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Abstract. Proving to someone else the knowledge of a secret without
revealing any of its information is an interesting feature in cryptography.
The best solution to solve this problem is a Zero-Knowledge Proof (ZKP)
protocol.
Nurimisaki is a Nikoli puzzle. The goal of this game is to draw a kind
of abstract painting (“Nuri”) that represents the sea with some capes
(“Misaki”) of an island (represented by white cells). For this, the player
has to fulfill cells of a grid in black (representing the sea) in order to draw
some capes while respecting some simple rules. One of the specificity of
the rules of this game is that the cells called “Misaki” can only have one
white neighbour and all white cells need to be connected. In 2020, this
puzzle has been proven to be NP-complete.
Using a deck of cards, we propose a physical ZKP protocol to prove that
a player knows a solution of a Nurimisaki grid without revealing any
information about the solution.

Keywords: Zero-knowledge proof, Pencil Puzzle, Card-based cryptog-
raphy, Nurimisaki

1 Introduction

The democratization of computers and network systems has fuelled the
virtualization of interactions and processes such as communication, pay-
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ments, and elections. Proving the knowledge of some secret without re-
vealing any bit of information from that secret is crucial in our today’s
society. This issue can be applied to numerous contexts.

For instance, a client would like to connect to a server via a password
without revealing the password. Another example is database manage-
ment, where an entity could ask if a piece of information is in a database
without asking for factual data. A third example can be given in the elec-
tronic voting system where the voters want to be sure that the ballots
are correctly mixed (without revealing how the mix was done).

A cryptographic tool exists for all the previous examples, called a
Zero-Knowledge Proof (ZKP) protocol. It enables a prover P to convince
a verifier V that P knows a secret s without revealing anything other
than it. A ZKP protocol must verify the following three properties:
– Completeness: If P knows s then the protocol ends without aborting

(meaning that V is convinced that P has s);
– Soundness: If P does not have s then V will detect it;
– Zero-Knowledge: V learns nothing about s.

In practice, ZKP protocols are typically executed by computers. How-
ever, their understanding is difficult for the uninitiated. We take a more
direct approach to the notion of ZKP and construct a protocol using
physical objects like playing cards and envelopes. It allows us to present
the notion of ZKP protocols without deep mathematical backgrounds and
also to extend the existing literature.

The first physical ZKP protocol [7] for a Sudoku grid was constructed
using a deck of cards. Since this novel protocol was devised, several
teams in the world have proposed physical ZKP protocols using a deck
of cards for pencil puzzles, such as Sudoku [19,25], Akari [1], Takuzu [1],
Kakuro [1,13], KenKen [1], Makaro [2], Norinori [5], Slitherlink [11], Sug-
uru [16], Nurikabe [17], Ripple Effect [22], Numberlink [20], Bridges [21],
Cryptarithmetic [8], Shikaku [23], and Nonogram [3,18].

Why shall we propose a new card-based ZKP protocol for another
Nikoli puzzle? For us, it is similar to the question: Why shall we prove that
a puzzle is NP-complete? People want to know if a puzzle is NP-complete
in order to know if the puzzle is difficult or not for a computer to solve
it. Card-based ZKP protocols are quite similar; once a puzzle is shown
to be NP-complete, a natural question is: Can we design a physical ZKP
protocol? This is an intellectual challenge on the puzzle. Moreover, each
puzzle has different rules and specificity, which force us to imagine new
physical ZKP techniques. For instance, consider a Nikoli puzzle, Nurim-
isaki, which we will deal with in this paper; then, its rules combine for
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Fig. 1. Nurimisaki example (left) with its solution (right).

the first time some connectivity, neighbourhood restriction, and straight
line with counting, as seen later. A previous work [24] (in Japanese, un-
published) proposed a card-based ZKP protocol for Nurimisaki. Yet, the
protocol is not optimal since it prepares another grid to verify the rules
(so the number of cards is large). Moreover, elaborate but complex tech-
niques are used (e.g., using another grid to represent the in-spanning-tree
of P ’s solution). In contrast, our protocol has a more direct approach
with closer interaction to the real game. Before giving our contributions,
let us define the rules of the Nurimisaki puzzle.

Nurimisaki Rules. Figure 1 shows a puzzle instance of Nurimisaki. The
goal for Nurimisaki puzzle is to color in black some cells on the grid,
under the following rules:

1. A cell with a circle is called a “Misaki”. A Misaki has only one cell
of its neighbours (vertically or horizontally) remaining white and the
rest black.

2. The number written in a Misaki cell indicates the number of white cells
in straight line from the Misaki. If there is no number, any number of
white cells is allowed.

3. White cells without a circle cannot be a Misaki.
4. A 2× 2 square cannot be composed of only black or white cells.
5. White cells are connected.

Nurimisaki puzzle was recently proven NP-complete in [9]; hence, it
is a natural question to construct a physical ZKP protocol for this fun
puzzle. Although Goldwasser et al. [6] proved that any NP-complete prob-
lem has its corresponding interactive ZKP protocol, simple physical ZKP
protocols are always sollicited as mentioned above.

Contributions. We propose a physical ZKP protocol that only uses cards
and envelopes. We rely on some classical existing card-based sub-protocols
in order to be able to construct our ZKP protocol. The main difficulty in
this Nurimisaki game that seems to be simple, is that existing techniques
proposed in the literature since few years cannot be applied directly. The
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main trick is to find an encoding that allows us to apply several sub-
protocols in the right order to obtain a secure ZKP protocol. For this, we
propose an original way to combine several techniques to design our ZKP
protocol with a reasonable amount of cards and manipulations.

Outline. In Section 2, we introduce our encoding scheme using cards in
order to represent a gird of the game and a solution. We also give some
sub-protocols that are used in our construction. In Section 3, we give our
ZKP protocol for Nurimisaki. Before concluding in the last section, we
give the security proof of our ZKP protocol in Section 4.

2 Preliminaries

We explain the notations and sub-protocols used in our constructions.

Cards and Encoding. The cards we use in our protocols consist of clubs
♣ ♣ · · · , hearts ♡ ♡ · · · , and numbered cards 1 2 · · · , whose backs are
identical ? . We encode three colors {black,white, red} with the order of
two cards as follows:

♣ ♡ → black, ♡ ♣ → white, ♡ ♡ → red. (1)

We call a pair of face-down cards ? ? corresponding to a color ac-
cording to the above encoding rule a commitment to the respective color.
We also use the terms, a black commitment, a white commitment, and a
red commitment. We sometimes regard black and white commitments as
bit values, based on the following encoding scheme:

♣ ♡ → 0, ♡ ♣ → 1. (2)

For a bit x ∈ {0, 1}, if a pair of face-down cards satisfies the encoding (2),
we say that it is a commitment to x, denoted by ? ?︸ ︷︷ ︸

x

.

We also define two other encoding [22,26]:

– ♣-scheme: for x ∈ Z/pZ, there are p cards composed of p− 1 ♡s and
one ♣, where the ♣ is located at position (x + 1) from the left. For
example, 2 in Z/4Z is represented as ♡ ♡ ♣ ♡ .

– ♡-scheme: it is the same encoding as above but the ♡ and ♣ are
reversed. For instance, 2 in Z/4Z is represented as ♣ ♣ ♡ ♣ .
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2.1 Pile-shifting Shuffle [15,26]

This shuffling action means to cyclically shuffle piles of cards. More for-
mally, given m piles, each of which consists of the same number of face-
down cards, denoted by (p1,p2, . . . ,pm), applying a pile-shifting shuffle
(denoted by ⟨·∥ · · · ∥·⟩) results in (ps+1,ps+2, . . . ,ps+m):〈

?︸︷︷︸
p1

∥∥∥∥∥ ?︸︷︷︸
p2

∥∥∥∥∥ · · ·
∥∥∥∥∥ ?︸︷︷︸

pm

〉
→ ?︸︷︷︸ ?︸︷︷︸ · · · ?︸︷︷︸

ps+1 ps+2 ps+m

,

where s is uniformly and randomly chosen from Z/mZ. Implementing a
pile-shifting shuffle is simple: we use physical cases that can store a pile of
cards, such as boxes and envelopes; a player (or players) cyclically shuffles
them manually until everyone (i.e., the prover P and the verifier V ) loses
track of the offset.

2.2 Input-preserving Five-card Trick [12]

Given two commitments to a, b ∈ {0, 1} based on the encoding rule (2),
this sub-protocol [4, 12] reveals only the value of a ∨ b as well as restores
commitments to a and b: ? ?︸ ︷︷ ︸

a

? ?︸ ︷︷ ︸
b

→ a ∨ b & ? ?︸ ︷︷ ︸
a

? ?︸ ︷︷ ︸
b

.

The original sub-protocol [4, 12] was designed for computing AND
(a ∧ b), but we adjust it to compute OR (a ∨ b):

1. Add helping cards and swap the two cards of the commitment to b so
that we have the negation b, as follows:

? ?︸ ︷︷ ︸
a

? ?︸ ︷︷ ︸
b

→ ? ?︸ ︷︷ ︸
a

♡ ? ?︸ ︷︷ ︸
b

♡ ♣ ♣ ♣ ♣ .

2. Rearrange the sequence of cards and turn over the face-up cards as:

? ? ♡ ? ? ♡ ♣ ♣ ♣ ♣ → ?
♡

?
♣
♡
♣

?
♣

?
♣
→ ?

?
?
?

?
?

?
?

?
?
.

3. Regarding cards in the same column as a pile, apply a pile-shifting
shuffle to the sequence:〈

?
?

∥∥∥∥ ?
?

∥∥∥∥ ?
?

∥∥∥∥ ?
?

∥∥∥∥ ?
?

〉
→ ? ? ? ? ?

? ? ? ? ? .

4. Reveal all the cards in the first row.
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(a) If it is ♣ ♣ ♡ ♡ ♡ (up to cyclic shifts), then a ∨ b = 0.
(b) If it is ♡ ♣ ♡ ♣ ♡ (up to cyclic shifts), then a ∨ b = 1.

5. After turning over all the face-up cards, apply a pile-shifting shuffle.
6. Reveal all the cards in the second row; then, the revealed cards should

include exactly one ♡ .
7. Shift the sequence of piles so that the revealed ♡ is the leftmost card

and swap the two cards of the commitment to b to restore commit-
ments to a and b.

2.3 Mizuki–Sone Copy Protocol [14]

Given a commitment to a ∈ {0, 1} along with four cards ♣ ♡ ♣ ♡ , the
Mizuki–Sone copy protocol [14] outputs two commitments to a:

? ?︸ ︷︷ ︸
a

♣ ♡ ♣ ♡ → ? ?︸ ︷︷ ︸
a

? ?︸ ︷︷ ︸
a

.

1. Turn all cards face-down and set the commitments as follows:

?
? ︸︷︷︸ a ?
? ︸︷︷︸ 0 ?
? ︸︷︷︸ 0 .

2. Apply a pile-shifting shuffle as follows:

〈 ? ? ?

∥ ∥ ∥ ∥ ∥ ∥? ? ?

〉

→ ?
?

?
?

?
?

.

3. Reveal the two above cards to obtain either a or a as follows:

♣
♡

?
? ︸︷︷︸ a ?
? ︸︷︷︸ a or

♡
♣

?
? ︸︷︷︸ a ?
? ︸︷︷︸ a .

2.4 How to Form a White Polyomino [17]

We introduce the generic method of [17] to address the connectivity con-
straint (rule 5). Given a grid where all cells are black, it enables P to
make white connected cells, i.e., white-polyomino, without revealing any-
thing to V . We first describe two crucial sub-protocols: the chosen pile
protocol and the 4-neighbor protocol.
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Chosen pile protocol [5]. The chosen pile protocol allows P to choose a
pile of cards without V knowing which one. This pile can be manipulated
and all the commitments are replaced to their initial order afterward.

This protocol is an extended version of the “chosen pile cut” proposed
in [10]. Given m piles (p1,p2, . . . ,pm) with 2m additional cards, the cho-
sen pile protocol enables a prover P to choose the i-th pile pi (without
revealing the index i) and revert the sequence of m piles to their original
order after applying other operations to pi.

1. Using m − 1 ♣ s and one ♡ , P places m face-down cards encoding
i − 1 in the ♡-scheme (denoted by row 2) below the given piles, i.e.,
only the i-th card is ♡ . We further put m cards encoding 0 in the
♡-scheme (denoted by row 3):

?︸︷︷︸
p1

?︸︷︷︸
p2

. . . ?︸︷︷︸
pi−1

?︸︷︷︸
pi

?︸︷︷︸
pi+1

. . . ?︸︷︷︸
pm

?
♣

?
♣

. . . ?
♣

?
♡

?
♣

. . . ?
♣
← row 2

?
♡

?
♣

. . . ?
♣

?
♣

?
♣

. . . ?
♣
← row 3

2. Considering the cards in the same column as a pile, apply a pile-
shifting shuffle to the sequence of piles.

3. Reveal all the cards in row 2. Then, exactly one ♡ appears, and the
pile above the revealed ♡ is the i-th pile (and hence, P can obtain
pi). After this step is invoked, other operations are applied to the
chosen pile. Then, the chosen pile is placed back to the i-th position
in the sequence.

4. Remove the revealed cards, i.e., the cards in row 2. (Note, therefore,
that we do not use the card ♡ revealed in Step 3.) Then, apply a
pile-shifting shuffle.

5. Reveal all the cards in row 3. Then, one ♡ appears, and the pile above
the revealed ♡ is p1. Therefore, by shifting the sequence of piles (such
that p1 becomes the leftmost pile in the sequence), we can obtain a
sequence of piles whose order is the same as the original one without
revealing any information about the order of the input sequence.

Sub-protocol: 4-Neighbor Protocol [17]. Given pq commitments placed on
a p×q grid, a prover P has a commitment in mind, which we call a target
commitment. The prover P wants to reveal the target commitment and
another one that lies next to the target commitment (without revealing
their exact positions). Here, a verifier V should be convinced that the sec-
ond commitment is a neighbor of the first one (without knowing which
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one) as well as V should be able to confirm the colors of both the commit-
ments. To handle the case where the target commitment is at the edge of
the grid, we place commitments to red (as “dummy” commitments) in the
left of the first column and below the last row to prevent P from choosing
a commitment that is not a neighbor. Thus, the size of the expanded grid
is (p+ 1)× (q + 1). This sub-protocol proceeds as follows.

1. P and V pick the (p + 1)(q + 1) commitments on the grid from
left-to-right and top-to-bottom to make a sequence of commitments:
? ? ? ? ? ? ? ? · · · ? ? .

2. P uses the chosen pile protocol to reveal the target commitment.
3. P and V pick all the four neighbors of the target commitment. Since

a pile-shifting shuffle is a cyclic reordering, the distance between com-
mitments are kept (up to a given modulo). That is, for a target com-
mitment (not at any the edge), the possible four neighbors are at
distance one for the left or right one, and p + 1 for the bottom or
top one so that P and V can determine the positions of all the four
neighbors.

4. Among these four neighbors, P chooses one commitment using the
chosen pile protocol and reveals it.

5. P and V end the second and first chosen pile protocols.

Forming white-polyomino. Assume that there is a grid having p× q cells.
P wants to arrange white commitments on the grid such that they form a
white-polyomino while V is convinced that the placement of commitments
is surely a white-polyomino. The sub-protocol proceeds as follows.

1. P and V place a commitment to black (i.e., ♣ ♡ ) on every cell and
commitments to red as mentioned above so that they have (p+1)(q+1)
commitments on the board.

2. P uses the chosen pile protocol to choose one black commitment that
P wants to change.
(a) V swaps the two cards constituting the chosen commitment so

that it becomes a white commitment (recall the encoding (1)).
(b) P and V end the chosen pile protocol to return the commitments

to their original positions.
3. P and V repeat the following steps exactly pq − 1 times.

(a) P chooses one white commitment as a target and one black com-
mitment among its neighbors using the 4-neighbor protocol; the
neighbor is chosen such that P wants to make it white.

(b) V reveals the target commitment. If it corresponds to white, then
V continues; otherwise V aborts.
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(c) V reveals the neighbor commitment (chosen by P ). If it corre-
sponds to black, then P makes the neighbor white or keep it black
(depending on P ’s choice) by executing the following steps; oth-
erwise V aborts.
i. If P wants to change the commitment, P places face-down

club-to-heart pair below it; otherwise, P places a heart-to-club
pair: ? ? → ?

?
♣

?
?
♡

or ?
?
♡

?
?
♣

.

ii. Regarding cards in the same column as a pile, V applies a pile-

shifting shuffle to the sequence of piles:
〈

?
?

∥∥∥∥ ?
?

〉
→ ? ?

? ? .
iii. V reveals the two cards in the second row. If the revealed

right card is ♡ , then V swaps the two cards in the first row;
otherwise V does nothing.

(d) P and V end the 4-neighbor protocol.

V is now convinced that all the white commitments represent a white-
polyomino. Therefore, this method allows a prover P to make a solution
that only P has in mind, guaranteed to satisfy the connectivity constraint.

2.5 Sum in Z [22]

We give a brief overview (formally defined in Appendix A) of the protocol
described in [22] for the addition of elements in Z/2Z with a result in Z.
This allows to compute S =

∑n
i=1 xi with S ∈ Z and xi ∈ Z/2Z for

i ∈ {1, . . . , n}. The idea is to compute the sum inductively; when starting
by the two first elements x1 and x2, they are transformed into x1 − r
and x2 + r for uniformly random r ∈ Z/2Z. Then x2 + r is revealed (no
information about x2 leaks since r is random), and the cards of x1 − r is
shifted by x2 + r positions to encode value (x1 − r) + (x2 + r) = x1 + x2.
Note that this result is in Z/(p+ 1)Z (or simply Z since the result is less
than p) for elements x1, x2 in Z/pZ.

3 ZKP Protocol for Nurimisaki

We present our ZKP protocol for Nurimisaki. Hereinafter, we consider an
instance of Nurimisaki as a rectangular grid of size p× q.
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3.1 Setup phase

The verifier V and the prover P place black commitments on all the cell
of the p × q grid and place red commitments (“dummy” commitments)
around the grid so that we have (p+ 1)(q + 1) commitments.

3.2 Connectivity phase

P and V apply the protocol given in Section 2.4: a white-polyomino is
formed according to P ’s solution. Now, V reveals all the commitments
corresponding to Misaki to check that they are indeed white. After this
phase, V is convinced that white commitments are connected (rule 5).

3.3 Verification Phase

The verifier V is now checking that the other rules are satisfied.

No 2 × 2 square (rule 4). We use an adapted verification phase of the
one in [17] for checking that 2× 2 square are not composed of only white
(black) commitments. Note that for an initial grid p × q, there are (p −
1)(q − 1) possible squares of size 2 × 2. Thus P and V consider each of
those squares (in any order) and apply the following:

1. P chooses a white commitment and a black one among the four com-
mitments via the chosen-pile protocol (Section 2.4).

2. V reveals both commitments marked by P in the previous step. If
there are exactly a white commitment and a black one, V continues;
otherwise, abort.

Misaki (rule 1 and 2). V wants to check that each Misaki cell (cell with
a circle) has only one of its neighbours white and others black. Moreover,
when a Misaki has a number in it, V wants to check that the straight line
formed by white cells starting from the Misaki cell has the corresponding
number of white cells.

P and V first consider Misaki cells with a number. For each Misaki
cell (not at a border) with a number i in it, apply the following:

1. P and V add black commitments (i.e., “dummy” commitments) at the
border of the grid. This ensures that we delimit correctly the number
of white commitments in straight line.

2. For each of the four neighbours, P and V form a pile composed of
i+ 1 commitments for each direction (top, bottom, left, right).

10
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3
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2 2p1 p3

p2

p4

3. P and V puts numbered cards under each pile as follows:
p1 p2 p3 p4

1 2 3 4
4. P and V shuffle the piles and reveal the first commitment of each

pile. If there is exactly one commitment corresponding to white then
V continues. Otherwise, V aborts.

5. V reveals the next i commitments of the pile with the first white
commitment. If there are only white commitments for the first i −
1 commitments and a black commitment for the last one, then V
continues; otherwise, aborts.

After this step, V is convinced that Misaki cells with a number are
well-formed. In the case where there is no number, the first step consists
of forming a pile with only one commitment. Hence, V is convinced that
Misaki cells without a number satisfy only rule 1 but not rule 2 since any
number of white cells could form the straight line.

Note that we described the protocol for Misaki cell not at the border
of the grid. If a Misaki cell is at a border (but not a corner) then the 4-
neighbours becomes the 3-neighbours and the protocol is the same (there
will be only three piles instead of four). For Misaki cells at a corner, P
and V consider the 2-neighbours (thus only two piles).

No circle, no Misaki (rule 3). V needs to check that white cells without
a circle are not Misaki, meaning that any white cell of the grid has at
least two of its neighbours white. This rule is somewhat challenging to
verify without leaking information on the solution because the number
and location of white cells are part of the solution (and must not be
publicly revealed).

If the targeted cell is black then there is nothing to verify since any
configurations could occur. Yet, if the targeted cell is white then there
are at least (but it could be more) two neighbours that are white. The
idea is to set the value of targeted cell being 5 if it is white and 0 if it is
black. Then we add the neighbours to it (white is 0, and black is 1). If
the cell is black then the sum is always less than or equal to 4 (which is
permitted by the rules to have all black). But if the cell is white then the
permitted value for the sum is less than or equal to 7 (a Misaki is equal
to 8) for a targeted cell that is not at a border.
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For a given cell, called targeted cell ct, we look at its neighbors (up to
4). The idea of verifying that a white cell is not a Misaki is to first sum
the four neighbors (where a white cell is equal to 0 and a black cell is 1).
Then by choosing another encoding, the targeted cell can be equal to 5
for white and 0 for black. Finally, adding the sum of the neighbors with ct
gives at most 4 for black ct (which is permitted by the rules) and at most
7 for white ct in a valid configuration and 8 or 9 for invalid configuration.

1. Copy all the commitments using the copy protocol (Section 2.3). The
number of copies for a p×q grid is 2(2pq−p−q); we leave the detailed
computations in Appendix B.

2. Sum the four neighbours by considering that a white commitment
is equal to 0 and a black commitment is equal to 1. The result is
given in ♡-scheme (i.e., there are four ♣ s and one ♡ at position
corresponding to the result of the sum).

3. For the targeted cell, add 3 ♡ in the middle of the commitment as:
white: ♡ ♣ → ♡ ♡ ♡ ♡ ♣ = 5,

black: ♣ ♡ → ♣ ♡ ♡ ♡ ♡ = 0.

White is now 5 and black is 0 in the ♣-scheme.
4. Sum the result of the two previous steps (the sum of the four neigh-

bours and the inner cell). The result is encoded in the ♡-scheme.
5. Reveal the last and penultimate cards. If a ♡ appears then abort;

otherwise, continue.

4 Security Proofs

Our protocol needs to verify three security properties given as theorems.

Theorem 1 (Completeness). If P knows the solution of a Nurimisaki
grid, then P can convince V .

Proof. First, notice that P convinces V in the sense that the protocol
does not abort which mean that all the rules are satisfied. The protocol
can be split in two: (1) the connectivity and (2) the verification phases.

(1) Since P knows the solution, the white cells are connected and
hence can always choose a black commitment at step 2 to swap it to
white. Notice that there exists a proof for the connectivity in [17].

(2) The verification of 2 × 2 square will not abort since if P has the
solution then for any given 2× 2 square there always exist a white com-
mitment and a black commitment. For the Misaki rules, each Misaki cell
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has three of its neighbors black and one white; thus, the first commit-
ment of piles p1, p2, p3, p4 will reveal exactly three black and one white
commitments. Then, when looking at pile pi of the first commitment cor-
responding to white, the number of white commitments corresponds to
the number in the inner cell. Thus the protocol will continue. Finally, the
non-Misaki rule is verified. Since P has the solution, any white cell (with
no circle in it) has at least two white neighbors. Thus if the inner cell is
white then the sum will start to 5 and the maximal value is 7 because a
solution has at least two whites so at most two black commitments (of
value 1 in this step). So the protocol will continue and hence V will be
convinced that P has the solution.

Theorem 2 (Soundness). If P does not provide a solution of the p×q
Nurimisaki grid, P is not able to convince V .

Proof. Suppose that P does not know the solution, hence at least one of
the rules is not verified. If the white cells are not connected then P cannot
choose a black commitment at step 2 hence V will detect it. Notice that
there is also the proof of this phase in [17].

If P does not have the solution, then one of the verification phase
will fail. We apply a case distinction for those verifications. Assume first
that there is a block of 2 × 2 square composed of only white (black)
commitments, then P cannot choose, during the chosen-pile protocol,
two distinct commitments (i.e., a black and a white) thus the revealed
commitments will attest to V that P does not have the solution. Second,
assume that a Misaki cell is not well-formed in the sense that either (1)
the number of white neighbour is not equal to 1 or that (2) the number
of white cells in straight line does not correspond to the number of the
Misaki cell. For (1) the neighbours are revealed (after a shuffle) so V will
notice the number of white commitments; for (2) all the commitments
next to the white neighbour are revealed thus V will also notice if there
is a flaw. The last verification is for white cells which are not Misaki. It is
equivalent of saying that any white cell (without a circle in it) has at least
two white neighbours. If a white cell has only one white neighbour then
during the sum process, then ct = 5 (because the central cell is white) and
the total for its neighbours is 3 (because there are 3 black commitments
and 1 white). The final sum is then equal to 8, since V will look at the
last and penultimate card of the sum (corresponding to a sum equal to
9 and 8) then V will detect that a white card is a Misaki. Notice that a
sum equals to 9 means the white cell is surrounded by 4 black cells. It is
not possible since white cells are connected.
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Theorem 3 (Zero-knowledge). V learns nothing about P ’s solution
of the given grid G.

Proof. We use the same proof technique as in [7], namely the description
of an efficient simulator which simulates the interaction between an hon-
est prover and a cheating verifier. The goal is to produce an indistinguish-
able interaction from the verifier’s view (with the prover). Notice that the
simulator does not have the solution but it can swap cards during shuffles.
Informally, the verifier cannot distinguish between two protocols, one that
is run with the actual solution and one with random commitments. The
simulator acts as follows: The simulator constructs a random connected
white polyomino. During the 2× 2 square verification, the simulator will
swap cards to choose white and black commitments. For the Misaki ver-
ification, the simulator swaps three commitments to black for three piles
and one to white for the last pile. The latter will also be modified by the
simulator to contain the correct numbers of white commitments (and the
last commitment to black). During the non-Misaki verification, when the
sum is computed, the simulator swaps the cards to always put ♣ cards
in position 8 and 9 (for the cell not at the edge, but the latter is done the
same way).

The simulated and real proofs are indistinguishable hence V learns
nothing from the connectivity and verification phases. Finally, we con-
clude that the protocol is zero-knowledge.

5 Conclusion

We proposed a physical ZKP protocol for Nurimisaki that uses only cards
and envelopes. The most difficult part was to prove that cells are not
Misaki without leaking their color. Of course, we combined this part with
the rest of the verifications that are stated by other rules. This new ap-
proach clearly demonstrates that showing that some cells do not have
some properties is often more difficult than proving an explicit property
without leaking any information.

The next step is to see if this new trick can be applied for other Nikoli’s
games. For instance, Moon-or-Sun is one possible candidate. Going fur-
ther the puzzle Shakashaka is even more challenging since it combines
such tricks with geometrical shapes, which is more difficult.
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A Sum of commitments

We describe the protocol in [22] for adding elements in Z/2Z with a result
in Z.

Given commitments xi ∈ Z/2Z for i ∈ {1, . . . , n} along with one
♣ and ♡ , the protocol produces their sum S =

∑n
i=1 xi in Z/(n+ 1)Z

encoded in the ♡-scheme without revealing the values of xi. The idea is to
compute the sum inductively; when starting by the two first commitments
to x1 and x2, they are transformed into x1 − r and x2 + r encoded in
the ♡-scheme and ♣-scheme, respectively, for uniformly random value
r ∈ Z/3Z. Then x2 + r is revealed (no information about x2 is revealed
because r is random), and x1 − r is shifted by x2 + r positions to encode
(x1 − r) + (x2 + r) = x1 + x2. Note that this result is in Z/(p+ 1)Z (or
simply Z because the result is less than or equal to p) for elements x1, x2
in Z/pZ.

The protocol is now formally described. First notice that a black cell
is assumed to be equal to 1 and a white cell is equal to 0 (according to
Eqs. (1) and (2)). Consider first two commitments to x1 and x2 (either 0
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or 1):
? ?︸ ︷︷ ︸
x1

? ?︸ ︷︷ ︸
x2

♣ ♡ → ? ? ?︸ ︷︷ ︸
x1+x2

.

1. Swap the two cards of the commitment to x1 and add a ♣ face down
to the right. Those three cards represent x1 in the ♡-scheme in Z/3Z.

−→←−
? ?︸ ︷︷ ︸
x1

?
♣
→ ? ? ?︸ ︷︷ ︸

x1

.

2. Add a ♡ on the right of the commitment to x2. Those three cards
represent x2 in the ♣-scheme in Z/3Z.

? ?︸ ︷︷ ︸
x2

?
♡
→ ? ? ?︸ ︷︷ ︸

x2

.

3. Obtain three cards representing x1 + r and those representing x2 − r
for a uniformly random value r ∈ Z/3Z as follows.
(a) Place in reverse order the three cards obtained in Step 2 below

the three cards obtained in Step 1:

? ? ?︸ ︷︷ ︸
x1

? ? ?︸ ︷︷ ︸
x2

→

? ? ?︸ ︷︷ ︸
x1

? ? ?︸ ︷︷ ︸
2−x2

.

(b) Apply a pile shifting shuffle as follows:

〈
?
?

∥∥∥∥ ?
?

∥∥∥∥ ?
?

〉
→

? ? ?︸ ︷︷ ︸
x1+r

? ? ?︸ ︷︷ ︸
2−x2+r

.

For a uniformly random value r ∈ Z/3Z, we obtain three cards
representing x1 + r and those representing 2− x2 + r.

(c) Rearrange the three cards representing 2− x2 + r to obtain those
representing x2 − r:

? ? ?︸ ︷︷ ︸
x1+r

? ? ?︸ ︷︷ ︸
x2−r

.
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4. Reveal the three cards representing x2 − r, and shift to the right the
three cards representing x1 + r to obtain those representing x1 + x2
in the ♡-scheme; apply the same routine for the remaining elements
to compute the final sum.

Notice that we described the protocol for a result in Z/3Z but it is
easily adaptable for a result in, let say, Z/qZ. Indeed, during the first
step, we add a single ♣ to the first commitment and a single ♡ to the
second; thus for a sum that could be equal to q − 1, we add q − 2 ♣ s to
the first commitment and q − 2 ♡ s to the second.

B Number of copies

The number of calls to copy protocol can be expressed given the size of
the grid p× q. Indeed, we can split the cells in three categories: (1) cells
at a corner, (2) cells at a border but not at a corner and (3) cells at the
middle of the grid. First, notice that the copy protocol is called for the
same number of neighbors the cell has. Thus, the copy protocol is run,
given each type of cell:
corner: 2,
border: 3,
middle: 4.

Thus, by computing the total number of cells for each type, we can
find the total number of calls to the copy protocol. The number of cell
for each category, for a p× q grid, is:
corner: 4,
border: 2(p− 2) + 2(q − 2) = 2(p+ q − 4),
middle: (p− 2)(q − 2).

Finally, the total number of calls to the copy protocol Nc is:

Nc = 2× 4 + 3× 2(p+ q − 4) + 4× (p− 2)(q − 2)

= 8 + 6p+ 6q − 24 + 4pq − 8p− 8q + 16

= 2(2pq − p− q).
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