

The maize low-lignin mutant F2bm3 shows pleiotropic effects on photosynthetic and cell wall metabolisms in response to chilling

Catalina Duran Garzon, Michelle Lequart, Léo Bellenger, Alejandro Lovo, Françoise Fournet, Solène Bassard, Hélène Sellier-Richard, Paulo Marcelo,

Karine Pageau, Catherine Giauffret, et al.

▶ To cite this version:

Catalina Duran Garzon, Michelle Lequart, Léo Bellenger, Alejandro Lovo, Françoise Fournet, et al.. The maize low-lignin mutant F2bm3 shows pleiotropic effects on photosynthetic and cell wall metabolisms in response to chilling. cell wall meeting, 2019, Cambridge, United Kingdom. hal-04454441

HAL Id: hal-04454441 https://u-picardie.hal.science/hal-04454441v1

Submitted on 13 Feb 2024 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

The maize low-lignin mutant F2bm3 shows pleiotropic effects on photosynthetic and cell wall metabolisms in response to chilling

UF UNIVERSITY *of* **FLORIDA**

Catalina Duran Garzon¹, Michelle Lequart¹, Léo Bellenger¹, Alejandro Lovo⁵, Françoise Fournet¹, Solène Bassard¹, Hélène Sellier-Richard², Paulo Marcelo³, Karine Pageau¹, Catherine Giauffret⁴, Wilfred Vermerris⁵, Jean-Marc Domon¹, Catherine Rayon¹

¹EA3900-BIOPI, Biologie des Plantes et Innovation, Université de Picardie Jules Verne, 80039, Amiens, France ; ²Unité Expérimentale Grandes Cultures Innovation et Environnement, INRA-Estrées-Mons, 80203 Péronne, France; ³Plateforme d'Ingénierie Cellulaire & Analyses des Protéines ICAP Université de Picardie Jules Verne, 80039 Amiens, France; ⁴UR AgroImpact, INRA, Estrées-Mons, 80203 Péronne, France; ⁵ Department of Microbiology & Cell Science, University of Florida, Gainesville, FL 32610, USA.

Introduction

Maize (Zea mays L.) is one of the major crops in the world and is highly sensitive to low temperature due to its tropical origin. Chilling may particularly affect maize during early seedling growth by altering physiological processes including photosynthesis and cell wall properties, leading to biomass reduction. Changes in photosynthetic and cell wall metabolisms were investigated during a long chilling exposure in a low-lignin maize mutant, brown midrib3 (bm3), which contains a null-mutation in the gene encoding caffeic acid O-methyltransferase (COMT). Wild-type F2 plants and the near-isogenic F2bm3 mutant were grown during 60 days with a day/night temperature regime of 15°C/11°C in a greenhouse. Photosynthetic pigments, cell wall sugars, lignin, cell wall bound hydroxycinnamic acids (HCA) contents were determined when the 4th leaf had fully emerged. Does COMT mutation compensate or increase deleterious chilling effects on growth or development?

■25°C/22°C

■15°C/11°C

5

Chlorophyll and zeaxanthin pigments are more abundant in F2bm3 than in F2 under chilling exposure

Some photos	ynthetic pigments	s content in F2	and F2bm3	leaves

	25ºC/22ºC	15ºC/11ºC	25ºC/22ºC	15ºC/11ºC			
Pigment	F2		F2bm3				
	SD	SD	SD	SD			
Chl a (µmol.g- ¹ FW)	2.77 ± 0.19 b	2.47 ± 0.13 b	6.23 ± 0.12 a	5.95 ± 0.16 a			
ChIb (µmol.g⁻¹FW)	0.78 ± 0.11 b	0.74 ± 0.12 b	0.93 ± 0.05 a	0.67 ± 0.10 b			
Chl a+b (µmol.g ⁻¹ FW)	3.55 ± 0.30 b	3.21 ± 0.13 b	7.16 ± 0.14 a	6.62 ± 0.22 a			
Chl a/b	3.58 ± 0.29 c	3.41 ± 0.73 c	6.72 ± 0.38 b	9.04 ± 1.19 a			
Zeaxanthin (µmol.g ⁻¹ FW)	$0.003 \pm 0.000 c$	0.015 ± 0.002 b	$0.002 \pm 0.001 c$	0.070 ± 0.001 a			
Carotenoid /Chl a+b	0.56 ± 0.05 a	0.60 ± 0.10 a	$0.25 \pm 0.02 b$	$0.24 \pm 0.02 b$			

Chilling effects on plant growth and biomass in the lignin maize deficient mutant F2bm3 and the normal F2 line. (A) Phentoype of F2 and F2bm3 after 45 days of chilling stress. (B) Plant height under ambient growth condition (black bar) and chilling stress (grey bar). (C) The average of aerial biomass (Dry Weight) after 45 days of chilling stress with a day/night temperature regime of 15°C/11°C.

Data are means ±SD (n=8). Differences were statistically analyzed using Student's t-test. Letters denote differences at P<0.05, a between F2 and F2bm3 at 25°C/22°C, b between F2 and F2bm3 at 15°C/11°C, c and d between temperatures for each genotype.

Chilling changes the cell wall sugars composition in both F2 and F2bm3 lines

Data are means ±SD (n=16). Differences were statistically analyzed using Student's t-test. Different letters indicate significant differences between groups (P < 0.05).

Chilling increases hydroxycinnamic acids in F2bm3

Cell wall hydroxycinnamates content in F2 and F2bm3 leaves

	25°C/22°C	15ºC/11ºC	25°C/22°C	15ºC/11ºC		
Genotype	F2		F2bm3	² 2bm3		
	SD	SD	SD	SD		
FA (Ester) (mg.g⁻¹ DW)	$0.13 \pm 0.07 \ b$	0.36 ± 0.09 a	0.24 ± 0.13 b	0.41 ± 0.05 a		
FA ester /Ara	9.63 ± 5.86 <i>a</i>	12.89 ± 1.47 <i>a</i>	15.18 ± 8.53 <i>a</i>	14.93 ± 0.84 <i>a</i>		
FA (Ether) (mg.g⁻¹ DW)	0.14 ± 0.05 b	0.13 ± 0.04 b	$0.18 \pm 0.02 \ b$	0.28 ± 0.08 a		
TOTAL FA (mg.g⁻¹ DW)	0.27 ± 0.12 b	$0.49 \pm 0.08 b$	0.41 ± 0.13 b	0.70 ± 0.10 a		
pCA (Ester) (mg.g⁻¹ DW)	0.66 ± 0.09 a	$0.36 \pm 0.03 \ b$	$0.34 \pm 0.06 b$	0.40 ± 0.08 b		
pCA (Ether) (mg.g ⁻¹ DW)	0.48 ± 0.06 <i>a</i>	0.25 ± 0.15 b	$0.26 \pm 0.03 b$	$0.23 \pm 0.06 b$		
TOTAL pCA (mg.g ⁻¹ DW)	1.14 ± 0.11 a	$0.60 \pm 0.37 \ b$	$0.60 \pm 0.08 \ b$	$0.63 \pm 0.13 \ b$		
TOTAL FA + pCA (mg.g ⁻¹ DW)	1.43 ± 0.21 a	1.09 ± 0.45 b	1.02 ± 0.21 b	1.32 ± 0.23 a		
pCA/FA	4.88 ± 2.45 a	1.18 ± 0.59 b	1.60 ± 0.65 b	0.92 ± 0.28 b		

Data are means ±SD (n=16). Differences were statistically analyzed using Student's t-test. Different letters indicate significant differences between groups (P < 0.05). ferulic acid (FA), p-coumaric acid (pCA), arabinose (Ara).

Chilling does not change lignin content but H-residues increases while a reduction in S- and G-units is observed in F2bm3

(A) Cellulose and (B) $(1\rightarrow 3), (1\rightarrow 4)-\beta$ -D-glucan content in F2 and F2*bm3* leaves under ambient temperature (black bar) and chilling (grey bar).

Data are means ±SD (n=16). Differences were statistically analyzed using Student's t-test. Letters denote differences at P<0.05, a between F2 and F2bm3 with a day/night temperature regime oft 25°C/22°C, b between F2 and F2bm3 with a day/night temperature regime oft $15^{\circ}C/11^{\circ}C$, c and d between temperatures for each genotype.

Non-cellulosic sugars content in F2 and F2bm3 leaves

	25ºC/22ºC	15ºC/11ºC	25ºC/22ºC	15ºC/11ºC		
Genotype	F2		F2bm	3		
Polysaccharide	% mole SD	% mole SD	% mole SD	% mole SD		
Rha	0.73 ± 0.24 a	0.77 ± 0.32 a	0.71 ± 0.07 <i>a</i>	0.76 ± 0.43 <i>a</i>		
Ara	14.68 ± 3.55 b	27.35 ± 4.30 a	15.77 ± 1.09 <i>b</i>	27.67 ± 3.78 a		
Gal	2.84 ± 1.13 b	4.27 ± 1.28 a	3.15 ± 0.54 b	4.08 ± 1.02 <i>a</i>		
Glc	12.00 ± 3.79 <i>a</i>	14.50 ± 2.59 <i>a</i>	10.94 ± 3.23 <i>a</i>	13.65 ± 2.50 <i>a</i>		
GalUA	2.22 ± 0.46 a	3.07 ± 0.95 a	2.64 ± 0.47 <i>a</i>	2.85 ± 0.88 a		
GIcUA	1.31 ± 0.20 <i>a</i>	1.42 ± 0.40 <i>a</i>	1.21 ± 0.21 <i>a</i>	1.39 ± 0.39 <i>a</i>		
ХуІ	66.23 ± 7.57 a	48.62 ± 7.09 b	65.57 ± 3.90 <i>a</i>	49.58 ± 7.18 b		
Ara + Xyl	80.91 ± 4.88 <i>a</i>	75.97 ± 4.77 a	81.34 ± 3.71 <i>a</i>	77.25 ± 4.67 a		
Ara / Xyl	$0.23 \pm 0.08 b$	0.58 ± 0.17 a	$0.24 \pm 0.03 b$	0.57 ± 0.13 a		

Data are means ±SD (n=16). Differences were statistically analyzed using Student's t-test. Different letters indicate significant differences between groups (P < 0.05). Rhamnose (Rha), arabinose (Ara), galactose

Lignin content using acetylbromide method

Data are means ±SD (n=16). Differences were statistically analyzed using Student's t-test. Letters denote differences at P<0.05, a between F2 and F2bm3 with a day/night temperature regime of 25°C/22°C, b between F2 and F2bm3 with a day/night temperature regime of 15°C/11°C, c and d between temperatures for each genotype. Black columns represents the experiment under ambient temperature condition and grey columns under chilling exposure.

Hauts-de-France

Identification of H, S and G phenylpropanoid units (%) by thioacydolysis in F2 and F2bm3 leaves.

	25°C/22°C			15ºC/1	15ºC/11ºC			25ºC	;/22	C	15ºC/1	1⁰C	
Genotype	F2			Genotype			F2 <i>bm</i> 3						
		S	SD		(SD			C C	SD		S	D
н	7.00	±	0.06	2.00	±	0.03	н	0.00	±	0.00	14.00	±	0.03
G	64.00	±	0.12	59.00	±	0.02	G	82.00	±	0.13	73.00	±	0.07
S	29.00	±	0.06	39.00	±	0.04	S	18.00	±	0.13	13.00	±	0.04

Acknowledgments: This work was financed by the «Conseil Régional Hauts de France» and « FEDER », in support of the REG15019-COOLBIOM project (2015-2018). We thank Dr Matthieu Reymond (IJPB, INRA Versailles, France) for providing the seeds.

References

Farnale et al (2017) Plant and Cell Physiology, Volume 58, Issue 2, February 2017, Pages 240–255, https://doi.org/10.1093/pcp/pcw198

Conclusion

Europe

avec le FeDER

auts-de-France

JNION EUROPÉENNE

• The increase in arabinose substitution on the xylan backbone and the abundance of HCA in the F2bm3 mutant could reinforce the cell wall and maintain the hydration status of the cell wall during chilling.

- The reduction in G-residues in F2bm3 may be due to a greater demand in ferulic acids as photoprotectant under chilling.
- F2bm3 • Therefore, displays the photosynthesis and cell wall traits that might be useful to cope with early sowing stress.

