
HAL Id: hal-04335703
https://u-picardie.hal.science/hal-04335703v1

Submitted on 11 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ZKP protocols for Usowan, Herugolf and Five Cells
Daiki Miyahara, Léo Robert, Pascal Lafourcade, Takaaki Mizuki

To cite this version:
Daiki Miyahara, Léo Robert, Pascal Lafourcade, Takaaki Mizuki. ZKP protocols for Usowan, Herugolf
and Five Cells. Tsinghua Science and Technology, In press, �10.26599/TST.20xx.9010�. �hal-04335703�

https://u-picardie.hal.science/hal-04335703v1
https://hal.archives-ouvertes.fr


TSINGHUA SCIENCE AND TECHNOLOGY
ISSNll1007-0214 0?/?? pp???–???
DOI: 10 .26599/TST.20xx .9010xxx
Volume xx, Number x, xxxxxxx 20xx

ZKP protocols for Usowan, Herugolf and Five Cells

Daiki Miyahara∗, Léo Robert∗, Pascal Lafourcade, and Takaaki Mizuki

Abstract: A Zero-Knowledge Proof (ZKP) protocol allows a participant to prove the knowledge of some secret

without revealing any information about it. While such protocols are typically executed by computers, there exists

a line of research proposing physical instances of ZKP protocols. Up to now, many card-based ZKP protocols for

pen-and-pencil puzzles, like Sudoku, have been designed. Those games, mostly edited by Nikoli, have simple

rules, yet designing them in card-based ZKP protocols is non-trivial. In this work, we propose a card-based ZKP

protocol for Usowan, a Nikoli game. In Usowan, for each room of a puzzle instance, there is exactly one piece of

false information. The goal of the game is to detect this wrong data amongst the correct data and also to satisfy the

other rules. Designing a card-based ZKP protocol to deal with the property of detecting a liar has never been done.

In some sense, we propose a physical ZKP for hiding of a liar. This work extends a previous paper appearing in [33].

In this extension, we propose two other protocols, for Herugolf and Five Cells. The puzzles are specifically chosen

because each of those three puzzles shares a common constraint, connectivity. However, showing the connected

configuration cannot be done with generic approach and brings new construction to the existing connectivity ZKP

protocol. Indeed, in Herugolf, the connectivity is handled with a given length of cell which is decremental (i.e., the

length of each connected cell decreases by one at each step). For Five Cells, there is an additional step in the

setup allowing to encode all the information needed to ensure a valid ZKP protocol.

Key words: ZKP protocol; playing cards; card-based cryptography; physical assumptions; Usowan; Herugolf; Five
Cells

1 Intoduction

Suppose that someone wishes to prove the knowledge
of a secret without revealing it. For instance, solving
a puzzle (e.g., Sudoku) and convincing a verifier that
this is indeed the solution without directly revealing the
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solution is hard. Such construction already exists and
can be found in the field of cryptography. Indeed, a
Zero-Knowledge Proof (ZKP) is a process where one
party can prove the knowledge of information without
revealing it.

A simple application to ZKP can be related to
password authentication for a website; only the person
with this password can access to sensitive data but it
is preferable to never reveal the password. A second
example can be given in electronic voting. In this
system, voters want to enforce the correctness of mixing
ballots (without revealing how the mix was done).
Finally, crypto-currencies, such as Bitcoin, Monero, or
Zcash, are eager to include a mechanism to enforce
knowledge of some secrets without revealing it (e.g.,
for anonymous transactions).

More formally, a ZKP protocol is between two
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parties:

• a prover P who knows a solution s to a problem
and

• a verifier V who wants to be sure that P is indeed
in possession of the solution.

However, no information about s should leak during
the protocol. Notice that some information can be
recovered by the verifier without participating in the
protocol. The information that cannot be leaked are
the one directly linked with the protocol. Note also
that some protocols are non-interactive meaning that
the prover does not interact with the verifier in order
to prove the knowledge of a secret. However, we only
consider here interactive protocols where both parties
are interacting during the protocol.

A ZKP protocol must guarantee three security
properties:

• Completeness: if P knows s then V is convinced
when the protocol ends.

• Soundness: if P does not have the solution, then V

will detect it during the protocol.

• Zero-knowledge: V learns nothing about s.

Most of the practical applications for ZKP protocols
are executed by computers. We restrict ourselves
by using only physical cards and envelopes, hence
providing a more understandable approach of how ZKP
protocols are designed.

In [33], we presented a physical ZKP protocol for
Usowan [1] which is a pencil puzzle played with a
rectangular grid composed of numbered cells and white
cells delimited by regions (thick edges).

The goal is to fill (in black) some cells:
We depict in Fig. 1 an initial Usowan grid with its

solution and the corresponding rules in Fig. 2. Notice
that numbered cell whose number is four (or more) is
automatically a liar. Indeed, if there are four black cells
around a numbered cell, then the numbered cell cannot
be connected to other white cells. This information
is not considered as a leak from the protocol since it
is deducible from the initial setup (and not from an
interaction during the protocol).

While the hardness of the resolution for the
underlying problem (here filling an Usowan grid) is not
crucial for a physical protocol, a usual ZKP protocol
needs to be based on a NP-complete problem (otherwise
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Fig. 1 Initial Usowan grid and its solution taken from [1].

Usowan Rules:

(1) The numbered cells must remain white.

(2) The white cells form a connected shape.

(3) The black cells cannot connect vertically or
horizontally.

(4) A numbered cell has the corresponding number
of black cells around it (vertically or
horizontally). However, each region has exactly
one liar i.e., the number of black cells is not
equal to the numbered cell.

Fig. 2 Rules for Usowan [1].

the verifier could compute the secret in polynomial
time). Fortunately, the NP-completeness of Usowan has
been proved in [13]. This result ensures that there exists
a ZKP protocol.

In this paper, we design two other protocols for two
puzzles, Herugolf and Five Cells. Herugolf has been
proven NP-complete in [14] and Five Cells in [15].
Five Cells. The goal of this puzzle is to divide the grid
into blocks of cells, where the constraints are given in
Fig. 3 and an example is illustrated in Fig. 4.

Five Cells Rules:

(1) Each block is composed of exactly five cells.

(2) A number indicates how many lines there are
around the cell (edges are also considered).

Fig. 3 Rules for Five Cells.
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Fig. 4 Five Cells initial grid and its solution

Herugolf. The goal of this puzzle is to draw arrows,
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in straightline, from center to center of cells. Each
numbered cell must be connected with “H” (hole) cell.
The constraints are given in Fig.5 with an example in
Fig. 6.

Herugolf Rules:

(1) Show the movement of a circle by an arrow,
with the tip of the arrow in the cell where it
stops. The arrows can not cross other circles, H
cells, or lines of other arrows.

(2) The first arrow from the numbered cell goes
across that number of cells (indicated by the
number). Other arrows are decreasing, in the
number of cells, of 1.

(3) An arrow cannot leave the grid, or stop in the
gray area (but an arrow can pass through it).

Fig. 5 Rules for Herugolf.
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Fig. 6 Herugolf initial grid and its solution

Contributions. We constructed in [33] a physical ZKP
protocol for Usowan, giving the first application to
detecting if a puzzle has flaws (i.e., the liar rule) while
ensuring that the prover has the solution. It is the first
physical ZKP protocol to prove that some information is
incorrect among correct information. For this, we only
used cards and envelopes. Moreover, we proposed a
trick that uses the rules of a Usowan grid in order to
prove that exactly one piece of information is wrong in
each room. We used several sub-protocols to verify the
rules and proposed a completely novel ZKP protocol.

In this paper, we propose two other protocols for
two different puzzles, Five Cells and Herugolf. The
link between the three puzzles presented here is the
connectivity constraint which enforces that each white
cell must share at least one adjacent white cell. For Five
Cells, the difficulty, in constructing a ZKP protocol,
lies in changing the usual encoding for the connectivity
problem. Indeed, our new protocol must solve the issue
of having an encoding for connectivity and an encoding
for delimiting region (i.e., encode lines between cells).

For Herugolf, the main challenge is to design a ZKP
protocol with a decrement for the connectivity length.

Note that this work is an extension of a previously
accepted paper [33] where only the Usowan protocol
was proposed.

Related Work. Goldwasser et al. [10] proved that any
NP-complete problem has its corresponding interactive
ZKP protocol. Yet the generic approach has tremendous
overhead leading to an impractical result. Works on
implementing cryptographic protocols using physical
objects are numerous, such as in [23]; or in [8]
where a physical secure auction protocol was proposed.
Other implementations have been studied using cards
in [7, 17], polarising plates [43], polygon cards [44],
a standard deck of playing cards [20], using a PEZ
dispenser [2, 3], using a dial lock [21], using a 15
puzzle [22], or using a tamper-evident seals [25–27].
ZKP’s for several other puzzles have been studied such
as Sudoku [35,42], Akari [4], Takuzu [4,18], Kakuro [4,
19], KenKen [4], Makaro [5, 41], Norinori [9],
Nonogram [6, 34], Nurimisaki [32], Slitherlink [17],
Suguru [29, 30], Nurikabe [31], Ripple Effect [37],
Numberlink [36], Bridges [38], Shikaku [40] and
Cryptarithmetic [12].

Outline. In Sect. 2, we explain how to encode a grid
with some cards in order to be able to construct our
ZKP protocols. We also recall the existing card-based
simple protocols of the literature that we use in our
constructions. In Sect. 3, we briefly present our ZKP
protocol for Usowan.

Next, Sect. 4 and Sect. 4.3 give the description of
our ZKP protocol for Five Cells and its security proof,
respectively.

Before concluding in Sect. 6, we present our ZKP
protocol for Herugolf in 5 and its security proof in
Sect. 5.2.

2 Preliminaries

We explain the notations and sub-protocols used
in our construction. We first introduce the general
framework of card-based protocols, then present the
existing sub-protocols used in our constructions.

Cards and Encoding. The cards consist of clubs ♣ and
hearts ♡ whose backs are identical ? . We encode
three colors {black,white, red} with the order of two
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cards as follows:
♣ ♡ → black,
♡ ♣ → white,
♡ ♡ → red.

(1)

We call a pair of face-down cards ? ?
corresponding to a color according to the above
encoding rule a commitment to the respective color.
We also use the terms, a black commitment, a white
commitment, and a red commitment. We sometimes
regard black and white commitments as bit values,
based on the following encoding:

♣ ♡ → 0, ♡ ♣ → 1. (2)

For a bit x ∈ {0, 1}, if a pair of face-down cards
satisfies the encoding (2), we say that it is a commitment
to x, denoted by ? ?︸ ︷︷ ︸

x

.

We also define two other encodings [39]:

• ♣-scheme: for x ∈ Z/pZ, there are p cards
composed of p−1♡s and one ♣ at position (x+1)

from the left. For example, 2 is represented as
♡ ♡ ♣ ♡ in Z/4Z.

• ♡-scheme: same encoding as above but the ♡ and
♣ are reversed. For instance, 2 is represented as
♣ ♣ ♡ ♣ in Z/4Z.

2.1 Pile-shifting shuffle [28, 44]

This shuffling action means to shuffle piles of cards
cyclically. More formally, given m piles, each of
which consists of the same number of face-down cards,
denoted by (p1, p2, . . . , pm), applying a pile-shifting
shuffle (denoted by ⟨·∥ · · · ∥·⟩) results in (ps+1, ps+2,

. . . , ps+m):〈
?︸︷︷︸
p1

∥∥∥∥∥ ?︸︷︷︸
p2

∥∥∥∥∥ · · ·
∥∥∥∥∥ ?︸︷︷︸

pm

〉
→

?︸︷︷︸ · · · ?︸︷︷︸
ps+1 ps+m

,

where s is uniformly and randomly chosen from Z/mZ.
We can simply implement this shuffling action using
physical cases that can store a pile of cards, such as
boxes and envelopes. A player (or players) cyclically
shuffles them manually until everyone (i.e., P and V )
loses track of the offset. Note that this shuffle can
be “input-preserving” by writing ordered numbers at
the back of envelopes. When all operations are done,
players can put back to their initial positions all the
commitments using those numbers. We implicitly use
this when commitments need to be placed back to their
initial positions after a shuffle.

2.2 Mizuki–Sone Copy Protocol [24]

We use it to copy commitments, ensuring to V that
this is indeed a correct copy of a given commitment (i.e.,
P cannot cheat with arbitrary value). Note that a red
commitment is not considered in this protocol.

This description is a compact version of the original
one [24]. Here, we use a pile-shifting shuffle in step 2
instead of using a random bisection cut invented in [24].

The protocol proceeds as follows.

(1) Turn over all face-up cards and put the
commitment to a above the four additional
cards as follows:

? ?︸ ︷︷ ︸
a

♣ ♡ ♡ ♣ →

? ?︸ ︷︷ ︸
a

? ?︸ ︷︷ ︸
0

? ?︸ ︷︷ ︸
1

.

Note that black-to-red represents 0, and red-to-
black represents 1 according to Eq. (2).

(2) Apply a pile-shifting shuffle as follows:〈
?

? ?

∥∥∥∥∥ ?
? ?

〉
→ ?

? ?
?

? ? .

(3) Reveal the two above cards and obtain two
commitments to a as follows (note that negating
a commitment is easy).

(a) If they are ♣ ♡ , then the four bottom cards
are ? ?︸ ︷︷ ︸

a

? ?︸ ︷︷ ︸
a

.

(b) If they are ♡ ♣ , then the four bottom cards
are ? ?︸ ︷︷ ︸

a

? ?︸ ︷︷ ︸
a

.

2.3 Input-preserving Five-card Trick [18]

This sub-protocol allows to compute an OR operation
while being able to replace commitments back to their
original configuration.

(1) Add helping cards and swap the two cards of the
commitment to a so that we have the negation b, as
follows:
? ?︸ ︷︷ ︸
a

? ?︸ ︷︷ ︸
b

→ ? ?︸ ︷︷ ︸
a

♡ ? ?︸ ︷︷ ︸
b

♡ ♣ ♣ ♣ ♣ .

(2) Rearrange the sequence of cards and turn over the
face-up cards as:

? ? ♡ ? ? ♡ ♣ ♣ ♣ ♣

→ ? ? ♡ ? ?
♡ ♣ ♣ ♣ ♣

→ ? ? ♡ ? ?
? ? ? ? ? .
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(3) Regarding cards in the same column as a pile,
apply a pile-shifting shuffle to the sequence:〈

?
?

∥∥∥∥∥ ?
?

∥∥∥∥∥ ?
?

∥∥∥∥∥ ?
?

∥∥∥∥∥ ?
?

〉

→ ? ? ? ? ?
? ? ? ? ? .

(4) Reveal all the cards in the above row.

(a) If the resulting sequence is ♣ ♣ ♡ ♡ ♡ (up
to cyclic shifts), then a ∨ b = 0.

(b) If it is ♡ ♣ ♡ ♣ ♡ (up to cyclic shifts),
then a ∨ b = 1.

(5) After turning over all the face-up cards, apply a
pile-shifting shuffle.

(6) Reveal all the cards in the bottom row; then, the
revealed cards should include exactly one ♡ .

(7) Shift the sequence of piles so that the leftmost card
is the revealed ♡ and swap the two cards of the
commitment to b to restore commitments to a and
b.

2.4 How to Form a White Polyomino

Before explaining the protocol, we need to describe
two crucial sub-protocols first, namely the chosen pile
protocol and the 4-neighbour protocol.

2.4.1 Chosen Pile Protocol [9]
This protocol allows P to choose a pile of cards

without V knowing which one it is. Some operations
can be done on this pile while all the commitments are
replaced in their initial order.

This protocol is an extended version of the
“chosen pile cut” proposed in [16]. Given m piles
(p1, p2, . . . , pm) with 2m additional cards, the chosen
pile protocol enables a prover P to choose the i-
th pile pi (without revealing the index i) and revert
the sequence of m piles to their original order after
applying other operations to pi.

(1) Using m − 1 ♣ s and one ♡ , P places m face-
down cards (denoted by row 2) below the given
piles such that only the i-th card is ♡ . V further
places m cards (denoted by row 3) below the cards
such that only the first card is ♡ as depicted in
Fig. 7.

?︸︷︷︸
p1

?︸︷︷︸
p2

· · ·
?︸︷︷︸

pi−1

?︸︷︷︸
pi

?︸︷︷︸
pi+1

· · ·
?︸︷︷︸
pm

?
♣

?
♣
· · · ?

♣
?
♡

?
♣
· · · ?

♣
← row 2

?
♡

?
♣
· · · ?

♣
?
♣

?
♣
· · · ?

♣
← row 3

Fig. 7 Configuration at step 1 in the chosen pile protocol

(2) Considering the cards in the same column as a
pile, apply a pile-shifting shuffle to the sequence
of piles.

(3) Reveal all the cards in row 2. Then, exactly one ♡
appears, and the pile above the revealed ♡ is the
i-th pile (thus P can obtain pi). After this step is
invoked, other operations are applied to the chosen
pile. Then, the chosen pile is placed back to the
i-th position in the sequence.

(4) Remove the revealed cards, i.e., the cards in row
2. (Note, therefore, that we do not use the card
♡ revealed in Step 3.) Then, apply a pile-shifting
shuffle.

(5) Reveal all the cards in row 3. Then, one ♡
appears, and the pile above the revealed ♡ is p1.
Therefore, by shifting the sequence of piles (such
that p1 becomes the leftmost pile in the sequence),
we can obtain a sequence of piles whose order is
the same as the original one without revealing any
information about the order of the input sequence.

2.4.2 Sub-protocol: 4-Neighbour Protocol [31]
Given pq commitments placed on a p × q grid, a

prover P has a commitment in mind, which we call
a target commitment. The prover P wants to reveal
the target commitment and another one that lies next
to the target commitment (without revealing their exact
positions). Here, a verifier V should be convinced that
the second commitment is a neighbour of the first one
(without knowing which one) as well as V should be
able to confirm the colours of both the commitments.
To handle the case where the target commitment is
at the edge of the grid, we place commitments to
red (as “dummy” commitments) in the left of the first
column and the below of the last row to prevent P from
choosing a commitment that is not a neighbour. Thus,
the size of the expanded grid is (p+ 1)× (q + 1).

Note that we do not place dummy commitments in
the row above the first one and in the column right to
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the last one because in the expanded grid of size (p +

1)(q + 1) the row above the first one can be regarded
as the last row, i.e., dummy commitments. Thus, we do
not need dummy commitments placed in the row above
the first one, which also holds for the column right to
the last one.

The sub-protocol proceeds as follows.

(1) P and V pick the (p + 1)(q + 1) commitments
on the grid from left-to-right and top-to-bottom to
make a sequence of commitments:

? ? ? ? ? ? ? ? · · · ? ? .

(2) P uses the chosen pile protocol (Sect. 2) to reveal
the target commitment.

(3) P and V pick all the four neighbours of the
target commitment. Since a pile-shifting shuffle
is a cyclic reordering, the distance between
commitments are kept (up to a given modulo). That
is, for a target commitment (not at the edge), the
possible four neighbours are at distance one for the
left or right one, and p+1 for the bottom or top one.
Therefore, P and V can determine the positions of
all the four neighbours.

(4) Among these four neighbours, P chooses one
commitment using the chosen pile protocol and
reveals it.

(5) P and V end the second and first chosen pile
protocols.

2.4.3 Full Protocol
Assume that there is a grid having p × q cells.

Without loss of generality, P wants to arrange white
commitments on the grid such that they form a white-
polyomino while V is convinced that the placement of
commitments is surely a white-polyomino. The method
is as follows.

(1) P and V place a black commitment (i.e., ♣ ♡ )
on every cell and red commitments as mentioned
in Sect. 2.4.2 so that they have (p + 1)(q + 1)

commitments on the board.

(2) V selects a black commitment on any cell that
should be colored white by rules (e.g., numbered
cells in a Usowan puzzle) and swaps the two cards
constituting the commitment so that it becomes a
white commitment (recall the encoding (1)).

(3) P and V repeat the following steps exactly pq − 1

times.

(a) P chooses one white commitment as a
target and one black commitment among its
neighbours using the 4-neighbour protocol;
the neighbour is chosen such that P wants to
make it white.

(b) V reveals the target commitment. If it
corresponds to white, then V continues;
otherwise V aborts.

(c) V reveals the neighbour commitment (chosen
by P ). If it corresponds to black, then P

makes the neighbour white or keep it black
(depending on P ’s choice) by executing the
following steps; otherwise V aborts.*

i. If P wants to change the commitment,
P places face-down club-to-heart pair
below it; otherwise, P places a heart-to-
club pair:

? ? → ?
?
♣

?
?
♡

or ?
?
♡

?
?
♣

.

ii. Regarding cards in the same column as a
pile, V applies a pile-shifting shuffle to
the sequence of piles:〈

?
?

∥∥∥∥∥ ?
?

〉
→ ? ?

? ? .

iii. V reveals the two cards in the second
row. If the revealed right card is ♡ , then
V swaps the two cards in the first row;
otherwise V does nothing.

(d) P and V end the 4-neighbour protocol.

(4) P and V remove all the red commitments
(i.e., dummy commitments) so that we have pq

commitments on the board.

After this process, V is convinced that all the white
commitments represent a white-polyomino. Therefore,
this method allows a prover P to make a solution
that only P has in mind, guaranteed to satisfy the
connectivity constraint.

*One might think that this step can be simply achieved by
letting P privately change the neighbour commitment. However,
it might violate the soundness property because P can freely
change it (e.g., into a red commitment), and hence, we have to
additionally verify that P correctly changes the commitment.
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If the number of white cells in the final polyomino,
say k, is public to a verifier V , it is sufficient that in
Step 3, P and V repeat k − 1 times and in Step 3c, and
hence, V simply swaps the two cards constituting the
neighbour commitment to make it white (without P ’s
choice).

2.5 Sum in Z [39]

We give an overview of the protocol described in [39]
for adding elements in Z/2Z with result in Z. This
protocol is needed for the liar rule 4.

Given commitments to xi ∈ Z/2Z for i ∈
{1, . . . , n} along with one ♣ and one ♡ , the protocol
produces their sum S =

∑n
i=1 xi in Z/(n+ 1)Z

encoded in the ♡-scheme without revealing xi. The
computation is performed inductively; when starting
by the two first commitments to x1 and x2, they are
transformed into x1 − r and x2 + r encoded in the
♡-scheme and ♣-scheme, respectively, for uniformly
random value r ∈ Z/3Z. Then x2 + r is revealed (no
information about x2 is revealed because r is random),
and x1 − r is shifted by x2 + r positions to encode
(x1 − r) + (x2 + r) = x1 + x2. Note that this result
is in Z/(p+ 1)Z (or simply Z because the result is less
than or equal to p) for elements x1, x2 in Z/pZ.

Let us describe the protocol. First, notice that black
cells are assumed to be equal to 1 and white cells are
equal to 0 (see Eqs. (1) and (2)). Two commitments to
x1 and x2 (either 0 or 1) will be changed to x1 + x2:

? ?︸ ︷︷ ︸
x1

? ?︸ ︷︷ ︸
x2

♣ ♡ → ? ? ?︸ ︷︷ ︸
x1+x2

.

(1) Swap the two cards of the commitment to x1 and
add a ♣ face down to the right. Those three cards
represent x1 in the ♡-scheme in Z/3Z:

−→←−
? ?︸ ︷︷ ︸
x1

?
♣

→ ? ? ?︸ ︷︷ ︸
x1

.

(2) Add a ♡ on the right of the commitment to x2.
Those three cards represent x2 in the ♣-scheme in
Z/3Z: ? ?︸ ︷︷ ︸

x2

?
♡

→ ? ? ?︸ ︷︷ ︸
x2

.

(3) Obtain three cards representing x1 + r and those
representing x2 − r for a uniformly random value
r ∈ Z/3Z as follows.

(a) Place in reverse order the three cards obtained
in Step 2 below the three cards obtained in

Step 1:

? ? ?︸ ︷︷ ︸
x1

? ? ?︸ ︷︷ ︸
x2

→

? ? ?︸ ︷︷ ︸
x1

? ? ?︸ ︷︷ ︸
2−x2

.

(b) Apply a pile shifting shuffle as follows:〈
?
?

∥∥∥∥∥ ?
?

∥∥∥∥∥ ?
?

〉
→

? ? ?︸ ︷︷ ︸
x1+r

? ? ?︸ ︷︷ ︸
2−x2+r

.

For a uniformly random value r ∈ Z/3Z,
we obtain three cards representing x1+ r and
those representing 2− x2 + r.

(c) Reverse the order of the three cards
representing 2 − x2 + r to obtain those
representing x2 − r: ? ? ?︸ ︷︷ ︸

x1+r

? ? ?︸ ︷︷ ︸
x2−r

.

(4) Reveal the three cards representing x2−r, and shift
to the right the three cards representing x1 + r to
obtain those representing x1+x2 in the ♡-scheme;
apply the same routine for the remaining elements
to compute the final sum.

Notice that we described the protocol for a result in
Z/3Z but it is easily adaptable for a result in, let say,
Z/qZ. Indeed, during the first step, we add a single ♣
to the first commitment and a single ♡ to the second;
thus for a sum that could be equal to q − 1, we add
q− 2 ♣ s to the first commitment and q− 2 ♡ s to the
second.

3 ZKP protocol for Usowan

We present a card-based ZKP protocol for
Usowan. Consider an Usowan instance composed
as a rectangular grid of size p× q.

3.1 Setup phase

The verifier V and prover P place black
commitments on each cell of the p × q grid (also
on the numbered cells) and place red commitments
(“dummy” commitments) on the left of the frst column
and below the last row so that we have (p + 1)(q + 1)

commitments.

3.2 Connectivity phase

We apply the sub-protocol introduced in Sect. 2.4 to
form a white connected figure. After this phase, V is
convinced that the white commitments are connected
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(rule 2). Moreover, V reveals the commitments
corresponding to numbered cells to check that they are
indeed white (rule 1). Notice that revealing directly
those commitments does reveal information about the
solution (i.e., V learns that those cells are white), but
this information is already known independently of the
protocol.

3.3 Verification Phases

There are two rules to check: black commitments
cannot touch horizontally nor vertically (rule 3) and
each numbered cell has the corresponding number of
black cells around it except for one liar in each region
(rule 4).

Lonely black. For each pair of adjacent commitments,
V applies the five-card trick introduced in Sect. 2.3
to the two commitments to compute their disjunction.
We consider here that a white commitment is equal
to 1 while a black commitment is equal to 0 (see the
encoding (2)). Hence, if the output is 1 then it means
that at least one commitment is white so V continues,
otherwise V aborts (because the only case of output 0
is when there are two black commitments).

Liar. V needs to check that each numbered cell has
the corresponding number of black cells around it
except for exactly one liar in each region. We cannot
simply check the number of black cells because it leaks
information. Instead, we compute the sum of black cells
in Z/5Z introduced in Sect. 2.5 for all numbered cells
in a region. However, we do not directly reveal the
result but just the (x−1)-st card of the output sequence.
This ensures that the sum is equal or not to x instead of
giving the actual sum.

It remains one sub-protocol to use because the
addition is destructive; thus, we need to copy
commitments sharing a numbered cell. The copy
protocol is described in Sect. 2.2. We can now formally
describe the liar verification. For every region, apply
the following steps:

(1) For each cell that shares k > 1 numbered cells,
apply the copy protocol (introduced in Sect. 2.2)
k − 1 times.

(2) For each numbered cell, compute the addition of its
four neighbors†. Recall that the result is encoded

†For a numbered cell in the edge of the board, compute the
addition of its three or two neighbors.

as the ♡-scheme (see Sect. 2); thus, the result of
the sum has a ♡ in its corresponding position (and
all other cards are ♣s).

(3) For each sequence obtained in the previous step,
pick the card in the position that corresponds to the
number written on the numbered cell. The result
must be kept secret (i.e., keep the cards face-down).
For example, if the number is three, then the color
of the fourth card from the left represents the sum
as follows:

b

a 3 c

d

−→ a+ b+ c+ d = ?
0

?
1

?
2

?
3
↑

?
4

.

(4) Shuffle and reveal all the cards previously chosen.
If exactly one club is revealed, then continue (i.e.,
there is exactly one liar); otherwise aborts.

3.4 Security Proofs

Our protocol needs to verify three security properties
given as theorems. Note that the sub-protocols used
from the literature have been proven secure i.e., they
are correct, complete, sound and zero-knowledge.

Theorem 1 (Completeness) If P knows the
solution of an Usowan grid, then P can convince V .

Proof P convinces V in the sense that the protocol
does not abort which means that all the rules are
satisfied. The protocol can be split into two phases: (1)
the connectivity phase and (2) the verification phase.

(1) Since P knows the solution, the white cells
are connected and hence P can always select a black
commitment in step 3a to swap it to white.

(2) For the lonely black verification, there is no
configuration of two black cells that are touching
horizontally nor vertically hence for every pair of
adjacent cells, there is always at least one white cell.

For the liar verification, there is exactly (in each
region) one numbered cell surrounded by a different
number of black cells. Suppose, without lost of
generality, that the liar cell is equal to i in a given region
(the same result could be applied for each other region).
When the sum of the four neighbours is done, the card at
position (from left) i+ 1 is ♣ otherwise the numbered
card is not a liar. Thus when revealing the cards at the
last step, there is always a ♣ card. ■

Theorem 2 (Soundness) If P does not provide a
solution of the p × q Usowan grid, P is not able to
convince V .
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Proof Suppose that P does not provide a solution.
If the white cells are not connected, then P cannot
choose a neighbor commitment that P wants to change
at step 3c. If there are two black commitments touching
(or more), then the five-card trick will output 0; hence,
V will abort. Finally, if there is not one liar exactly in
a given region, then the last step of the verification will
reveal either no ♣ or at least two ♣ s; hence, V will
abort. ■

Theorem 3 (Zero-knowledge) V learns nothing
about P ’s solution of the given grid G.

Proof We use the same proof technique as in [11],
namely the description of an efficient simulator that
simulates the interaction between an honest prover
and a cheating verifier. The goal is to produce an
indistinguishable interaction from the verifier’s view
(with the prover). Notice that the simulator does not
have the solution but it can swap cards during shuffles.
Informally, the verifier cannot distinguish between the
distributions of two protocols, one that is run with the
actual solution and one with random commitments. The
simulator acts as follows.

• The simulator constructs a random connected
white polyomino.

• During the lonely black verification, the simulator
replaces the cards in the five-card trick introduced
in Sect. 2.3 with ♡ ♣ ♡ ♣ ♡ . While the latter
sequence is randomly shifted, this ensure that the
protocol continues.

• During the liar verification, the simulator simply
replaces, in the last step, the cards to have exactly
one ♣ and the rest as ♡ s. This ensure that there
is exactly one liar in a given region, meaning that
the protocol does not abort.

The simulated and real proofs are indistinguishable
and hence V learns nothing from the connectivity and
verification phases. Finally, we conclude that the
protocol is zero-knowledge. ■

4 ZKP Protocol for Five Cells

This puzzle is different from the two others presented
here, as the player solving it must fill, not the cells
themselves, but the edges between them. So the
first step is to provide a specific setup to handle this
difference. We thus need to add commitments between
each cell, to encode lines forming regions; this is done
by adding (q + 1) × p commitments in columns and
(p+1)× q commitments in rows. We depict this setup

in Fig. 8 in case of (p, q) = (5, 3), where D denotes a
red commitment as a dummy.

For encoding, we introduce another color, gray,
to distinguish cells from lines. The four colors are
encoded as follows:

♣ ♡ → black,
♡ ♣ → white,
♡ ♡ → red,
♣ ♣ → gray.

In our ZKP protocol, either white or gray commitment
is placed on each cell, and either black or red
commitment is placed in-between, i.e., the color of its
second card represents either a cell or a line.

We informally define our protocol for Five Cells,
illustrated in Fig. 9, as follows:

(1) P puts commitments between cells as described
above and accordingly to its solution.

(2) V verifies the number rule by taking commitments
around the cell; then shuffle them to reveal
all the commitments. If the number of black
commitments is the same as the number written in
the cell, then V continues.

(3) The goal for P is to construct a pentomino
without V knowing which shape it is. Since
the total number of pentominoes is known (p×q

5
),

the following constructive step is done for each
pentomino: P chooses two adjacent commitments
and V checks that there is no line in-between (then
repeated 5 times to form a pentomino).

4.1 Checking the Shape

Each delimited region must form a pentomino (i.e.,
composed of five connected cells). The shape is verified
through the connectivity constraint using a variant of
sub-protocol in Sect. 2.4.

However, we change the grid to add commitments
representing the lines; so we cannot apply directly the
sub-protocol of Sect. 2.4. Basically, the neighbours of
a given cell have not the same distance when put in
sequence but still follow the same evaluation. We give
the corresponding distance in Table 1.

Notice that those distances are correct if the grid
does not contain holes i.e., there are commitments
between each cells. This means that we need to add
dummy commitments D to fill the grid. They are
red commitments and only used to balance the grid to
enforce the results of Table 1.
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Fig. 8 Commitments setup for a Five Cells grid of 5 × 3. Commitments represent line between regions. The notation D refers to
dummy commitments.

Setup:
P and V prepare the grid.
They add commitments representing
the lines between each cell.

Connectivity:
P places lines according to the solution.
V only knows that the figures are composed of 5 cells.

Verification:
V verifies rule 2:
by taking the commitments around numbered cells.

Fig. 9 Overview of our Five Cells protocol.

Finally, we must also add dummy commitments
above the first row and on the left of the first column.
This comes from the fact that commitments at the edge
of the intial grid have no neighbour, but to avoid leaking
information, we need to add dummy commitments. In
the original protocol (see Sect. 2.4), there is only one
row/column of such dummies but here we need to add
two rows/columns to keep the correct distances about
neighbours. So in total, we go from a p × q grid to a
(2p+ 1 + 2)× (2q + 1 + 2) = (2p+ 3)× (2q + 3)

grid (commitments between each cell and the outer
part giving (2p + 1) × (2q + 1) grid and then two
rows/columns on the left and bottom part of the grid).

classic variant
right/left 1 2
up/bot p+ 1 2p+ 4

Table 1 Distance (given for initial grid of a p × q size) from a
cell when all commitments are put in sequence (as in step (1) of
protocol in Section 2.4.2).

4.2 Our Protocol for Five Cells

Setup. The initial grid is modified as explained in
Section 4.1. Moreover, P applies its solution on the

grid by putting black commitments to indicate edges
and red commitments to indicate absence of edge, for
each in-between cells. The commitments corresponding
to actual cells of the grid is set to white by V .

Checking numbers (rule 2). The verifier V checks
the rule number by applying the following, on each
numbered cell with number i:

(1) V picks the four closest commitments
(corresponding to the presence or absence of
edges) and shuffles them.

(2) V reveals all the commitments and checks if the
number of black commitments is equal to i. If so,
V continues otherwise aborts.

(3) V puts back in their initial position the four
commitments.

Checking pentominoes (rule 1). We have now all
the material to verify the pentominoes. Repeat the
following steps p×q

5
times:

(1) P chooses a white cell to begin its pentomino using
the chosen-pile protocol.

(2) V reveals the commitment to check if it is white;
if so, V turns it to gray and continues, otherwise
aborts.

(3) P and V execute the 4-neighbour protocol and
confirm that the target commitment is gray, but
instead of taking one neighbour in each direction,
they pick the two closest in each direction.

(4) V makes the second commitment to gray and
reveal the first commitment; if it is red, then
continues, otherwise aborts.

(5) P and V repeat steps 3 and 4 until a pentomino is
constructed.
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(6) P and V execute the chosen-pile protocol and
check that the chosen commitment (inside the
pentomino) is gray; if so, V turns it to black and
continues, otherwise aborts.

(7) V takes the first cards of every two closest
commitments (of the previously chosen
commitment) in each direction, shuffles the
eight cards, and reveals them; if they are four ♡ s
and four ♣ s, then V continues; otherwise, aborts.

(8) P and V repeat steps 6, 7, and 8 four times.

When all the pentominoes are constructed, V reveals
the commitments corresponding to the cells of the grid
(not the commitment corresponding to the lines). If all
the cells are black then V is convinced that rule 1 is
respected.

4.3 Security Proofs for Five Cells

Our protocol needs to verify three security properties
given as theorems. Note that the sub-protocols used
from the literature have been proven secure i.e., they
are correct, complete, sound and zero-knowledge.

Theorem 4 (Completeness) If P knows the
solution of an Five Cells grid, then P can convince V .

Proof P convinces V in the sense that the protocol
does not abort, which means that all the rules are
satisfied. The protocol can be split into two phases: (1)
verifying the number rule and (2) checking the shape.
(1) Since P knows a solution, the number of black
commitments (i.e., lines) around every numbered cell
should be equal to that number. Thus, revealing the
black commitments (after shuffling) as in the protocol,
this rule is verified.
(2) Even if any of four cells in a pentomino are colored
with red, P can always find a white cell next to one
of the red cells such that there is no line between them
because P knows a solution. This means that P can
always choose two white commitments starting from a
red commitment via the 4-neighbour protocol at Step 3
such that the protocol never aborts. ■

Theorem 5 (Soundness) If P does not provide a
solution of the p × q Five Cells grid, P is not able to
convince V .

Proof Suppose that P does not provide a solution.
We directly apply the soundness proof of [31] for
the connectivity since our variant could be seen as
their connectivity sub-protocol (described in Sect. 2.4)
by adding commitments between each initial cell.

This means that their connectivity construction can
be modeled as our encoding (i.e., with additional
commitments) by considering that there is no line
delimiting region, hence no region is formed.

Having checked the connectivity constraint, there is
an additional property to check (which is out of scope
for [31]), the region are formed of five cells and no more
(or less). If a region is not formed of exactly five cells
then our protocol will detect it. Indeed, by adding a
color to the encoding (i.e., gray), there is a verification
about all cells in a region. Each neighbour of a cell
(inside a region, and detected by the gray color) has
each neighbour either gray with no line (i.e., both are
inside the region) or white/red with a line between them
(the cell is at the edge). When the pentomino is check
then its color is turned to black, meaning that P cannot
continue this pentomino to add cells.

■
Theorem 6 (Zero-knowledge) V learns nothing

about P ’s solution of the given grid G.
Proof We use the same proof technique as in [11],

namely the description of an efficient simulator that
simulates the interaction between an honest prover
and a cheating verifier. The goal is to produce an
indistinguishable interaction from the verifier’s view
(with the prover). Notice that the simulator does not
have the solution but it can swap cards during shuffles.
Informally, the verifier cannot distinguish between the
distributions of two protocols, one that is run with the
actual solution and one with random commitments. The
simulator acts as follows.

• For the connectivity phase, the simulator simply
draws random pentominoes to construct a tilling of
the grid. Notice that this is not the solution with
overwhelming probability but V will not abort at
this point.

• Now, for each numbered cell, the simulator swaps
card to the corresponding number being equal
to the number of black commitments (which is
possible since there is a shuffle). Thus V will not
abort.

The simulated and real proofs are indistinguishable
and hence V learns nothing from our protocol, so
we conclude that the protocol for Five Cells is zero-
knowledge. ■
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4

H

Fig. 10 Example of our protocol for Herugolf

5 ZKP protocol for Herugolf

The setup is straightforward since our protocol is
constructive (P will construct its solution throughout
the protocol). We emphasize that all cells are
considered as white commitments. Additionally, we
place a black card ♣ under each commitment; this will
be used later to mark the tip of the arrow. Let us call
this row the tip row.

For clarity, suppose we need to construct the
arrows depicted in Fig. 10. The following steps are
done for each numbered cell (but examplify with the
configuration of Fig. 10):

(1) V takes the four (corresponding to 4 )
commitments, and the four cards in tip row,
in each direction to form four (one for each
direction) piles p1, p2, p3, p4:

1

1

1

1

2

2

2

2

3

3

3

3

4

4

4

4

4 4p1 p3

p2

p4

Additionally, V reveals the commitment of the
circle cell (here 4 ) and aborts if it is black;
otherwise continues.

(2) P and V apply the chosen pile protocol to
p1, p2, p3, p4 so that P can hoose in which
direction the arrow is formed.

(3) V reveals all the commitments of the chosen pile;
V aborts if there is at least one black commitment
(meaning that there is already another arrow).
Then V swaps all commitments so that all the
commitments are now black.

(4) Before replacing back the piles, V replaces a red
card under the last commitment (the number 4 of
the pile) in tip row:

1

? ?
2

? ?
3

? ?
4

? ?

♡♣ ♣♣

(5) P and V replace back all the commitments to their
initial positions by ending the chosen pile protocol.

(6) V reveals the tip row corresponding to cells in the
gray area. This ensures that rule 3 is respected.

(7) Seeing Fig. 10, P wants to continue the path by
constructing arrows of sizes 3 and 2, but an arrow
of size 1 is not needed. Let k denote the length of
the next arrow we consider (i.e., k = 3 for this
example). Let ℓ denote the length of the last arrow
P wants to construct (i.e., ℓ = 2). At this step, we
create k commitments, each of which will be used
at step 9, as follows.

(a) V prepares k commitments to 0, places a
commitment to 1 on the right side of them,
and places k − 1 commitments to 1 on the
left side of them. Then V places k + 2 cards
representing ℓ encoded in the ♡-scheme and
a face-down ♣ under them as follows.

? ?︸ ︷︷ ︸
1

? ?︸ ︷︷ ︸
1

? ?︸ ︷︷ ︸
0

? ?︸ ︷︷ ︸
0

? ?︸ ︷︷ ︸
0

? ?︸ ︷︷ ︸
1

?
♣

? ? ? ? ?︸ ︷︷ ︸
ℓ

V confirms that ℓ ̸= 0 by revealing the
leftmost card of k + 2 cards representing ℓ;
if it is a ♡ , then V aborts; otherwise, V

continues.

(b) V applies a pile shifting shuffle to the two
sequences of cards placed at the previous
step, regarding cards in the same column as
a pile.

(c) V reveals all the cards of the bottom
sequence. Then exactly one ♡ is revealed,
and take the commitment above the revealed
♡ as well as the k − 1 commitments to the
right (apart from cyclic rotation). We call
these k commitments CC1,CC2, . . . ,CCk

starting from the left.
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(8) P wants to continue the path by constructing
an arrow of size 3. The 4-neighbour protocol
described in Section 2.4.2 is used except that 3

commitments are taken (except of just 1). The
technique for Five Cells is used to know which
commitment to take in the large sequence:

+1

+1p

−1p

−1 +2

+2p

−2p

−2 +3

+3p

−3p

−3

where the tip is denoted by the middle triangle.
Note that V knows which cell corresponds to the
tip by revealing a card in tip row.

(9) P applies the chosen pile protocol to choose its
direction to form the next arrow, and prepares two
identical commitments ♣ ♡ (if P wants to not
draw the arrow anymore, he would have chosen
♡ ♣ ). For this, P takes CC1 created at step 7, and
V copies it with the copy protocol of Section 2.2
(this ensures that the same commitments are used).

(10) V places the three commitments chosen at the
previous step, CC1, and additional cards, forming
two piles p1, p2:

CC′ ♣ ♡

CC1 ? ?

1 ♡ ♣

2 ♡ ♣

3 ♡ ♣

? ?

? ?

? ?

p1 p2

where CC′ denotes a commitment specifying the
“real” arrow. V then turns over all the face-up
cards, shuffles the two piles p1, p2, and reveals
CC1. Then either ♣ ♡ or ♡ ♣ is revealed,
and V reveals the three commitments above the
revealed ♡ ; V aborts if there is at least one black
commitment. Finally, V swaps them so that they
are now black.

(11) V shuffles p1 and p2 again and reveals CC′. Then
we derive the “real” arrow above the revealed ♡ .

(12) The commitments are swapped with P ’s solution
and without V knowing if there is an arrow. Now,
this step ensures that the tip of the arrow is marked
on the newly created arrow (if so) or stays on
the previous one. For this, V uses the second
commitment of CC1 (the first one has been used in
the previous step) by replacing them with the cards
of tip row. Concretely, V replaces the ♡ card of
tip row by the left card of CC1 and the card under
the third commitment by the right card of CC1:

CC1 ? ?

tip row ? ? ? ?

? ? ? ? ? ?commit.
1 2 3

(13) Put back all the commitments in their respective
position in the grid. V reveals the tip row
corresponding to the gray area; this ensures that no
tip is placed on those forbidden cells thus ensuring
rule 3.

(14) P and V repeat steps 8 to 13 by decreasing the
length of the arrow 1 and takeing a commitment
sequentiall starting from CC1 until reaching a
length arrow equal to 1.

5.1 Verification Phase

V simply reveals the tip row of the “H” cells to check
that the tip is a ♡ (meaning that each numbered cell is
connected with a hole and that every arrow ends at a
hole).

5.2 Security Proofs for Herugolf

As before, our protocol needs to verify three security
properties given as theorems. Note that the sub-
protocols used from the literature have been proven
secure i.e., they are correct, complete, sound and zero-
knowledge.

Theorem 7 (Completeness) If P knows the
solution of an Herugolf grid, then P can convince V .

Proof P convinces V in the sense that the protocol
does not abort, which means that all the rules are
satisfied. In particular, each numbered cell is connected
with a hole cell without crossing branches.
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Firstly, given a numbered cell, an arrow is always
depicted in a direction P chooses, and its tip is
represented in tip row by executing steps 1 to 6. The
length of the arrow is always the same as the number
written on the given numbered cell because in step 3, V
changes the same number of white commitments into
black ones.

Next, CC1,CC2, . . . ,CCk are derived in step 7. In
the case of Fig. 10, each of them denotes the following
commitment:

CC1 = ? ?︸ ︷︷ ︸
0

, CC2 = ? ?︸ ︷︷ ︸
0

, CC3 = ? ?︸ ︷︷ ︸
1

,

because in step 7(a), the sequence of cards is placed by
V and P as follows:

? ?︸ ︷︷ ︸
1

? ?︸ ︷︷ ︸
1

? ?︸ ︷︷ ︸
0

? ?︸ ︷︷ ︸
0

? ?︸ ︷︷ ︸
0

? ?︸ ︷︷ ︸
1

?
♣

♣ ♣ ♡ ♣ ♣

and in step 7(c), the commitment above the revealed
♡ is taken as CC1, i.e., a commitment to 0. CC2

and CC3 are the commitments to the right of CC1,
i.e., , commitments to 0 and 1, respectively. For any
case, CCi is always a commitment to 1 if CCi−1 is a
commitment to 1 for 2 ≤ i ≤ k.

Finally, each of remaining arrows is depicted in the
remaining steps. Because the cell where P strats
depicting an arrow is represented in tip row (and is
updated in step 12), P can always select such a cell
using the 4-neighbour protocol in step 8. If P does
not want to depict an arrow anymore and take CCi for
some i in step 10, then CCi is always a commitment to 1
because P sets an appropriate value to ℓ in step 7. Thus,
once an arrow approaching a hole is depicted, no more
arrows must be depicted, and V never aborts in step 10
because the “dummy” arrow (i.e., commitments in p1)
is always revealed. In step 12, tip rowis updated by
replacing the corresponding cards with CCi for some i.
Because CCi is a commitment to 1 if and only if P does
not want to depict an arrow, the cards in tip rowremains
unchanged even if executing step 12. When CCi is a
commitment to 0, the cards in tip roware updated so that
the new tip is represented in an appropriate cell, and the
old tip disappears. ■

Theorem 8 (Soundness) If P does not provide a
solution of the p × q Herugolf grid, P is not able to
convince V .

Proof We rely on the proof of [31] for the
connectivity construction, i.e., , arrows P depicts are

always connected for each numbered cell using the
4-neighbor protocol. Notice that rule 3 is checked
but revealing the tip row during the connectivity
construction phase. ■

Theorem 9 (Zero-knowledge) V learns nothing
about P ’s solution of the given grid G.

Proof As in the previous proofs for the two other
puzzles, we describe an efficient simulator. Informally,
the verifier cannot distinguish between the distributions
of two protocols, one that is run with the actual solution
and one with random commitments. The simulator
simply swaps cards to ensure that V will not abort. This
is possible since each revealing step is preceded by a
shuffle.

The simulated and real proofs are indistinguishable
and hence V learns nothing from our protocol, so
we conclude that the protocol for Herugolf is zero-
knowledge. ■

6 Conclusion

We propose three ZKP protocols dedicated to
convince a verifier that a prover has the solution
without leaking any bit of information of the solution.
Those protocols are designed for each of the following
puzzles: Usowan, Five Cells and Herugolf. Those
three puzzles share a common connectivity constraint
but with additional specific constraints.

The design of the ZKP protocol for Usowan uses
mainly the sum sub-protocol while Five Cells is design
through an hybrid encoding of the commitments (for
the cells but also for the edge delimiting the region).
The proposed ZKP protocol for Herugolf is somewhat
in extension of the connectivity protocol which allows
to construct connected figures of given length.
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for Nurimisaki. In Stéphane Devismes, Franck
Petit, Karine Altisen, Giuseppe Antonio Di
Luna, and Antonio Fernández Anta, editors,
Stabilization, Safety, and Security of Distributed
Systems - 24th International Symposium, SSS 2022,
Clermont-Ferrand, France, November 15-17, 2022,
Proceedings, volume 13751 of Lecture Notes in
Computer Science, pages 285–298. Springer, 2022.
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