Verification

Verification of VM attestation. In this case, the verification is straightforward, as the tenant
only retrieves the lkaux value and checks that the signature and received quote verify.

VfVMAttest(ATTVM , nonce, link)→ {0, 1} :

Parse ATTVM as (quote, σ)

lkaux← H(nonce|link)
SigVer(VAK.pk, quote, σ, lkaux)

If all verifications work output 1, otherwise 0

Fig. 8. VM Attestation Verification

4.6 Linking attestations

The link algorithm {0, 1} ← Link(ATTH,T , nonceT , linkT , ATTVM , nonce, link) will attempt to
link the hypervisor and the VM attestation given in input. Any party in possession of the input
values can run the linking – however, note that attestation quotes are only received over mutually-
authenticated secure channels.

The party verifying the linking first verifies the two attestations – if both come through, then
the verifier checks that the linking information for the VM is included in the linking information
for the hypervisor.

Link(ATTH,T , nonceT , linkT ,ATTVM , nonce, link)→ {0, 1}:

VfHAttest(ATTH,T , nonceT , linkT)

VfVMAttest(ATTVM , nonce, link)

Check link ∈ linkT

If all verifications work output 1, otherwise 0

5 Security Analysis

In this section we show that our construction guarantees inter-tenant privacy, configuration-hiding,
and layer-linking. To prove that our scheme provides inter-tenant privacy we first introduce a special
property of AKE schemes, namely Parter-hiding, and shows that TLS 1.3 has such a characteristic
in section 5.1. In section 5.4 we also define a new property for vector commitment in order to prove
the linking security of our construction.

Towards a Privacy-preserving Attestation for Virtualized Networks 13

5.1 Partner-hiding AKE

Our solution requires secure channels, constructed from AKE schemes. Indeed, consider the VM
attestation algorithm from Section 4. The tenant and VM use a mutually-authenticated AKE to
establish a secure channel over which attestation data is sent. This is sufficient to ensure that
attestation quotes remain confidential for an adversary that controls neither the tenant nor the
TPM.

However, channel-security is insufficient for inter-tenant privacy, where an adversary (possibly
a collusion of tenants) must be unable to know if another tenant’s VMs exist, or not, on the
same machine as the adversary’s. With regular AKE, this cannot be guaranteed even with mutual
authentication. We require a stronger assumption, which we dub Partner-Hiding, in which an
adversary not in possession of the long-term credentials of either endpoint cannot learn whether
it faces a real or simulated entity as one endpoint. This property is not trivial to guarantee: some
cipher suites of TLS 1.2 are not partner-hiding. TLS 1.3, however, does provide initiator-hiding
properties, which we will put to use in our multi-tenant attestation protocol.

Security game. We consider two-party AKE protocols, for which the endpoints are parties P ∈ P.
The protocol runs in sessions between an instance of one endpoint and an instance of the other. We
denote i-th instance of party P as πi

P . Each P is associated with a tuple of long-term parameters
(sk, pk) and each instance keeps track of the following attributes:
– πi

P .sid: the session identifier of instance πi
P is a concatenation of session-specific values, which

might be public (included in public information, such as the transcript) or secret. The session
identifier is protocol-specific.

– πi
P .pid: the partner identifier of instance πi

P , which must be a party Q ∈ P \ P.
– πi

P .α: the acceptance flag α takes three values: ⊥ (which stands for unset), 0 (reject), and 1
(accept). It models the result of the authentication performed by πi

P .pid.
– πi

P .k: the session key of instance πi
P , which starts out as equal to a special symbol ⊥, but may

take a true value once that key has been computed.
The AKE protocol is run between an initiator (i.e., the party instance that starts the protocol)

and the responder (i.e., the party instance that goes second).
We define Partner-Hiding in terms of an adversary A that is a Person-in-the-Middle. The

security game will, in a nutshell, guarantee that an adversary is unable to tell the difference
between an interaction with a real, uncorrupted party, and an interaction with a simulator (which
only has access to the security parameter, but not to any of the private keys generated in the
game). Whereas this weak form of partner-hiding suffices for our needs, we also provide in the
appendix a stronger notion, in which arbitrary corruptions are possible.

In our weak partner-hiding game, the adversary can control honest parties and instances by
means of oracles:
– πi

P ← oNewSession(P,Q, role): the (honest) session creation oracle will initiate a new instance
πi
P with partner identifier πi

P .pid = Q, such that πi
P plays the role designated by role (either

initiator or responder) in its session.
– m∗ ← oSend(πi

P ,m): the (honest) sending oracle models sending message m to an already-
existent instance πi

P . It is expected that πi
P returns a message m∗, which is the protocol-specific

reply (potentially an error symbol ⊥) as a response. A special m = Start sent to a instance
of an initiator is used to jump-start the session (thus yielding m∗ as the first message of the
actual session).

– k ← oReveal(πi
P): the revelation oracle allows the adversary to learn already-established session

keys k.
– πi

P ← oNewSessionb,role(P,Q): this is the left-or-right version of the oNewSession oracle above,
for which the roles will be restricted according to which notion we want to guarantee between
initiator- and responder-hiding. If b = 0, this oracle creates an instance of the party P, with
partner identifier Q, such that P will have a role as either the initiator or the responder of the
session. On the i-th call to the oracle oNewSessionb(P, ∗), the created instance will be indexed
as πi

P . The oracle forwards the handle πi
P to the adversary. If b = 1, the oracle call is forwarded

to a simulator Sim, which is only given the security parameter, but no party information.
– m∗ ← oSendb(π

i
P ,m): this left-or-right version of the sending oracle allows the message m to be

either forwarded to πi
P (if b = 0) or to the simulator Sim otherwise. In both cases the adversary

expects a message m∗. As before, a special message m = Start will jump-start the session.

14 G. Arfaoui et al.

The security game begins with the setup of all the honest parties P ∈ P. The adversary receives
all the public keys, whereas the challenger keeps track of all the private keys. The simulator will
be given no information at all, apart from the security parameter.

There are two phases to the game. In the learning phase, the adversary will use the honest
session-creation and sending oracles, as well as the session-key revelation oracle, in order to observe
honest sessions and interact with the honest parties.

In the second phase of the game, the adversary gains access only to the left-or-right instance-
creation and sending oracles. We distinguish between the two following notions:

– Initiator-hiding. In this case, the oNewSessionb,role oracle has role set to Initiator. Hence,
in the challenge phase, the adversary will only be able to create new instances that are protocol
initiators.

– Responder-hiding. Conversely, in this case
oNewSessionb,role oracle has role set to Responder. Hence, in the challenge phase, the adversary
will only be able to create new instances that are protocol responders.

Finally, the adversary will be allowed a final learning phase, identical to the first one. When
the adversary is ready to end the game, it will output a bit d, which will be its guess for the bit b
used by the challenger during the challenge phase.

It should be noted that at the transition to each new phase, all ongoing sessions are aborted.

Game GInitHide(λ,NP)

Game setup for all P ∈ P with |P| = NP

b
r← {0, 1}

state← AoNewSession(·,·,·),oSend(·,·),oReveal(·)(1λ)

state← AoNewSessionb,Initiator(·,·),oSendb(·,·)(1λ, state)

d← AoNewSession(·,·,·),oSend(·,·),oReveal(·)(1λ)

A wins iff.: d = b

Fig. 9. The initiator-hiding game.

Definition 4 (Initiator-Hiding security). Consider an authenticated key-exchange protocol
AKE. This protocol is (NP , qoNewSession, qoNewSessionb,Role , ϵ)-initiator hiding if for any PPT ad-
versary A making at most qoNewSession queries to the (learning) oNewSession oracle and at most
qoNewSessionb,Role queries to the (challenge) oNewSessionb,role oracle, if we denote AdvIHideAKE (A) :=∣∣Pr[A wins GInitHide(λ,NP)]− 1

2

∣∣, then it holds that: AdvIHideAKE (A) ≤ ϵ.

The value AdvIHideAKE (A) is the advantage of adversary A. If ϵ is asymptotically negligible in the
security parameter, then we call the authenticated key-exchange protocol initiator-hiding.

Lemma 1. The full TLS 1.3 handshake with mutual authentication is initiator-hiding under the
following assumptions: all parties use particular configurations (e.g., groups) and extensions with
equal probability, the protocol uses collision-resistant hash functions, and the signature scheme is
Existentially Unforgeable against Chosen Message Attacks (EUF-CMA).

Proof (proof sketch). We first note that previous work [2] proved a slightly-different (and funda-
mentally stronger) degree of privacy for the TLS 1.3 full handshake, but only for handshakes with
unilateral authentication.

The simulator we consider is fairly simple. For each call of oNewSessionb,Initiator, the simulator
presents the adversary with an instance handle, which we label πi

P (even if the simulator himself
does not actually know the instance is supposed to belong to P). Subsequent calls of oSendb will
be made to those instances that have been previously created, and notably:

– For oSendb(·,m = Start) calls, the simulator generates input consistent with the Client Hello
of any client (recall that all configurations and extensions are equally likely).

Towards a Privacy-preserving Attestation for Virtualized Networks 15

– When fed with an oSendb(·,m) call for the server’s first message (Server Hello, etc.), the
simulator follows protocol, aborting if the server’s choice of element or extension are inconsistent
with its own. If all goes well, the simulator computes the handshake secret and subsequent keys.
There is no response for this message expected from the client, so the simulator also sends no
reply m = ∅.

– When fed with an oSendb(·,m) call for the server’s second message (encrypted Certificate
Request, Certificate, CertificateVerify...), the adversary uses the computed handshake keys to
authenticate and decrypt the contents (aborting if AEAD fails). Then, the simulator proceeds
with the verification of the Certificate signatures, and also the CertificateVerify message. If any
of the verifications fail, then the simulator aborts the session. As before, the server expects no
message in response so the simulator also sends no response.

– For all other messages sent, the simulator uniformly sends no reply, and it aborts the session
at the end of the server’s final message in its suite of messages 6.

For our proof, we make the following game hops:

G0: the original initiator-privacy game.
G1: the original game, except that we eliminate collisions in the nonce and DH elements used by

instances of honest initiators (in the learning and challenge phases). This happens except with
probability

((qoNewSession+qoNewSessionb,Role
)

2

)
.

G2: the same as G1, except that we abort if in any two of the sessions created, the hash over
the Client and Server Hellos coincide. As per G1, at least one input is unique in each session,
notably the client’s input. As a result, the two games are identical except if the content signed
in the CertificateVerify message to have no collisions. At this game hop, we lose the advantage
of the hash function against collision-resistance.

G3: this game is identical to G2 except that the adversary wins outright if it can, in the challenge
phase, produce a successful forgery of the server’s CertificateVerify message (note that in the
initiator-privacy game against TLS 1.3, the initiator is the client; hence, in the challenge phase,
the adversary will always play the role of responder, since it cannot create any responder
instances). For the reduction, at this step we have to first guess which responder the adversary
will choose to impersonate (i.e., which party), in order to inject the challenge key-pair from the
EUF-CMA game into that party. This counts for a factor 1

NP
. We also note that the challenger

and the reduction have the means of verifying successful forgeries, as they know all the public
keys and are one of the endpoints of the conversation (and can thus compute handshake keys).
The reduction essentially works as follows:
• The reduction generates keys for NP − 1 parties, but not for the one party that we denote
P∗ which it has guessed will be impersonated by the adversary.
• During the learning phases, the reduction will faithfully be able to simulate sessions because

it owns the private keys of all but the target party (which is at most one of the endpoints
of any created session).
• During the challenge phase, the reduction chooses a bit b and simulates the challenge phase

perfectly, but in addition also verifies each CertificateVerify message sent to an instance of
any party P ̸= P∗ which was created by an oNewSessionb,Initiator(P,P∗) query (i.e., P∗ is
the expected partner identifier of that instance). As soon as a forgery appears, it will be
used by the reduction to win its game.
• If no forgery appears and the adversary A ends its game, the reduction aborts.

We note that in this case, if the adversary makes no forgery, then there is no distinction between
G2 and G3, while if the adversary produces a forgery, then G3 is distinct from G2 from the
point of view of the adversary (but in that case, we violate the EUF-CMA assumption for the
signature scheme).

G4 This game is identical to G3, except that the protocol is no longer TLS 1.3, but rather, the
challenger aborts all initiator challenge sessions (i.e., sessions run by instances created by
oNewSessionb,Initiator queries) by default after the server’s first pack of messages (so when the
client’s Certificate information and Finished message is expected). As per our last game, we

6 We note that this is a much more limited version of a simulator than we could potentially build. Indeed,
our simulator could continue to handle messages such as the encrypted Server Finished message – but
we choose not to, because this step is not necessary.

16 G. Arfaoui et al.

have removed the possibility that the adversary produces a valid signature in any of the
challenge sessions – since those signatures are generated on unique content (as per G2) and
thus no replays from the learning phase is possible. As a result, none of the sessions created
during the challenge phase will proceed further than the verification (of the CertificateVerify
message) by the client. We thus incur no loss of security at this game hop. Thus, at this
point the two worlds (b = 0 and b = 1) are identical from the point of view of the adversary,
since the simulator follows the TLS 1.3 protocol to the letter up to, and including the server’s
CertificateVerify message. The adversary’s winning probability is 1

2 .

5.2 Inter-tenant privacy

We examine the inter-tenant privacy provided by our PP-MTA protocol. We give first the intuition
why our scheme guarantees this property, and then formalize the statement into a theorem.

Intuition. In the inter-tenant privacy game, the adversary, which represents one, or potentially a
collusion of malicious tenants, aims to distinguish whether the target machine, which the adver-
sary’s own VMs are located on, also contains VMs belonging to other tenants or not.

One way the adversary could win is by creating first a VM of its own, and then attempting
to create as many VMs as possible on behalf of another, honest tenant, until the machine is
overwhelmed. We prevent this by enforcing a bound on the maximum number NT of tenants, and
on the maximum number NVM of VMs per tenant for each machine. We ensure that the physical
machine can host at least NT ·NVM VMs.

While the adversary learns no information from requiring attestations from its own VMs, it
could potentially win by attempting to make a VM supposedly belonging to another tenant provide
an attestation. If the VM is truly hosted on the target device, the device is aware of its existence,
its public key, and its relationship with the tenant. If the VM is not hosted on the device, then
the latter has no record of that VM’s supposed public key. As a result, the mere guarantee of
authentication in the AKE protocol does not suffice, and we need the partner-hiding property. The
latter informally guarantees that the adversary (who does not know the honest tenant’s private
key) can never get far enough into the protocol in order to identify whether that particular VM
exists, or not, on the machine.

The final source of potential information for the attacker is the hypervisor attestation process.
All tenants, honest or malicious, have the right to demand a hypervisor attestation, which will
include linking information to all the VMs present on the device (including the honest tenant’s).
There are three counter-mechanisms we employ against such attacks:

– At setup, the hypervisor sets the (fixed) size of the vector commitment to be NT . Then when
computing a hypervisor attestation, it randomly associates tenant with indices between 1 to
NT . That is to say, regardless of the order in which the adversary demands the registration
of its own and other tenants’ VMs, the adversary will have equal probability to be associated
with any given index.

– The linking information to the VMs (their public keys) is included (in a hidden form) in a
vector commitment. Opening information is provided to each authenticated tenant, for the
index it is associated with. In other words, if the adversary authenticates by using its own
credentials, the most it will find will be opening information linking the attestation to its
own VMs. Attempting to impersonate an honest tenant will not work, as the attestation is
sent over a secure channel generated upon the execution of an AKE protocol (with mutual
authentication).

– Finally, note that the security of the channel guarantees that even if the adversary uses its
hypervisor attestation oracle on behalf of a different tenant, the transcript it receives only
contains an encrypted attestation and linking information.

Formalization. We formalize the following security statement for our inter-tenant privacy scheme.

Theorem 1 (Inter-tenant privacy). Let PP-MTA be a multi-tenant attestation scheme; this
scheme provides inter-tenant privacy if: the AKE protocol used during VM attestation is initiator-
hiding, the secure-channel establishment protocol used during hypervisor attestation is ACCE-secure
(providing authentication and secure-channel properties), and if the vector commitment guarantees

Towards a Privacy-preserving Attestation for Virtualized Networks 17

the hiding property. More formally, if there exists an adversary A that breaks the inter-tenant
privacy of PP-MTA with advantage AdvTPrivPP-MTA(A), then there exist adversaries B1, . . . ,B4 such
that:

AdvTPrivPP-MTA(A) ≤ AdvIHideAKE (B1) +NT · AdvAuthAKE (B2)
+qoHAttest · AdvSCAKE(B3)
+qHAttest∗ · AdvVCHideVC (B4),

where qoHAttest represents the number of queries the adversary makes to the oHAttest oracle, and
qHAttest∗ is the number of honest hypervisor-attestation sessions started by the adversary (on its
own behalf) in its PP-MTA game.

Proof (Proof sketch). The proof will proceed in the following game hops:

G0: The original game.
G1: Identical to G0, but we modify the authenticated key-exchange protocol such that, whenever

the tenant requests the attestation of a VM that it does not own, the challenger simulates the
protocol according to the simulator in the initiator-hiding game (no knowledge of the private
or public keys is necessary). The adversary can distinguish between games G0 and G1 only
with an advantage of at most AdvIHide

AKE ().
G2: Identical to G1, except that, whenever the adversary attempts a hypervisor attestation on

behalf of an honest tenant (so by using the HAttest algorithm, rather than the oHAttest oracle),
the attestation quote is replaced by an error symbol ⊥. The adversary can only distinguish
between the two if the adversary manages to impersonate an honest tenant. The reduction will
first guess which tenant the attacker will target (losing a factor NT), hence giving us a loss
equalling the second term of the bound above.

G3: Identical to G2, except that, at the first oHAttest query from the adversary, the challenger
replaces the correct attestation quote and linking information by a message of the same length,
but consisting only of 1s. We claim that the adversary only notices this if it can break the
security of the channel over which the quote is sent.

G4 → G2+qoHAttest
In each game G2+i, for i ∈ {2, . . . , qoHAttest}, we proceed as in G3 for the i-th

oHAttest query. At each time we lose a term AdvSCAKE(B3).
G3+qoHAttest

: This game is identical to game G2+qoHAttest , except that, for the first direct hypervisor
demand from the adversary (i.e., uses of the HAttest algorithm rather than the oHAttest
oracle), the challenger now replaces the input for each index of the vector commitment not
corresponding to the adversary’s position by a random value, ensuring that the resulting value
in the commitment is different from the value it would have had had the challenger behaved
normally (this restricts the adversary’s choice of positions for which the opening is available
in the commitment-hiding game). The adversary cannot distinguish between games G2+qoHAttest

and G3+qoHAttest
is exactly the advantage against commitment-hiding.

G4+qoHAttest
→ G2+qoHAttest+qHAttest∗ : Proceed to modify, in game G2+qoHAttest+i the vector commitment

for the i-th hypervisor attestation demand, for i ∈ {2, 3, . . . qHAttest∗} in the same way as the
previous game. At each time the difference between each two successive games is the advantage
against the vector commitment.

Analysis: At this point, the adversary has no better means than guessing, as the two worlds will
be identical from its point of view, thus yielding the given bond.

Limitations to our guarantee. Our security model and proof holds against a broad class of
attackers – but is not universally valid. For instance, if the separation (in terms of physical re-
sources) between the tenant spaces and the VMs is not correctly set up, a tenant will naturally be
aware of other VMs on the same machine. Moreover, multiple side-channel attacks are possible,
exploiting, for instance, a longer response time than usual by the TPM (i.e., the TPM was busy on
another attestation at that time). Another avenue of attack would exploit the network, learning,
for instance, the destination of a hypervisor attestation that is not the attacker’s own. Such attacks
are valid and deserve future investigations.

18 G. Arfaoui et al.

5.3 Hypervisor Configuration Privacy

We now delve into the hypervisor configuration-privacy property. We recall that in multi-tenant
environments, an independent entity usually owns the physical machines hosting the VMs – and as
a result, keeping the configuration of the meachine private from the tenants is a worthwhile goal.

Intuition. To begin with, note that the only moment when the configuration-privacy of the hy-
pervisor is exposed is during the hypervisor attestation (which is generated by the physical TPM).
The hypervisor receives a signed quote from the TPM (this communication takes part within the
machine itself), then forwards a proof that it is in possession of a signed quote, which is consistent
with a configuration H.Conf ∈ CONF . In particular, the hypervisor computes (and later sends)
ZK-SNARK{(quote, σ) : SigVer(AK.sk, quote, σ, c) == 1 ∧ quote.H.Conf ∈ CONF}.

Our proof is straight-forward: by the zero-knowledge property of the ZK-SNARK, no informa-
tion is revealed about quote and in particular about the configuration of the machine. In particular,
the adversary will have no more than 1

|CONF| probability to distinguish the actual configuration.

Formalization. We formalize the following security statement for our inter-tenant privacy scheme.

Theorem 2 (Configuration privacy). Let PP-MTA be a multi-tenant attestation scheme; this
scheme provides configuration privacy if: the ZK-SNARK is zero-knowledge, and the set CONF is
large (size is exponential in the size of the security parameter). More formally, if there exists an
adversary A that breaks the inter-tenant privacy of PP-MTA with advantage AdvCPrivPP-MTA(A), then
there exists and adversary B such that: AdvCPrivPP-MTA(A) ≤ qoHAttest · AdvZKZK-SNARK(A) where qoHAttest
is the number of queries A makes to the hypervisor-attestation algorithm.

Proof (Proof sketch.). We use a hybrid argument, replacing in each game hop the true attestation
quote by a simulated attestation (using the simulator of the ZK-SNARK). This makes a total of
qoHAttest game hops, in which we lose at each time AdvZKZK-SNARK(B). At the end of this sequence of
games, every true attestation has been replaced with a simulated one, which does not depend on
H.Conf. As a result, the adversary has no better alternative than to guess the bit b input to the
configuration-privacy game.

5.4 Collision Resistant Vector Commitment

The goal of a malicious hypervisor could be to find a collision by keeping the values of a given
tenant with its correct index but modifying the other positions to find a collision with a previous
committed vector. An other attack could also happened if the nonce of a given tenant would match
with a previous nonce. In that case, the hypervisor could simply send the old attestation with the
same proof of membership in the vector. Finally, the malicious hypervisor could also compute a
collision which occurs with probability

q

2n+1
for q attestation queries and vector commitment of

size n.
We thus define the collision resistance of vector commitment to avoid the above attacks. Note

that this property has not been formalized in the context of vector commitment and should be also
considered as of independent interest. We propose a security game, GVC−Coll(λ, n) (see Figure 10),
to define the collision resistance of vector commitment. This game is the same as for hash func-
tions but for vector commitment: the challenger computes the setup algorithm to send the public
parameters to A which outputs to (different) vectors. We say that A wins the game if and only if
the commitments are equal.

Game GVC−Coll(λ, n)

{ppar} ← VC.Setup(1λ, n)
(v, v′)← A(ppar)
A wins iff.: ∃i such that v[i] ̸= v′[i] and
VC.Com(v) = VC.Com(v′)

Fig. 10. The collision resistance game for vector commitment.

Towards a Privacy-preserving Attestation for Virtualized Networks 19

Definition 5 (VC collision-resistance). We say that VC is (λ, n)−collision resistant if for all
adversary A, the probability of winning game GVC−Coll(λ, n) is negligible.

Our construction uses Merkle trees, which are collision-resistant as stated by the following
lemma:

Lemma 2. A VC scheme, based on binary Merkle Tree, is collision resistant, assuming that the
hash function H is collision resistant.

Proof (sketch). The proof is done by reduction, we suppose that there exists A winning the collision
resistance game for VC and show that we can construct B, using A as a subroutine, winning the
collision resistance of H.

If such A exists, then B could simply recompute the merkle tree of v and v′ and then, starting
from the root of each tree, search for collision (which is linear complexity) and return the output.

5.5 Linkability Security

Our PP-MTA protocol has a linking property, which is stated as the following theorem.

Theorem 3 (Linkability security). Let PP-MTA be a multi-tenant attestation scheme; this
scheme provides linkability security if: the hash function H and VC are collision resistant, the
ZK-SNARK is sound, and the signature scheme SIG=(SigKGen,SigSig,SigVer) is EUF-CMA.
More formally, if there exists an adversary A that breaks the linkability security of PP-MTA with
advantage AdvLinkPP-MTA(A), then there exist adversaries B1, . . . ,B5 such that:

AdvLinkPP-MTA(A) ≤
1

NP
+ AdvCollH (B1) + AdvCollVC (B2)

+2 · (NVM · AdvVCBindVC (B3)
+AdvZKZK-SNARK(B4) + AdvEUF−CMA

Sig (B5))

where qatt is the number of queries A makes to the oHAttest and oVMAttest oracles, and n is the
size of committed vectors.

Intuitively, this theorem states that, in order to link two components that are not on the same
platform, an adversary needs to break at least one assumption. Our model consider malicious
tenants which have (legitimate) access to all the VMs of both platforms; yet, the only possibility
for the adversary to provide attestations that will verify as being linked (i.e., Link returns 1) is
to forge an attestation from the hypervisor.

Proof (proof sketch). We give the game hops for our proof.

G0: Initial linkability game GLink(λ,NP).
G1: The challenger guesses parties P and Q outputted by A. There are two platforms composed

each of one hypervisor and NVM VM. The probability or right guess is
1

4NVM
.

G2: We rule out that lkaux = lkaux′ meaning that H(nonce∥·) = H(nonce′∥·) for nonce ̸= nonce′.
This corresponds to the collision resistance of H.

G3: We ensure the uniqueness of committed vectors by removing collisions, this corresponds to a
factor AdvCollVC (B2).
At this point, the only way for the adversary to win the game is to forge an attestation for P
or Q. The next games refer to rule out the fact that A outputs ATTP (or ATTQ) which its
attestation corresponds to a value stored in LAtt. The games G4, G5 and G6 ensure that P’s
attestation does not correspond to another one stored in LAtt.

G4: The adversary can try to forge an opening thus making a commitment opens to a different
message than the initial one. This corresponds to violating the position binding property, thus
we loose a factor NVM · AdvVCBindVC (B3).

G5: This game ensures that the soundness property of the ZK-SNARK holds. If the proof of the
committed vector verifies for other values (e.g., adding a VM from another platform into link)
then the adversary is able to forge a proof. This corresponds to AdvZKZK-SNARK(B4).

G6: We ensure that the adversary cannot forge a signature of the quote, this corresponds to lose
a factor AdvEUF−CMA

Sig (B5).
G7: We repeat games G4, G5 and G6 for party Q. At this point the adversary cannot win the

game.

20 G. Arfaoui et al.

6 Implementation

We provide a proof-of-concept implementation of the scheme described in Section 4 in Python,
with some parts related to the ZK-SNARK written in Rust. We used this implementation to design
benchmarks and evaluate the performance of the scheme. Specifically, we focused on the perfor-
mance of the VM attestation and hypervisor attestation compared to a traditional attestation. We
also demonstrate the scaling properties of our scheme experimentally.

6.1 Implementation and experiment details

In what follows, we describe some of the details of our implementation and tools we used. We also
describe our experimental setup.

TPM libraries. To communicate with the (physical or virtual) TPM, we used the software pro-
vided by tpm2-software community [1], relying on TPM software stack (TSS) – an API specified
by the TCG.

Vector Commitment. We implemented our vector commitment scheme using a binary Merkle
Tree, using the pymerkletools library [28] combined with a basic hash-based commitment scheme.

SNARK. We used bellperson [13] which implements a preprocessing circuit-specific crs snark [15]
for a rank-1 constraint system (R1CS) over a bls12-281 curve, as well as several gadgets for circuit
design. Additionally we used bellperson-nonnative [26]. a library to compute arbitrary-precision
arithmetic operations inside SNARKs.

SNARK Circuit design. The circuit computes an RSA PKCS#1 v1.5 signature verification
and set membership verification. We implemented the RSA verification for a 2048-bit modulus
and a fixed exponent of 0x10001. Moreover, the circuit is designed for a nonce of length 32. Our
implementation also assumes that the TPM will use sha256 as its hash algorithm. Hence, the size
of the quote is fixed and thus the number of constraints in the circuit only depends on the size of
the configuration set. The CRS will only need to be recomputed for a different size set (if using a
circuit-specific-CRS SNARK).

Limitations. Our current implementation is basic and contains no network communication, as
the latter is not necessary for the basic feasibility performance measurements we aim for here.
However, we also provide a demonstration script, which simulates a use-case scenario into a single
process and gives an idea of the flow of the protocol in a real situation.

Setup. Our tests and benchmarks were carried out on a laptop running Ubuntu 20.04.5 with an
Intel i7-10875H CPU (16 cores), 32GB RAM and a STMicroelectronics ST33TPHF2XSPI TPM.
The VM attestation benchmarks were ran inside a KVM/QEMU 4.2.1 VM (running on the same
laptop) with virtual TPM provided by swtpm 0.6.2 (libtpms 0.9).

Experimental method. The Rust part of the code was measured using the Criterion library [16]
which run the function to benchmark 100 times after a warm-up phase, then compute statistics
over these samples. For the Python code we implemented a custom decorator, which works in a
similar fashion and provides statistics over these runs.

6.2 Benchmark results

We now present our results. First we compare a traditional attestation with our privacy preserv-
ing hypervisor attestation and we show how our scheme scales with the number of tenant. This
experiment has been carried using a set of possible configuration of size 128. Hence we provide
measurement of the SNARK computation for different set size to show of it affect the performances
of our construction. Finally we provide some result about the linking procedure and shows that it
has a negligible impact.

Attestation and scaling. Table 11b compares a traditional attestation and our hypervisor attes-
tation. We can see that the ZK-SNARK adds a significant overhead but the total time is still low
enough (2.4s) for practical use. This is especially true with a high number of tenants requests (like
in 5G and beyond). With a classic sequential processing of the requests it would take minutes to

Towards a Privacy-preserving Attestation for Virtualized Networks 21

answer all the tenants whereas in our case despite having a relatively high base computing time,
the attestation scales very well as depicted on Figure 11a. Attestation time increases by only 8%
for a tenant requests increase of 900%.

100 200 300 400 500
2.3

2.35

2.4

2.45

2.5

2.55

Number of tenants

T
im

e
(s

)
Hypervisor attestation running time

(a) Scaling (configuration set of size 128).

Attestation
Mean Median

Traditional (s) 0.94 0.94
Hypervisor (s) 2.40 2.40
SNARK (s) 1.46 1.46

Commitment (ms) 9.06 8.98

Verification
Mean Median

Traditional (ms) 2.42 2.36
Hypervisor (ms) 25.06 25.05
SNARK (ms) 25.02 24.99

Commitment (ms) 0.043 0.063

(b) Time to perform attestation

Fig. 11. Benchmarks

SNARK. The hypervisor-attestation benchmarks presented above are given for a set of 128 con-
figurations. That set size directly impacts the number of constraints in our SNARK circuit. Table 1
shows how the setup, prover, and verifier algorithm performances change with set size.

Table 1. Performance variations of the ZK-SNARK in the configuration-set size. Median value over 100
samples.

Set Size 32 64 128 256 512
Number of constraints 213565 222301 239774 274719 344609

Setup (s) 18.07 18.75 20.04 26.59 31.86
Prover(s) 1.43 1.44 1.46 2.45 2.5

Verifier(ms) 14.93 18.71 24.41 41.70 72.17

Linking. Table 2 presents our measurements of the time required for the linking of a VM and
a hypervisor attestation quote. Note that the measurements below do not correspond to the full
algorithm presented in section 4.6 but only include the verification of the linking information. The
linking information inside the hypervisor attestation depends on the number of VM owned by
the tenant, which impacts the overall performance. Even in spite of such variations, our scheme
provides very fast, easy linking.

Table 2. Performance of the SNARK depending on the size of the set. Median value over 100 samples.

Number of VM 50 100 150
Linking time (µs) 27.89 56.74 84.40

7 Conclusion and Discussion

In this work, we proposed a scalable and efficient TPM attestation scheme for multi-tenant envi-
ronments. Our scheme does not require modification to the TPM nor unrealistic trust assumptions

22 G. Arfaoui et al.

(e.g., Attestation proxy). It provides strong privacy for both tenants and the hypervisor, and
guarantees layer-binding.

Our scheme achieves privacy by relying on vector commitment and ZK-SNARK. The latter
primitive incurs a relatively high overhead but it remains stable even with a drastically high
number of attestation requests (which is the case in multi-tenant environments like 5G) without
requiring any TPM modification. In addition, if in some cases the configuration hiding property is
not needed – but still have a high number of attestation requests –, due to the modularity of our
construction, our scheme can still work efficiently by simply omitting the ZK-SNARK module.

Acknowledgements We thank the anonymous reviewers for their constructive comments. This
study was partially supported by the French ANR, grant 18-CE39-0019 (MobiS5).

References

1. Linux tpm2 & tss2 software (2022)
2. Arfaoui, G., Bultel, X., Fouque, P., Nedelcu, A., Onete, C.: The privacy of the TLS 1.3 protocol.

PoPETs (2019)
3. Arfaoui, G., Fouque, P., Jacques, T., Lafourcade, P., Nedelcu, A., Onete, C., Robert, L.: A crypto-

graphic view of deep-attestation, or how to do provably-secure layer-linking. In: ACNS 2022 (2022)
4. Berger, S., Goldman, K., Pendarakis, D., Safford, D., Valdez, E., Zohar, M.: Scalable attestation: A

step toward secure and trusted clouds. In: IC2E (2015)
5. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From extractable collision resistance to succinct

non-interactive arguments of knowledge, and back again. In: ITCS (2012)
6. Brickell, E., Camenisch, J., Chen, L.: Direct anonymous attestation. In: CCS ’04 (2004)
7. Catalano, D., Fiore, D.: Vector commitments and their applications. In: PKC (2013)
8. Chen, L., Landfermann, R., Löhr, H., Rohe, M., Sadeghi, A.R., Stüble, C.: A protocol for property-

based attestation. In: ACM STC (2006)
9. Chen, L., Löhr, H., Manulis, M., Sadeghi, A.R.: Property-based attestation without a trusted third

party. In: ISC (2008)
10. Eckel, M., Fuchs, A., Repp, J., Springer, M.: Secure attestation of virtualized environments. In: Hölbl,

M., Rannenberg, K., Welzer, T. (eds.) ICT (2020)
11. ETSI: GS NFV-SEC 007 v1.1.1. Tech. rep. (2017)
12. Fajiang, Y., Jing, C., Yang, X., Jiacheng, Z., Yangdi, Z.: An efficient anonymous remote attestation

scheme for trusted computing based on improved cpk. Electronic Commerce Research (2019)
13. Filecoin: bellperson (2022)
14. Foy, K.: Keylime software is deployed to ibm cloud (2021)
15. Groth, J.: On the size of pairing-based non-interactive arguments. In: EUROCRYPT (2016)
16. Jorge, A., Heisler, B.: criterion (2022)
17. Keylime dev: Keylime (2022)
18. Larsen, B., Debes, H.B., Giannetsos, T.: Cloudvaults: Integrating trust extensions into system integrity

verification for cloud-based environments. In: ESORICS (2020)
19. Lauer, H., Kuntze, N.: Hypervisor-based attestation of virtual environments. In: UIC-ATC (2016)
20. Poritz, J.A., Schunter, M., Herreweghen, E.V., Waidner, M.: Property attestation — scalable and

privacy-friendly security assessment of peer computers. Tech. rep., IBM (2004)
21. Ruan, A., Martin, A.: Repcloud: Achieving fine-grained cloud tcb attestation with reputation systems.

In: STC (2011)
22. Sadeghi, A.R., Stüble, C.: Property-based attestation for computing platforms: Caring about proper-

ties, not mechanisms. In: NSPW (2004)
23. Santos, N., Rodrigues, R., Gummadi, K.P., Saroiu, S.: Policy-Sealed data: A new abstraction for

building trusted cloud services. In: USENIX Security (2012)
24. Schear, N., Cable, P.T., Moyer, T.M., Richard, B., Rudd, R.: Bootstrapping and maintaining trust in

the cloud. In: ACSAC (2016)
25. Schiffman, J., Moyer, T., Vijayakumar, H., Jaeger, T., McDaniel, P.: Seeding clouds with trust anchors.

In: CCSW (2010)
26. Setty, S.: bellperson-nonnative (2022)
27. TCG: Virtualized trusted platform architecture specification. Tech. rep. (2011)
28. Tierion: pymerkletools (2022)
29. Xin, S., Zhao, Y., Li, Y.: Property-based remote attestation oriented to cloud computing. In: CIS

(2011)
30. Zhang, T., Lee, R.B.: Cloudmonatt: An architecture for security health monitoring and attestation of

virtual machines in cloud computing. In: ISCA (2015)

